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conditions for inactivation of Escherichia
coli O157:H7, Salmonella enterica serovar
Typhimurium, and Listeria monocytogenes
in apple juice
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Abstract

Background: Control of foodborne pathogens is an important issue for the fruit juice industry and ohmic heating
treatment has been considered as one of the promising antimicrobial interventions. However, to date, evaluation of
the relationship between inactivation of foodborne pathogens and system performance efficiency based on
differing soluble solids content of apple juice during ohmic heating treatment has not been well studied. This study
aims to investigate effective voltage gradients of an ohmic heating system and corresponding sugar concentrations
(°Brix) of apple juice for inactivating major foodborne pathogens (E. coli O157:H7, S. Typhimurium, and L.
monocytogenes) while maintaining higher system performance efficiency.

Results: Voltage gradients of 30, 40, 50, and 60 V/cm were applied to 72, 48, 36, 24, and 18 °Brix apple juices. At all
voltage levels, the lowest heating rate was observed in 72 °Brix apple juice and a similar pattern of temperature
increase was shown in18-48 °Brix juice samples. System performance coefficients (SPC) under two treatment
conditions (30 V/cm in 36 °Brix or 60 V/cm in 48 °Brix juice) were relatively greater than for other combinations.
Meanwhile, 5-log reductions of the three foodborne pathogens were achieved after treatment for 60 s in 36 °Brix at
30 V/cm, but this same reduction was observed in 48 °Brix juice at 60 V/cm within 20 s without affecting product
quality.

Conclusions: With respect to both bactericidal efficiency and SPC values, 60 V//cm in 48 °Brix was the most effective
ohmic heating treatment combination for decontaminating apple juice concentrates.

Keywords: Ohmic heating, Apple juice, System performance efficiency, Foodborne pathogen, Inactivation

Background

The U.S. Food and Drug Administration stated that
the possibility for contamination with foodborne path-
ogens is low in foods with pH below 4.6 [1]. How-
ever, acidic foods such as fruit juice have emerged as
a novel substrate in which foodborne pathogens can
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maintain their viability since several illness outbreaks
involving them have been documented [2]. Major
foodborne pathogens implicated in fruit juice-borne
outbreaks are Escherichia coli O157:H7 and Salmon-
ella enterica serovar Typhimurium [3]. In the United
States in 1996, a serious foodborne outbreak occurred
in which one person died and 70 people were in-
fected with E. coli O157:H7 traced to apple cider [4].
A multistate outbreak caused by S. Typhimurium was
reported in the United States in 2005 which was
associated with consumption of orange juice [5].
Listeria monocytogenes is a Gram positive bacterium
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and has acid tolerance as do E. coli O157:H7 and S.
Typhimurium [6]. Although outbreaks of foodborne
illnesses linked to L. monocytogenes have not occurred
in fruit juices, the National Advisory Committee on
Microbiological Criteria for Foods suggested that L.
monocytogenes should be categorized as a target bac-
terium even though no association has been identified
between L. monocytogenes and fruit juices [7]. Apples
used for producing juice can become contaminated
with these pathogens from several sources, such as
apples in orchards that have fallen onto the ground,
contamination with manure, or those insufficiently
washed (8, 9].

