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Abstract

Background: The meningococcal capsule is an important virulence determinant. Unencapsulated meningococci

lacking capsule biosynthesis genes and containing the capsule null locus (cnf) are predominantly non-pathogenic.
Rare cases of invasive meningococcal disease caused by cnl isolates belonging to sequence types (ST) and clonal
complexes (cc) ST-845 (cc845), ST-198 (cc198), ST-192 (cc192) and ST-53 (cc53) have been documented. The clinical
significance of these isolates however remains unclear. We identified four invasive cnl meningococci through
laboratory-based surveillance in South Africa from 2003 through 2013, which we aimed to characterize using whole
genome data.

Results: One isolate [NG: P1.7-2,30: F1-2: ST-53 (cc53)] contained cnl allele 12, and caused empyema in an adult male
with bronchiectasis from tuberculosis, diabetes mellitus and a smoking history. Three isolates were NG: P1.18-11,42-2:
FA: ST-192 (cc192) and contained cn/ allele 2. One patient was an adolescent male with meningitis. The remaining two
isolates were from recurrent disease episodes (8 months apart) in a male child with deficiency of the sixth complement
component, and with the exception of two single nucleotide polymorphisms, contained identical core genomes. The
ST-53 (cc53) isolate possessed alleles for NHBA peptide 191 and fHbp variant 2; whilst the ST-192 (cc192) isolates
contained NHBA peptide 704 and fHbp variant 3. All four isolates lacked nadA. Comparison of the South African

genomes to 61 additional cn/ genomes on the PUbMLST Neisseria database (http://pubmlst.org/neisseria/),
determined that most putative virulence genes could be found in both invasive and carriage phenotypes.

Conclusions: Although rare, invasive disease by cnl meningococci may be associated with host immunodeficiency
and such patients may benefit from protein-based meningococcal vaccines.
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Background

Neisseria meningitidis (meningococcus) is a commensal
of the human upper respiratory tract, which occasionally
causes meningitis and sepsis, particularly in infants and
young adults. Meningococci may express one of twelve
antigenically distinct capsules, however, invasive disease
is mostly caused by serogroups A, B, C, W, X or Y. The
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polysaccharide capsule is an important virulence deter-
minant and aids in evading the host immune response
[1]. Enzymes for capsule biosynthesis and transport are
encoded by a single cluster of genes termed the capsular
polysaccharide synthesis (cps) locus, which is divided
into six regions arranged in the order of D-A-C-E-D’-B
[2]. Polysaccharide synthesis is encoded by region A
genes which vary according to serogroup, whilst regions
B (ctrE-F) and C (ctrA-D) are responsible for capsular
transport [3]. Region D (rfbA-C and galE) is involved in
lipooligosaccharide biosynthesis and D’ (rfbA2-C2 and
galE2), a truncated copy of region D, is non-functional
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[4]. Region E is not involved in polysaccharide synthesis
or transport, but is hypothesized to regulate these pro-
cesses [5].

Loss of capsule expression may be caused by horizontal
genetic exchange, slipped-strand mispairing, point muta-
tions or gene deletion in the ¢ps locus [6, 7]. Meningococci
which lack cps genes are regarded as non-pathogenic.
However, rare cases of invasive disease caused by menin-
gococci lacking regions A, B and C of the ¢ps locus and
containing a capsule null locus (cnl), have been reported in
Germany, Canada, Burkina Faso and China [8-12].
Twenty-six cnl alleles (113-368bp) were defined in the
PubMLST Neisseria spp. database (http://pubmlst.org/
neisseria/) at the time of this study, with some alleles
present in other Neisseria including N. lactamica and N.
gonorrhoeae [6]. Genetic lineages described for invasive cn/
isolates include those belonging to sequence type (ST) ST-
192 (clonal complex (cc) 192), ST-198 (cc198) and ST-845
(cc845) [8, 9, 11, 12]. Clonal complex 53 isolates are typic-
ally associated with carriage [6, 13, 14] although invasive
isolates have been documented on the PubMLST Neisseria
database. Polysaccharide-based vaccines that target ser-
ogroups A, C, W, and Y are ineffective against cn/ strains
however, protein-based meningococcal vaccines developed
for serogroup B, such as Bexsero® and the bivalent factor
H-binding protein (fHbp) vaccine Trumenba®, have the
potential to target non-serogroup B including cnl/ menin-
gococci [15-17].

