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Abstract

Background: Bacteria present in cave often survive by modifying their metabolic pathway or other mechanism.
Understanding these adopted bacteria and their survival strategy inside the cave is an important aspect of
microbial ecology. Present study focuses on the bacterial community and geochemistry in five caves of Mizoram,
Northeast India. The objective of this study was to explore the taxonomic composition and presumed functional
diversity of cave sediment metagenomes using paired end lllumina sequencing using V3 region of 16S rRNA gene

and bioinformatics pipeline.

Results: Actinobacteria, Proteobacteria, Verrucomicrobia and Acidobacteria were the major phyla in all the five cave
sediment samples. Among the five caves the highest diversity is found in Lamsialpuk with a Shannon index 12.5
and the lowest in Bukpuk (Shannon index 8.22). In addition, imputed metagenomic approach was used to predict
the functional role of microbial community in biogeochemical cycling in the cave environments. Functional module
showed high representation of genes involved in Amino Acid Metabolism in (20.9%) and Carbohydrate Metabolism
(20.4%) in the KEGG pathways. Genes responsible for carbon degradation, carbon fixation, methane metabolism,
nitrification, nitrate reduction and ammonia assimilation were also predicted in the present study.

Conclusion: The cave sediments of the biodiversity hotspot region possessing a oligotrophic environment
harbours high phylogenetic diversity dominated by Actinobacteria and Proteobacteria. Among the geochemical
factors, ferric oxide was correlated with increased microbial diversity. In-silico analysis detected genes involved in
carbon, nitrogen, methane metabolism and complex metabolic pathways responsible for the survival of the
bacterial community in nutrient limited cave environments. Present study with Paired end Illumina sequencing
along with bioinformatics analysis revealed the essential ecological role of the cave bacterial communities. These
results will be useful in documenting the biospeleology of this region and systematic understanding of bacterial

communities in natural sediment environments as well.
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Background

Bacteria constitute the major portion of the cave
biodiversity and plays a key role in maintaining cave
ecosystem [1]. Limited nutrient and energy sources
create an oligotrophic environment inside the caves,
wherein the primary production is carried out by auto-
trophic bacteria which inturn supports the growth of
several chemo-organotrophic microbes [2]. Bacteria
present under this oligotrophic environment often
survive by modifying their metabolic pathway or other
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mechanism [3]. Understanding these adopted bacteria
and their survival strategy inside the oligotrophic envir-
onment is an important aspect of microbial ecology.
Geomicrobial Investigations in nutrient limited caves
are sparse and most of them have been carried out using
culture based techniques. Such approach can only detect
a minute portion of the total community. Such limita-
tion is solved by the introduction of next generation
sequencing (NGS) and expands our knowledge on
uncultured microbes [4]. Although the cost of amplicon
sequencing (16S rDNA) used for the bacterial commu-
nity composition studies has rapidly decreased, the
functional study using the Shotgun approach or Geochip
still remains expensive and thus, is restricted for selected
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studies [5]. An indirect approach is to compare the
uncultured bacterial sequences with closely related and
well studied microbes to predict the functional role in
the ecosystem. This is also useful to understand the
unknown energy source required for metabolism [6, 7]. A
computational approach, PICRUSt (phylogenetic investi-
gation of communities by reconstruction of unobserved
states) based on the relationship between phylogeny and
function was developed to predict functional diversity
using 16S rDNA data and a reference database and has
been used to study in diverse environments [8].

Cave microorganisms contain a wide range of bacterial
groups influenced by the geology, soil or sediment and
other factors [9]. Geochemistry parameter often drives
the diversity and bacterial community composition in-
side the caves [10]. Present study focuses on the bacter-
ial community and geochemistry in five unexplored and
unknown caves of Mizoram, Northeast India falling
under the less- known biodiversity hotspot zone of the
eastern Himalayan belt. The objective of this study was
to explore the taxonomic composition and to under-
stand how the bacterial communities respond to the
cave oligotropic environments. This study was based on
the hypothesis that the undisturbed and nutrient- lim-
ited cave habitats will host specific bacterial species and
the cave geochemical parameters might favour species
diversity and richness.