The U.S. Food and Drug Administration has regu-
lated that facilities for pasteurization should ensure a
minimum of 5-log pathogen reduction [10]. Thermal
methods such as hot water or steam traditionally
have been used to pasteurize apple juice. Although
conventional heating guarantees food microbiological
safety, it causes deterioration of overall quality in-
volving nutritional degradation, color change, and
flavor loss [11, 12]. Novel technologies such as radio
frequency, microwave, and ohmic heating have
emerged as alternatives in order to compensate for
the drawbacks of traditional heating. Ohmic heating
among innovative thermal technologies is an appro-
priate system to use for fruit juice pasteurization in
that it is able to heat rapidly and uniformly with
high temperature for a short time (HTST process)
and is amenable to a continuous type design [13,
14]. Ohmic heating is a technology where heat is
internally generated by the passage of alternating
electric current in which foods act as a resistor [15],
and the heating rate in ohmic heating is related to
the electrical conductivity of liquid food products
[14]. Because of this characteristic, many food engi-
neers have studied ohmic heating associated with the
electrical properties of foods. Castro et al. [16] stud-
ied the relationship between temperature and sugar
content on the electrical conductivity of strawberry
products during ohmic heating. Also, Icier and Ilicali
[17] investigated the effect of orange juice concen-
tration on system performance efficiency during
ohmic heating. Therefore, not only the degree of
antimicrobial effect but also several other factors
such as the concentration of dissolved solids con-
cerned with system performance efficiency should be
considered in order to apply an ohmic heating
pasteurization system practically by the fruit juice in-
dustry. To date, evaluation of the relationship be-
tween inactivation of foodborne pathogens and
system performance efficiency based on differing sol-
uble solids content of juices during ohmic heating
treatment has not been well studied.
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The purpose of this research was to investigate the
optimum sugar concentration (“Brix) of apple juice
and corresponding voltage gradient of an ohmic heat-
ing system for achieving both effective inactivation of
foodborne pathogens including E. coli O157:H7, S.
Typhimurium, and L. monocytogenes and higher sys-
tem performance efficiency.

Methods

Bacterial strains and culture preparation

All bacterial strains, namely, E. coli O157:H7 (ATCC
35150, ATCC 43889, and ATCC 43890), S. Typhimur-
ium (ATCC 19585, ATCC 43971, and DT 104) and L.
monocytogenes (ATCC 19114, ATCC 19115, ATCC
15313) were obtained from the Bacterial Culture Col-
lection at Seoul National University (Seoul, South
Korea) and used for all experiments. All strains were
stored at —80 °C in 0.7 ml of Tryptic Soy Broth (TSB;
Difco Becton Dickinson, Sparks, MD, USA) and
0.3 ml of 50% glycerol (vol/vol). Working cultures
were streaked onto Tryptic Soy Agar (TSA; Difco), in-
cubated at 37 °C for 24 h, and stored at 4 °C. Each
strain of E. coli O157:H7, S. Typhimurium, and L.
monocytogenes was cultured in 5 ml TSB for 24 h at
37 °C, harvested by centrifugation at 4000 x g for
20 min at 4 °C, and washed three times with 0.2%
peptone water (PW, Difco). The final pellets were re-
suspended in 0.2% PW, corresponding to approxi-
mately 10° ~ 10° CFU/ml. Subsequently, suspended
pellets of each strain of the three pathogens were
mixed to produce a culture cocktail.

Sample preparation and inoculation

Pasteurized apple juice concentrate (pH 3.5, 72 °Brix),
free of any preservatives, was purchased from a local
grocery store (Incheon, Korea). Apple juice concen-
trate was diluted with sterile distilled water to 48, 36,
24, and 18 °Brix. Sugar concentration (°Brix) was
measured by a digital refractometer (Atago co.Ltd,
Japan). Then, a 0.2-ml aliquot of the mixed culture
cocktail (E. coli O157:H7, S. Typhimurium, and L.
monocytogenes) was inoculated into each 25 ml sam-
ple of apple juice of different solids content. The final
cell concentration was ca. 10° ~ 10" CFU/ml.

Experimental apparatus

Ohmic heating treatments were conducted in a previ-
ously described apparatus [18]. The experimental device
(Fig. 1) consisted of a two-channel digital storage oscillo-
scope (TDS2001C; Tektronix, Inc., Beaverton, CO), a
precision power amplifier (4510; NF corp., Yokohama,
Japan), a function generator (33210A; Agilent Technolo-
gies, Palo Alto, CA), a data acquisition instrument
(34,790 A; Agilent Technologies), and an ohmic heating
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chamber. In the middle of a rectangular container (an
ohmic heating chamber, 2 by x15 by x6 cm) consisting
of component Pyrex glass, two titanium electrodes and a
K-type thermocouple coated with Teflon were located.
The distance between the cross-sectional area and the
two titanium electrodes was 2 cm and 60 cm?, respect-
ively. Multiple waveforms such as sine, square, ramp,
pulse, triangle, noise, and custom waveforms could be
produced by the function generator which permitted a
frequency range of 1 MHz to 10 MHz and a maximum
output signal of 5 V. These signals were expanded by
the power amplifier from 45 to 20 kHz and a maximum
output of 141 VAC. Each titanium electrode received
signals amplified by the power amplifier. The signals, in-
cluding waveform, frequency, voltage, and current, were
measured using the two-channel digital storage oscillo-
scope. The data acquisition instrument was used to ob-
tain temperature histories in this study.