Through national laboratory-based surveillance for
invasive meningococcal disease (IMD) from 2003
through 2013, we identified four cn/ meningococci. We
aimed to describe the respective cases and characterize
the isolates using whole genome data.

Results

Identification and characterization of invasive capsule null
meningococci

From 2003 through 2013, 4770 cases of IMD were
reported, with viable isolates available for 2988 (63%) cases.
We identified five N. meningitidis isolates that were pheno-
typically and genotypically negative for serogroups A, B, C,
W, X and Y. The isolates were also ctrA PCR negative but
were sodC PCR positive. Transmission electron micros-
copy (TEM) confirmed the absence of a polysaccharide
capsule (Fig. 1).

One of the five isolates, 37616, did not contain a cnl
allele, belonged to ST-11147 (cc41/44) and contained cap-
sule transport genes in region B (ctrE and ctrF) and lipo-
polysaccharide synthesis genes (rfbA-C and galE) in region
D of the cps locus. All region A genes except for ctrG were
absent, as well as ctrA from region C. The remaining four
ctrA negative isolates lacked genes in regions A and C
(ctrA-D) and contained a 114bp cnul allele. Further, these
isolates contained all region D lipopolysaccharide synthesis
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genes and lacked region B genes. The locus was identified
as cnl allele 12 in isolate 29312, and cnl allele 2 in isolates
29306, 41860 and 41961 (Additional file 1: Figure S1) [6].
Isolates 29306, 41860 and 41961 lacked the fetA locus.
The finetypes for the four cnl isolates were as follows:
isolate 29312 was NG: P1.7-2,30: F1-2: ST-53 (cc53), and
isolates 29306, 41860 and 41961 were NG: P1.18-11,42-2:
FA: ST-192 (cc192).

Clinical case descriptions

The four invasive cn/ meningococi were isolated from
three patients, including one patient with recurrent
meningococcal disease (Table 1). All three patients
responded well to antibiotic therapy and subsequently
recovered from their IMD episodes. The four cnl isolates
were susceptible to all antimicrobials except for
trimethoprim-sulfamethoxazole. Additional information
regarding vaccination status and long-term complica-
tions for all three patients was sought, but unfortunately
these data were not available.

The first patient, an adult male, was previously diag-
nosed with multiple chronic illnesses including diabetes
mellitus, hypertension, osteoarthritis and chronic ob-
structive pulmonary disease. He was a smoker, morbidly
obese and had a right lower lobe lobectomy in 2003 due
to damage from a previous tuberculosis infection. In 2006,
he was diagnosed with empyema and N. meningitidis was
cultured from the pleural fluid (isolate 29312). The second
patient, an adolescent male, was diagnosed with meningo-
coccal meningitis in 2010 (isolate 29306). Unfortunately,
information regarding underlying disease conditions and
the severity of disease could not be obtained. The third
patient was a male child with deficiency of the sixth com-
plement component (C6). In 2011, he was diagnosed with
meningitis (isolate 41961), however, 8 months later, in
2012, he presented with fever and disorientation and N.
meningitidis was isolated from the blood (isolate 41860).
He was prescribed life-long treatment with penicillin. His
mother received a dose of the quadrivalent conjugate vac-
cine (Menactra®) in 2015.

Comparison of South African and other capsule null
meningococcal genomes

The four South African (SA) isolates were compared to
89 c¢nl meningococcal genomes available on the
PubMLST Neisseria database, including four cc192 Bur-
kina Faso isolates that were sequenced as part of this
study (Additional file 2: Table S1). The remaining 85 iso-
lates belonged to seven clonal complexes including cc53
(n=48), cc198 (n=13), cc4l1/44 (n=38), ccl136 (n=6),
ccl92 (n=6), ccl117 (n=3) and cc213 (n=1). All cnl
meningococci (n=93) harboured fHbp and wmhba, but
lacked nadA. Phylogenetic analysis of 53 ribosomal
MLST (rMLST) loci clustered the 93 cnl isolates by
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and (f) 41860. The scale bar represent 200 nm