Methods

Sample collection and community DNA extraction

Cave sediment samples were collected from different
sites of the caves — Bukpuk (CBP V3), Lamsialpuk (CLP
V3) and Reiekpuk (CRP V3) followed by sieved and
preserved at 4 °C (Fig. 1). The geochemical and molecu-
lar data of the sediment sample Lamsialpuk (CLP V3)
and Khuangcherapuk (CKP V3) were collected from our
previous study [11, 12]. All sites were not subjected to
any human disturbances, except CLPV3 [4]. The eleva-
tion, pH and other geochemical parameters of the caves
are given in Table 1. The pH of the sediment samples
was analysed using pH meter (Eutech, pH 510, USA).
Major oxides and trace elements were measured using
X-ray Fluorescence (XRF) (Bruker AXS, S4 Pioneer,
Germany) at IIT Rookie, India.

DNA was extracted from the cave sediment samples
using the Fast DNA spin kit (MP Biomedical, Solon,
OH, USA) and the V3 hypervariable region of the 16S
rRNA gene was amplified using 10 pmol/ul of each
forward 341F (5'-CCTACGGGAGGCAGCAG-3') and
reverse 518R (5'-ATTACCGCGGCTGCTGG-3") pri-
mer. PCR Master Mix will contain 2 pL each primers,
0.5 pL of 40 mM dNTP (NEB, USA), 5 pL of 5X
Phusion HF reaction buffer (NEB, USA), 0.2 pL of 2 U/
pL F-540Special Phusion HS DNA Polymerase (NEB,
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Fig. 1 Geographical location of the sampling sites in Mizoram,
Northeast India. The figure has been adopted from Google Map
and modified

USA), 5 ng input DNA and water to make up the total
volume to 25 pL. The PCR conditions were 98 °C for
30 s followed by 30 cycles of 98 °C for 10 s; 72 °C for
30 s and a final extension at 72 °C for 5 s followed by
4 °C hold.

Pre-processing and sequence analysis

Paired end Illumina sequencing (2 x 150 bp) was carried
out at Scigenome Lab, Cochin, India. Raw sequence data
for the two cave sediment samples, Farpuk (CFPV3) and
Khuangcherapuk (CKPV3), were derived from our previ-
ous study [11, 12]. Raw fastq sequences were processed
using the QIIME software package v.1.8.0 [13, 14]. Poor
quality (quality score < 25) and smaller reads (read
length < 100 bp) were filtered out using the split_libraries
command. Pre-processed sequence reads were clustered
to operational taxonomic units (OTU’) using UCLUST
method with similarity threshold of 97% [15] and were
taxonomically classified using Greengenes database. Rela-
tive abundance of the bacterial phyla was calculated using
QIIME. Statistical analysis was performed after rarefying
the OTU table to 50,000 sequences per sample. Alpha and
beta diversity plots were also generated using QIIME. Beta
diversity between five bacterial cave communities was
measured using unweighted UniFrac approach [16]. Pear-
son correlations between soil characteristics and bacterial
major phylum were estimated using PASW Statistics 18
(SPSS Inc., Chicago, IL, USA). Additionally, we performed
imputed metagenomic analysis by the genome prediction
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software PICRUSt [8]. The input used here was nor-
malized OTU prepared by closed reference based ap-
proach. OTU’s were assigned at 97% similarity and
were mapped to the Greengenes ver.13.5 database for
functional prediction.

Statistical analysis

Multivariate principal component analysis (PCA) of 20
physicochemical parameters i.e., pH, Na,O, MgO, Al,O3,
SiO,, Py0s5, SO3, K,0, Ca0, Fe 03, Cry03, MnO, NiO,
CuO, ZnO, Rb,0O, SrO, ZrO,, BaO and Cl was carried
out to determine which environmental variables best
explained the observed community patterns using the
PAST v3.02 software [17].