Ohmic heating treatment

The ohmic heating chamber was filled with 25 ml of
sample for treatment. A 20 kHz frequency and sine
waveform were utilized in all experiments. Since
electrochemical reactions can occur at standard line
voltage frequency (60 Hz) during ohmic heating and
it may affect inactivation of foodborne pathogens
[18, 19], 20 kHz, a high frequency that does not
cause electrochemical reactions, was chosen in this
study. For obtaining temperature and electric current
data, treatments were conducted at a fixed 30, 40,
50, and 60 V/cm setting in apple juice of 72, 48, 36,
24, and 18 °Brix for 90 s. Temperature and electric
current were recorded every 1 s. For microbial in-
activation experiments, inoculated samples were
treated at a fixed 30 or 60 V/cm setting in 72, 48,
36, 24, and 18 °Brix apple juice for 0, 10, 20, 30, 40,
50, and 60 s.

Bacterial enumeration

For enumeration of bacteria, each treated 25 ml sample
was immediately transferred into a sterile stomacher bag
(Labplas Inc., Sainte-Julie, Quebec, Canada) containing
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225 ml of iced 0.2% PW (maintained on crushed ice)
and homogenized for 2 min with a stomacher (Easy
Mix, AES Chemunex, Rennes, France). One ml aliquots
of homogenized samples were tenfold serially diluted in
9 ml of 0.2% PW, and 0.1 ml of sample or diluent was
spread-plated onto each selective medium. For the enu-
meration of E. coli O157:H7, S. Typhimurium and, L.
monocytogenes, Sorbitol MacConkey agar (SMAG;
Difco), Xylose Lysine Desoxycholate agar (XLD; Difco)
and Oxford Agar Base (OAB; Difco) with antimicrobic
supplement (Bacto™ Oxford Antimicrobic Supplement,
Difco) were used as selective media, respectively. Where
low numbers of surviving cells were anticipated, 250 pl
of sample was spread-plated onto each of four plates to
lower the detection limit (detection limit = 10 CFU/g). All
agar media were incubated at 37 °C for 24—48 h before
counting. To confirm the identity of the pathogens, col-
onies were selected randomly from the enumeration plates
and subjected to serological or biochemical tests [E. coli
O157:H7 latex agglutination assay (RIM, Remel, Lenexa,
KS, USA), Salmonella latex agglutination assay (Oxoid,
Ogdensberg, NY, USA), and API Listeria (bioMérieux,
Inc. Hazelwood, MO, USA)].

System performance coefficient measurement
The system performance coefficient (SPC) of ohmic heating
was determined from temperature, voltage, and current
data [17] and calculated as follows (equation 1):

mCpAT

SPC =
S AVIt

(1)

Where m is mass (g), Cp is specific heat capacity (J/g K),
AT is difference between final temperature and initial
temperature (K), AV is voltage applied (V), I is electric
current (A), and ¢ is time (s). YAVIt is the energy given
to the system, mCpAT is energy given to the system
minus energy loss during ohmic heating. The ratio of
mCpAT to YAVIt indicates the system performance co-
efficient [17].

Color and pH measurement

To assess color changes of treated apple juice, a Minolta
colorimeter (CR400; Minolta Co., Osaka, Japan) was used
in this study. Color of apple juice were expressed by values
of L% a* and b* (color lightness, redness, and yellowness,
respectively) [20]. A pH meter (Seven Multi 8603; Mettler
Toledo, Greifensee, Switzerland) was utilized to measure
pH values.