Results

Geochemical characteristics of the cave sediment samples
The pH of the five cave sediment were recorded in the
range of 6.7-7.5. The highest pH was recorded at
CLPV3 (7.5) followed by CFPV3 (7.3) and CBPV3 (7.2),
whereas the lowest pH was recorded at CKPV3 (6.7).
The concentration of the oxides such as Na20, MgO,
Al O3, SiO,, P05, SO3, K,0O, CaO, CuO, ZnO, Fe,0s,
Cr,03, MnO, NiO, CuO, ZnO, Rb,0, SrO, ZrO,, BaO
and Cl varied among the samples (Table 1). Soil samples
from both CKPV3 and CRPV3 had similar, but relatively
lower pH compared to the other three cave samples.
Similarly, CLPV3 and CFPV3 were also geochemically
similar with high concentration of Na,O (Additional
file 1: Figure S1). CBPV3 showed the highest concen-
tration of P,Os;, SO3;, CaO, MnO, CuO, ZnO and
SrO, whereas the lowest concentration of Al,Os, SiO,,
Na,O and Fe,O3 compared to other caves. Interestingly,
the elevation of CBPV3 was lower than the other four
caves under study. A principal component analysis (PCA)
of the physicochemical parameters showed that the five
caves were separated into four geochemically distinct hab-
itats. The first two principal components explained
88.06% of the total variance. The sample CKPV3 and
CRPV3 were found geochemically similar and were
grouped together in the 2-dimensional PCA plot. The
key influencing parameters for the geochemical di-
versity were Na,O and P,Os, while Cl and SOz were
the other influencing parameters in component 1 and
component 2, respectively.

Analysis of bacterial community composition

The high throughput sequencing effort yielded a total of
54,90,239 paired end reads with an average of 9,15,040
paired end reads per sample. After assembly and quality
assessment of the reads, a total of 54,88,530 high quality
reads were obtained. A total of 48 phyla (ACI,
Acidobacteria, Actinobacteria, AD3, Armatimonadetes,
Bacteroidetes, BHI80-139, BRC1, Caldithrix, Chlorobi,
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Chloroflexi, Cyanobacteria, Deferribacteres, Elusimicro-
bia, FCPU426, Fibrobacteres, Firmicutes, Fusobacteria,
GAL15, Gemmatimonadetes, GN02, GNO04, MVP-21,
NC10, Nitrospirae, NKB19, OD1, OP1, OP1l1, OP3,
OP8, OP9, Planctomycetes, Proteobacteria, SBR1093, SC4,
Spirochaetes, SR1, Synergistetes, Tenericutes, Thermi,
TM6, TM7, Verrucomicrobia, WPS-2, WS2, WS3 and
ZB3) were detected from different cave sediments (Fig. 2).
The total bacterial community analysis showed that the
phylum Actinobacteria was the most dominant contribut-
ing up to 65.1%, followed by Proteobacteria (24.8%), Acid-
obacteria (4.2%) and Firmicutes (3.6%) and the top ten
phyla present in individual cave is shown in Fig. 3.

Actinobacteria
In the present study, the identified class under this
phylum were Actinobacteria, Acidimicrobiia, Ther-
moleophilia, Rubrobacteria, MB-A2-108, Coriobacteriia,
Nitriliruptoria,

OPB41 and KIST-JJYO1. High abundance of dominant
family (>0.01%) under Actinobacteria were Nocardiaceae,
Streptomycetaceae, Micrococcaceae, Frankiaceae, Gaiellaceae,
Pseudonocardiaceae, Streptomycetaceae, EB1017, Mycobacter-
iaceae, Actinosynnemataceae, Corynebacteriaceae, Rubrobac-
teraceae, Nocardioidaceae, Micromonosporacea, Geoderma
tophilaceae, Sporichthyaceae, Actinosynnemataceae, Nakamu
rellaceae, Pseudonocardiaceae, Cryptosporangiaceae, Kineos-
poriaceae and Ruaniaceae. Other dominant genus under
Actinomycetes was Mycobacterium, Corynebacterium, Rubro-
bacter, Actinoplanes, Saccharothrix and Pseudonocardia.