Statistical analysis

All experiments were conducted three times with dupli-
cate samples. Data were analyzed by the ANOVA proced-
ure of SAS (Version 9.2. SAS Institute Inc., NC, USA),
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and mean values were separated using Tukey-Kramer’s
multiple range test. A P value of <0.05 was used to indi-
cate significant differences.

Results and discussion

Temperature profiles of different concentrations of apple

juice

There are various factors affecting electrical conductivity of
liquids. Electrical ~conductivity —relies on chemical
components, ion activity, and viscosity of liquids. Such an
electrical characteristic, along with juice concentration, could
have an influence on temperature rise and microbial inactiva-
tion [17, 21]. A study by Palaniappan and Sastry [22] stated
that the relationship between electrical conductivity and
temperature was linear but conductivity decreased with in-
creasing soluble solids content in tomato and orange
juices. The results of the present study were also con-
sistent with previous reports. The heating rates of
various concentrations of apple juice during ohmic
heating at different voltage gradients are shown in
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concentrations than in lower concentrations of juice
up to 36 °Brix. However, when approaching 48 °Brix,
the rate of temperature increase began to decline.
The slowest rate of temperature increase was ob-
served at the maximum sugar concentration (72 °Brix)
of apple juice since electric conductivity was sup-
pressed as sugar concentration approached the max-
imum levels included in this study (data not shown).

System performance efficiency at different concentrations
of apple juice and voltage gradients

The system performance coefficient (SPC), which af-
fects processing cost, was considered as an import-
ant factor in this study. Icier and Ilicali [17]
reported that SPC values of ohmic heating depended
strongly on the voltage gradient applied to orange
juice concentrates. For the 60 V/cm voltage gradi-
ents SPCs were approximately 0.52-0.59, which indi-
cated that 41-48% of the electrical energy applied to
the system was not used in heating orange juice

Fig. 2. Temperature rise was more rapid in higher concentrates. For low voltage gradients (20 V/cm),
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0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

Time (s)

Temperature (°C)

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

Time (s)




Park et al. BMC Microbiology (2017)17:117

1.0 q
N 72 °Brix
0.9 4 [ 48°Brix
€ @ 36 °Brix
2 081 [ 24 °Brix
:3q:> 07 - @ 18 °Brix -
o
o
8 0.6 4 T
]
£ 0.5
€ 04
[
o
g 03+
2
2 02
7
0.1 1 i i
0.0 i
30 40 50 60
Voltage gradient (V/cm)
Fig. 3 System performance coefficient levels for 18, 24, 36, 48, and
72 °Brix apple juice during ohmic heating at voltage gradients of 30,
40, 50, and 60 V/cm. Error bars indicate standard deviations calculated
from triplicates

the conversion of electrical energy into heat was
greater. A similar tendency was also observed in the
present study. Figure 3 shows system performance
coefficients of ohmic heating at different sample
concentrations and voltage gradients. Average SPC
values at 40, 50, and 60 V/cm were not as high as
that of 30 V/cm. The energy loss at a voltage gradi-
ent of 30 V/cm was the lowest when 36 °Brix apple
juice was subjected to ohmic heating, which indi-
cated that ca. 75% of the electrical energy applied to
the system was utilized for heating (Fig. 3). When
treated with 40 V/cm, the worst system performance
efficiencies were detected at all sample concentra-
tions. As applied voltage increased, overall SPC grad-
ually increased from 40 to 60 V/cm. Following
higher voltage gradients (60 V/cm), the peak system
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efficiency was observed in 48 °Brix juice. The SPC
value for 48 °Brix apple juice at 60 V/cm, which is
the actual electrical energy used to heat the samples,
was ca. 73%. In the case of 72 °Brix apple juice, SPC
values were absolutely lower than in any other con-
centration of apple juice (Fig. 3). This can be corre-
lated to electrical conductivity or resistance of juice
at higher sugar concentrations.