Proteobacteria

Within the Proteobacteria, most phylotypes were classified
under the class Alphaproteobacteria and Gammaproteo-
bacteria. Other identified class were Betaproteobacteria,
Deltaproteobacteria, Gammaproteobacteria, TA18, Epsi-
lonproteobacteria and Zetaproteobacteria. Abundant gen-
era (20.01%) under this phylum were Rhodoplanes,
Kaistobacter, Sphingomonas, Bradyrhizobium, Alteromo-
nas, Acidiphilium and Halomona. Under the class Alpha-
proteobacteria, two families (Hyphomicrobiaceae and
Sphingomonadaceae) and three abundant genus (Rhodo-
planes, Kaistobacter and Sphingomonas) were identified.
Other detected genera, present in low abundance, under
this class were Candidatus entotheonella, Plesiocystis,
Desulfococcus, Nannocystis, Anaeromyxobacter, Soran-
gium, Haliangium, Geobacter, Cystobacter and Syntrophus.
The dominant genera under the class Gammaprote-
obacteria were Alteromonas and Halomonas. Other gen-
era (<0.01%) were Acinetobacter, Alcanivorax, Aquicella,
Cronobacter, Dickeya, Dokdonella, Enhydrobacter, Entero-
bacter, Enterovibrio, Erwinia, Fulvimonas, Glaciecola, Haf-
nia, Halorhodospira, Idiomarina, Klebsiella, Legionella,
Luteibacter, Luteimonas, Marinobacter, Marinobacterium,
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Fig. 2 Average bacterial community compositions at the phylum level present in the cave samples
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(Helicobacteraceae, Campylobacteraceae and Helicobac-
teraceae) and two genus (Arcobacter and Sulfurimonas).
However, no genus was identified under the class Zetapro-
teobacteria and TA18.

Acidobacteria

Acidobacteria was the third dominant phyla with eight
families and 10 identified genera. Dominant families
under this phylum were Solibacteraceae, Koribacteraceae
and Acidobacteriaceae. Assigned genera under the family
Acidobacteriaceae were Acidobacterium, Edaphobacter,
Terriglobus, Acidicapsa and Acidopila.
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Fig. 3 Bacterial community compositions at the phylum level
present in the individual cave samples

Diversity estimates of the cave bacterial community
Based on the Shannon index, a high bacterial di-
versity was observed in CLPV3 (12.50) and low in
CBPV3 (8.22) (Table 2). The principal coordinate ana-
lysis plot of the UniFrac distance matrix distinguish
CBPV3 from rest of the samples suggesting the pres-
ence of different composition of the bacterial commu-
nities, whereas other four cave samples had similar
community composition (Fig. 4).

Function prediction using PICRUSt

Analysis revealed five functional modules (i.e. metabolism,
genetic information processing, environmental information
processing, cellular process and organismal systems) where
metabolism was the most represented, accounting for about
60% of the entire data set. A deeper analysis of the terms
encompassed by the metabolism functional module showed
high representation of Amino Acid Metabolism (24%),
Carbohydrate Metabolism (23%), Energy Metabolism (10%),
Lipid Metabolism (10%), Metabolism of Cofactors and Vita-
mins (8%), Metabolism of Terpenoids and Polyketides (6%),
Nucleotide Metabolism (6%), Metabolism of Other Amino
Acids (4%), Enzyme Families (3.0%), Glycan Biosynthesis
and Metabolism (3%) and Biosynthesis of Other Secondary
Metabolites (3%) (Additional file 1: Figure S2).