Effect of ohmic heating for inactivation of foodborne
pathogens at different voltage gradients

Control of foodborne pathogens is an important
issue for the fruit juice industry and ohmic heating
treatment has been considered as one of the promis-
ing antimicrobial interventions. In our previous
study [18], reduction of E. coli O157:H7, S. Typhi-
murium, and L. monocytogenes resulting from ohmic
heating was significantly higher (P < 0.05) than that
resulting from conventional heating at equal temper-
atures of 55, 58, and 60 °C in apple juice. These re-
sults showed that electric field-induced ohmic
heating led to additional bacterial inactivation due
not only to thermal effect but also to
electroporation-caused cell damage [18]. As the lat-
est in a series of research studies on ohmic heating
of apple juice, we attempted to optimize the process-
ing conditions of ohmic heating based on system
performance efficiency and inactivation level of path-
ogens to provide a practical methodology for the
fruit juice industry.

Tables 1, 2 and 3 shows the reduction of E. coli
0O157:H7, S. Typhimurium, and L. monocytogenes in
different apple juice concentrations during ohmic
heating, respectively. At 30 V/cm, ohmic heating for
60 s achieved 0.95, 2.59, 6.78, 5.21, and 2.71 log re-
ductions of E. coli O157:H7 in 72, 48, 36, 24, and 18

Table 1 Log reductions of £ coli O157:H7 in 72, 48, 36, 24, and 18 “Brix apple juice subjected to ohmic heating at 30 and 60 V/cm

Voltage Log reduction [logio (No/N)I by treatment time (s)

gradient  °Brix 0 10 20 30 40 50 60

30 V/em 72 000£000 A 044022 042+005 B 053+016 B 056+032 B 071+022 BC 095003 C
48 000+£000 A 026007 034 £ 0.02 041+£005 A 089+022 B 138+£022 C 259+063 D
36 000+000 A 028+014 0.34 + 0.04 091+037 B 140+£030 C 333+031 D 678+011 E
24 000+000 A 024+£008 AB 022+013 AB 071+048 BC 126046 C 297+047 D 521+036 E
18 000+£000 A 009+008 A 017+030 AB 0.17+£006 AB 067+031 B 134+£050 C 271+029 D

60 V/cm 72 000+000 A 038+022 AB 067+022 B 062+ 006 B 055+029 AB 073+032 B 073+060 B
48 000+000 A 042+£013 B 633+013 C ND ND ND ND
36 000+£000 A 082+017 B 658+022 C ND ND ND ND
24 000+000 A 074+058 B 688+ 006 C ND ND ND ND
18 000+000 A 050+041 B 693+011 C ND ND ND ND

*The values are means + standard deviations from three replications. Values in the same row followed by the same letter are not significantly different (P > 0.05).

ND not detected.
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Table 2 L og reductions of S. Typhimurium in 72, 48, 36, 24, and 18 °Brix apple juice subjected to ohmic heating at 30 and 60 V/cm

Voltage Log reduction [logy (No/N)J? by treatment time (s)

gradient  “Brix 0 10 20 30 40 50 60

30 V/em 72 000+000 A 064+030 AB 072+028 B 123+£028 B 090+020 B 106+077 B 140+044 B
48 000+000 A 052+021 B 033+015 AB 069+018 BC 108+030 C 18 +054 D 2838+048 E
36 000+£000 A 029+006 AB 043+£015 B 080+008 C 162+025 D 39+033 E 671+£013 F
24 000+000 A 022+019 A 031+014 A 093+026 B 181+025 C 342+£050 D 670+016 E
18 000+000 A 009+010 A 017+011 AB 048+023 B 087+007 C 144+£022 D 327+040 E

60 V/cm 72 000£000 A 061+012 AB 090+030 B 100+ 051 B 106054 B 126+030 B 120+066 B
48 000+000 A 042+044 A 581+006 B ND ND ND ND
36 000+000 A 083+032 B 610+ 024 C ND ND ND ND
24 000£000 A 079+088 A 661+£013 B ND ND ND ND
18 000+000 A 065+045 B 668 +0.14 C ND ND ND ND

*The values are means * standard deviations from three replications. Values in the same row followed by the same letter are not significantly different (P > 0.05).