With the carbon metabolism, three reactions were
involved (carbon degradation, carbon fixation, and me-
thane metabolism). The identified carbon degradation
enzymes included genes encoding alpha-amylase, glu-
coamylase, neopullulanase, and pullulanase (involved in
starch degradation); alpha-glucosidase, endoglucanase;
beta-glucanase, beta-glucosidase (involved in cellulose
degradation); arabinofuranosidase, xylanase, and mannanase
(involved in hemicellulose degradation); Chitinase; beta-
hexosaminidase; alpha-mannosidase and beta-mannosidase
acetyl-glucosaminidase, polygalacturonase (involved in chitin,
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Table 2 Alpha diversity index of the cave samples
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Observed species Simpson reciprocal Shannon Simpson PD whole tree
CFPV3 87,179 62.04 9.97 0.001 2914.7
CRPV3 72,638 86.33 10.25 0.001 23579
CKPV3 89,805 89.17 11.35 0.001 30200
CLPV3 83,136 316.81 12.50 0.004 2873.1
CBPV3 22,004 57.32 822 0.003 8278

All the diversity index is calculated using QIIME
PD Phylogenetic Diversity

pectin degradation) and other carbohydrate degradation
enzymes. A rare fraction of the predicted metagenomes
sequence was classified as 4-hydroxybutyryl-CoA dehydratase.
The predicted carbohydrate degrading enzymes were shown
in Additional file 1: Table S1.

Gene’s codes for the enzymes methenyltetrahydrofolate
cyclohydrolase is also detected in our study. Predicted
genes and enzymes show the prevalence of methane cycle
in the caves (Additional file 1: Table S2). Analysis also
revealed nitrogen cycling genes involved in nitrification,
nitrate reduction and ammonia assimilation. Genes codes
for the enzyme involved nitronate monooxygenase; nitrile
hydratase; nitrate reductase; nitrilase; nitric oxide dioxy-
genase; nitric oxide reductase; nitric-oxide synthase; nitrite
reductase; nitric-oxide reductase; nitrogenase; nitric ni-
trogen fixation protein; nitroreductase/dihydropteridine
reductase; nitrous-oxide reductase; nitroreductase; nitrate
reductase; nitrogenase; nitric oxide reductase; nitrogenise
(Additional file 1: Table S3).

Association between bacterial communities with
geochemical parameters

A correlation analysis was performed to study the associ-
ation between the most abundant phyla identified (AD3,

PC2 (26.28%)

® cLpva
CSPV3

CRPV3
CFPV3

©® CBPV3

PC1(59.39%)

PC3(8.41%)

Fig. 4 Principal coordinate analysis (PCoA) plot of samples using the
unweighted UniFrac distance metric. The variance explained by each
principal coordinate axis is shown in parentheses. Datasets were
subsample to equal depth prior to the UniFrac

distance computation

Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi,
Firmicutes, Gemmatimonadetes, Proteobacteria, TM7 and
WPS-2) and the geochemical parameters. Analysis re-
vealed that Al,O3 was positively correlated with Chloro-
flexi (r = 0.627, p = 0.060); and MnO was negatively
correlated with Acidobacteria (r = -0.790, p = -0.060). No
other relationship between geochemical parameters and
the relative abundance of the major phyla was significant
different among sampling sites. Within the candidate
phyla, MgO was correlated with the relative abundance of
the AD3 (r = 0978, p = 0.001), TM?7 (r = 0974,
p = -0.001); and WPS-2 (r = 0.938, p = —0.006) (Additional
file 1: Table S4). Furthermore, the content of Fe,O5 showed
highest positive correlation with the Shannon diversity
index (r = 0.926, p = 0.001), followed by Al,O3, NiO
and negative correlation with SO; and MnO (Additional
file 1: Table S5).

Discussion

Speleological studies with NGS approaches are now
becoming an important approach for analyzing the
concealed microbial diversity in belowground ecosys-
tems [18]. Adaptation of the microorganism in cave eco-
system mostly involves interaction with the minerals,
mobilizing inorganic phosphate, oxidizing methane and
hydrogen, and deriving energy by hydrolyzing macro-
molecules derived from other cave microbial communi-
ties [19]. High competition for resources in nutrient
limited environment helps in natural selection leading to
innovation and diversification of bacterial communities
[20]. Present study documents the bacterial community
composition along with the geochemical analysis of the
bacterial community from five different cave sediments
in Mizoram, a state of northeast India, situated in Indo-
Burma biodiversity hotspot zone.

Analysis of bacterial community composition

All the cave samples were dominated by the phylum
Actinobacteria as seen by our previous study using V4
hypervariable region of 16SrRNA [4].The three most
abundant bacterial phyla detected in this study were
Actinobacteria a common cave inhabitant has been iso-
lated in rock walls and bioflim of various caves [21].
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Isolation of rare and novel Actinobacteria from unex-
plored environment is an important area of research
[22]. Members of the dominant family Nocardiaceae
have previously been reported in cave ecosystem, are
oligotrophic, and can metabolize various substrates such
as toluene, herbicides, naphthalene and PCBs [23-27].
The genus Streptomyces was the second highest genus
falling under the family Streptomycetaceae. Members of
this group can metabolize different compounds in-
cluding alcohols, sugars, amino acids and aromatic com-
pounds and capable of synthesizing clinically useful
antibiotics [28].

Proteobacteria was dominated by Alphaproteobacterial
species and Gammaproteobacteria. Some species under
this subphylum can survive under extreme environment
by using ABC (ATP-Binding Cassettes) and TRAP: (Tri-
partite ATP-independent periplasmic transporters)
mechanism [29]. The genus Rhodoplanes under the sub-
phylum Alphaproteobacteria accounts for 0.15% of the
total bacterial community and possesses Photo- and
chemo-organ heterotrophic growth [30]. They can also
produce hopanoids and carotenoids [31, 32]. Another
identified genus under Alphaproteobacteria- Sphingo-
mona (0.133%), a group commonly found in nutrient-
limited subsurface environments can metabolize a large
number of different aromatic compounds [33].

The most abundant genus under Gammaproteobac-
teria was Alteromonas, a gram negative heterotrophic
bacteria capable of degrading aromatic carbon rings
introduced through oil spill [34]. Another dominant genus
under this subphylum was Halomonas known to resist ex-
treme conditions and also involve in sandstone formations
[35]. Among the Betaproteobacteria, the most abundant
genera were Thiobacillus, Burkholderia and Delftia, but
they were present in less number (<0.002%). Thiobacillus
can obtain energy by oxidizingo sulfur and ferrous iron
compounds [36]. Most of the members under the genus
Burkholderia were diazotrophs and degrades a variety of
xenobiotic compounds [37].

The unique characteristics of the genus Bdellovibrio
are that they can enter into the periplasmic space of
other bacteria and feed on the biopolymers and thereby
used as biocontrol purposes [38]. The abundant genus
under Acidobacteria was Candidatus Solibacter, an aer-
obic, chemoorganotrophic bacteria having a large num-
ber of anion: cation symporters which helps them to
survive in nutrient limited condition [39]. Other abun-
dant genus Candidatus koribacter was primarily consid-
ered as heterotroph [40].

Metabolic prediction using PICRUSt

The cave environment is a diverse habitat harbouring
organisms from all hierarchies starting from prokaryotes
to higher eukaryotes [4]. Phylogenetic analysis using 16S
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SSU-rDNAs data were also applied to assume the meta-
bolic role of the identified bacterial in cave ecosystem by
aligning the sequence information to its next nearest cul-
turable representatives [41, 42]. More recently, PICRUSt
software package was developed used to infer the potential
functional role of bacterial communities in the cave sedi-
ment samples using 16S SSU-rDNAs data [8].