ND not detected.

°Brix apple juice, respectively. Also, reductions of
1.40, 2.88, 6.71, 6.70, and 3.27 log CFU/ml in concen-
trations of 72, 48, 36, 24, and 18 °Brix, respectively,
were observed in S. Typhimurium. In the case of L.
monocytogenes, levels of log reduction following
ohmic heating were 0.47, 1.74, 501, 3.91, and 1.13,
respectively, in juice concentrations of 72, 48, 36, 24,
and 18 °Brix. From these results at 30 V/cm, max-
imum log reductions of the three foodborne patho-
gens were observed in 36 °Brix apple juice. Dramatic
levels of inactivation were achieved in 18-48 °Brix
apple juice during ohmic heating at 60 V/cm. Reduc-
tions of E. coli O157:H7 were 6.32, 6.58, 6.88, and
6.93 log CFU/ml in 48, 36, 24, and 18 °Brix juice, re-
spectively, after ohmic heating for 20 s. Similarly,
ohmic heating for 20 s accomplished 5.80, 6.10, 6.60,
and 6.68 log reductions of S. Typhimurium in 48, 36,
24, and 18 °Brix juice, respectively. Log reductions of

Table 3 Log reductions of L. monocytogenes in 72, 48, 36, 24, and 18

5.71, 5.70, 5.82, and 5.93 in 48, 36, 24, and 18 °Brix
apple juice, respectively, were observed for L. monocy-
togenes. Thus, the time duration required for 5-log re-
duction at 30 V/cm in 36 °Brix apple juice was three
times longer than for 60 V/cm at all apple juice con-
centrations with the exception of 72 °Brix. Also, com-
mercial processing of higher concentration apple juice
has the advantage of greater production yield (of 18 °
Brix juice). Therefore, with respect to bactericidal
efficiency, SPC values, and treatment time, ohmic
heating application of 60 V/cm in 48 °Brix apple juice
could be more efficient than that of 30 V/cm in 36°
Brix.

The influence of ohmic heating on quality of apple juice

Additionally, ohmic heating is a suitable technology
for minimizing degradation of juice quality due to
the fundamental property of ohmic heating, which

°Brix apple juice subjected to ohmic heating at 30 and 60 V/cm

Voltage Log reduction [log;o (No/N)J? by treatment time (s)

gradient  °Brix 0 10 20 30 40 50 60

30V/em 72 000+000 A 034+015 A 032+016 A 034+£006 A 032+022 A 037032 A 047049 A
48 000£000 A 021+008 AB 036+013 B 052+014 BC 073+030 C 134+£012 D 174+024 E
36 000+000 A 043+020 B 042+014 B 067019 B 110+018 C 190+022 D 501+£035 E
24 000+000 A 004+008 A 013+012 A 021+£013 A 074+020 B 1.18+037 C 391+026 D
18 000+000 A 007+£013 A 004+010 A 027019 A 023+028 A 042+024 A 113+£041 B

60 V/cm 72 000+000 A 031£014 A 023+012 A 033+£019 A 040+031 A 040+£025 A 038+040 A
48 000+000 A 057+028 B 571+027 C ND ND ND ND
36 000+£000 A 146+009 B 571+023 C ND ND ND ND
24 000+000 A 050+042 A 583+013 B ND ND ND ND
18 000+000 A 066+011 B 594+020 C ND ND ND ND

*The values are means * standard deviations from three replications. Values in the same row followed by the same letter are not significantly different (P > 0.05).

ND not detected.
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Table 4 Color values® and pH of treated and untreated apple juice of 18, 24, 36, 48, and 72 “Brix at 30 and 60 V/cm following ohmic heating

Voltage gradient Mean + SD*

Solids content (°Brix) Treatment time (s) pH Color®
L* a* b*

30 V/cm 72 0 342 +0.00 2647 + 0.06 038 £ 001 411 £001
60 342 £ 001 2644 + 0.08 038 £ 0.02 4.09 + 0.05

48 0 3.51 £0.00 2543 +£ 029 049 + 0.03 4.66 + 0.09

60 351 +£ 001 2547 £ 0.72 047 £ 0.11 456 + 0.22

36 0 3.54 £ 0.00 24.85 = 0.10 049 = 0.04 5.16 = 0.05

60 3.54 £ 001 24.76 £ 0.19 0.54 + 0.02 505+ 0.19

24 0 357 £ 001 24.72 + 065 032+ 004 502 £035

60 3.57 £001 24.55 = 0.08 0.38 £ 0.01 546 + 0.09

18 0 3.59 + 0.00 2423 +023 025+ 0.02 530 £ 043

60 3.60 + 0.00 2451 £ 0.19 027 £ 0.02 558 +0.12

60 V/cm 72 0 345 + 001 2601 + 0.05 0.37 + 0.03 410+ 011
60 344 £+ 0.00 26.03 = 0.02 036 = 0.07 4.19 + 0.08

48 0 352+ 001 2536+ 023 047 £ 0.02 4.26 £ 0.06

20 3.53 £0.00 2532 £ 039 046 = 0.09 438 £ 0.15

36 0 3.54 £ 001 24.56 + 0.21 049 £+ 0.01 528 +£0.08

20 3.54 + 001 24.55 £ 0.11 0.52 + 0.09 5.17 £ 0.02

24 0 3.56 £ 0.00 2445 + 042 0.36 = 0.01 539+ 031

20 3.55 £ 0.00 2455 +0.18 037 £ 0.04 541 +0.19

18 0 3.58 £ 001 2443 + 043 028 £ 0.07 535+ 0.03

20 3.57 £001 2433 £0.12 0.27 £ 0.01 542 +0.10

®Results are expressed as means * SD. Values in the same column are not significantly different (P > 0.05)

bColor values are L* (lightness), a* (redness), and b* (yellowness)

generates internal heat in food materials [14]. Color
and pH values of 18, 24, 36, 48, and 72 °Brix apple
juice following ohmic heating at 30 and 60 V/cm are
shown in Table 4. All experiments were limited to a
maximum treatment time of 60 s. In case of 60 V/
cm, treatment time was restricted to 20 s in 18, 24,
36, and 48 °Brix apple juice because 20 s was a suffi-
cient time interval for obtaining the target microbial
reductions. L*, a* and b* values of samples treated
versus not treated with ohmic heating were not sig-
nificantly (P > 0.05) different. The pH values of
treated samples did not significantly differ from
those of non-treated samples. Thus, the proposed
parameters for optimal ohmic heating did not sig-
nificantly affect the quality of apple juice product
(Table 4).

Although ohmic heating is no longer regarded as a
new technology, target microbe reductions have to
be assessed in new application environments which
include product type and production setting. In this
study, optimized voltage gradient and juice concen-
tration for ohmic heating gave a distinct advantage
in terms of both bactericidal and economic aspects
but also ensured minimal quality loss. However,

since ohmic heating was performed in a small-scale
batch system, energy and performance criteria have
limited significance relative to larger-scale processing
units. Therefore, further research incorporating more
sophisticated experimental conditions to industrial-
scale continuous systems is needed.

Conclusions

Novel thermal processing interventions employed by the
fruit juice industry for controlling foodborne pathogens
involve the utilization of sophisticated systems, which
enable reduced processing times and temperatures to
prevent loss of nutritional and sensory quality while still
securing outstanding bactericidal efficacy. Ohmic heat-
ing is one of the most promising thermal technologies
for effectively inactivating foodborne pathogens in this
respect. In the present study, the optimum processing
parameters of ohmic heating treatment such as applied
voltage gradients and °Brix of apple juice concentrates
were investigated to provide benefits with regard to bac-
tericidal, sensory, and economic aspects. These results
can be utilized by the apple juice industry for effective
application of ohmic heating.
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