Microbial communities are well known key players of
biogeochemical cycles and mainly contribute to the glo-
bal biogeochemical cycling of carbon and nitrogen [29].
Present study detected enzyme 4-hydroxybutyryl-CoA
dehydratase involved in the CO,-fixation of Archea and
fermentation in bacteria which supports the hypothesis
that autotrophic archaea contribute to carbon assimila-
tion in cave and other environments [43—-45]. Analysis
also detected methenyltetrahydrofolate cyclohydrolase
which is involved in reverse methanogenesis prevalent in
anaerobic methanotrophic archaea [46, 47]. The pres-
ence of genes encoding proteins for the phosphate re-
cycling mechanism, such as phosphonate transpoters
(PhnB, PhnG, PhnH, Phnl, PhnJ, and PhnM) in the cave
samples suggest that they form carbonphosphorus lyase
complex which is involved in methane production from
methyl phosphonate [48].

Role of bacteria in nitrogen cycle have been well stud-
ied in soil and aquatic habitats, but information on cave
sediment is limited. Some reports are available where
microbes can accrue energy as well as nutrients in
oligotrophic environments through nitrogen cycling
processes. Most of the genes involved in nitrogen cycle
were detected in the present study. Presence of the
genes codes for hydroxylamine oxidase indicates the
presence of a key ammonia oxidizing bacteria (AOB)
[49]. Presence of AOB and sulfur-oxidizing bacteria were
also reported in chemolithotrophic Cave [48] and thus
lithochemotrophy might be a survival strategy of the
bacterial communities present in the cave sediments.
Identified genus, Nitrospira and Nitrosospira were re-
ported to perform autotrophic nitrification which is an
indication of CO,-fixation-coupled ammonia oxidation
process in the studied cave ecosystems [50].

Association between bacterial communities with
geochemical parameters

Bacterial community structure is greatly influenced by
the mineral substrates present in an environment [51].
Present study observed the positive relationship between
Fe,03, Al,O3; and NiO with the Shannon diversity index.
Fe (II) is produced on the subsurface under anoxic
conditions by dissimilatory iron (III) reducing bacteria
(DIRB) coupled with biotic/abiotic weathering of minerals.
Reduced metals inside the cave serve as a source of elec-
tron donor for bacterial growth [52, 53]. Only certain or-
ganisms can survive in the presence of oligotrophic forces
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and a high-metal environment, and the natural selection
favours adaptations in microbial communities to sustain
in these environments.

Conclusion

Present study used Illumina sequencing to examine the
taxonomical diversity of bacterial communities present
in cave sediment samples, which were collected from
Mizoram, an Indo-Burma Biodiversity Hotspot. These
oligotrophic cave harbours a high phylogenetic diversity,
including organisms from all hierarchies as well as a
higher proportion of unclassified sequences indicating
the possibility of novel species. The cave sediments were
dominated by Actinobacteria and Proteobacteria. Fe,O3
content was correlated with increased microbial diversity
in these cave environments. Bioinformatics analysis de-
tected genes involved in various metabolic pathways which
are essential for the survival of the community in nutrient
limited cave environments. Further research by cultivating
the uncultured communities or whole genome sequencing
is needed to illustrate the actual survival strategies in the
cave environments.
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the genes coding for enzymes involved in nitrogen cycle identified using
PICRUSt. Table S4. Pearson correlation (PC) between physiochemical
factors with the dominant bacterial phyla. Table S5. Pearson correlation (PC)
between physiochemical factors with the bacterial diversity. Figure S1. Bioplot
generated for the Principal Component Analysis (PCA) of 20 geochemical
variables. Cave samples are shown as colored symbols and physicochemical
variables are represented by green lines. Figure S2. Relative abundance of the
functional genes present in the cave samples. (DOCX 122 kb)
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