Fig. 1 Transmission electron micrographs showing the presence of surface capsular polysaccharide for (@) Neisseria meningitidis serogroup W (ATCC
35559) and (b) absence of capsule for Neisseria lactamica (ATCC 23970). Clinical isolates from South Africa are depicted in (c) 29312 (d) 29306 (e) 41961

clonal complex (data not shown). Data for 646 of 1605
core genome MLST (cgMLST) loci were incomplete and
were excluded from further analysis. Phylogenetic
analysis of the remaining 959 of 1605 cgMLST loci in all
cnl isolates (1 =93), demonstrated clustering by clonal
complex (Fig. 2). Isolates within each respective clonal
complex contained identical cnl alleles, except for cc41/
44 which contained alleles 2 or 12; and cc192 which
contained alleles 2 or 3. Additional analysis of 117 puta-
tive virulence loci in 51 carriage and 14 invasive cnl iso-
lates including those from South Africa, determined no
mutually exclusive loci or alleles (data not shown). Most
putative virulence loci were identified in both carriage
and invasive isolates (97/117), and the remaining 20 loci
were absent in all 65 isolates.

Clonal complex 53

At the time of analysis, in addition to isolate 29312,
complete genome data were available for 48 non-group-
able cc53 isolates in the PubMLST Neisseria database.
Forty-seven were carriage isolates from either the UK
(n=31), Czech Republic (n=9), Italy (n=6) or Germany
(m=1), and one was an invasive isolate from Ireland in
2012. The cc53 isolates (n = 49) belonged to one of six STs,
namely, ST-53 (n =42), ST-2441 (n = 3), ST-123 (n=1), ST-
124 (n=1), ST-11167 (n=1) or ST-11133 (m=1). All cc53
isolates harboured cu/ allele 12 flanked by galE allele 16,
and one of five tex alleles (5, 787, 222, 788 or 969). GalE

allele 16 was present in one cc41/44 isolate, also har-
bouring cnl allele 12. All cc53 isolates possessed alleles
24 or 102 for the fHbp family 2/subfamily A antigen.
The NHBA allele 65 (peptide 58) was present in all of
the cc53 isolates, except the SA isolate which har-
boured allele 149 (peptide 191).

Using seven-locus MLST, the cc53 isolates were re-
solved into six clusters (data not shown). Ribosomal
MLST further resolved these isolates into 21 clusters and
the SA isolate had a unique rMLST profile (data not
shown). Core genome MLST indicated that the SA isolate
was more closely related to two carriage isolates circulat-
ing in the Czech Republic in 1993, than to carriage isolates
from the UK, Italy and Germany, and the invasive isolate
from Ireland (Fig. 2). Overall, 221/959 (23%) cgMLST loci
had identical nucleotide sequences amongst the cc53
isolates (n = 49).

Clonal complex 192

Genome data were available in the PubMLST Neisseria
database for four Burkina Faso isolates sequenced as part of
this study, and six carriage isolates from Malawi. Analysis
of the ¢ps locus of the Burkina Faso isolates confirmed the
absence of regions A, B and C and the presence of cn/ allele
3 flanked by galE allele 365 and tex allele 826 [8]. In con-
trast, the SA and Malawi isolates harboured cn/ allele 2
flanked by galE allele 161 and tex allele 235. All galE and
tex alleles were unique to cc192 cnl isolates, and were not
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Table 1 Patient demographic information and phenotypic and genotypic characteristics of four invasive capsule null Neisseria
meningitidis isolates identified through national laboratory-based surveillance in South Africa, 2003-2013

Characteristic

Patient 1 2
Gender Male Male
Age category (years) 45-64 15-24
HIV status Negative Unknown
Antiretroviral use Not applicable Unknown
Underlying disease Diabetes mellitus, Unknown

COPD

Year of disease 2006 2010
presentation
Province Western Cape Gauteng
Patient outcome Recovered Recovered
Specimen type Pleural aspirate CSF

Isolate

Minimum Inhibitory Concentrations (ug/ml)
Penicillin G 0.032 (5) 0.064 (S)
Ceftriaxone <0.002 (S) <0.002 (S)
Trimethoprim- 8 (R) 12 (R)
sulfamethoxazole
Chloramphenicol 0.75(S) 19
Rifampicin 0.008 (S) 0.032 ()
Ciprofloxacin 0.008 (S) 0.008 ()

Molecular characterization
cnl allele (NEIS2743) 12 2

NG: P1.7-2,30: F1-2:
ST-53 (cc53)

Strain designation

Genome information

Approx genome 2,104,685 2,040,849
size (bp)

No. contigs 119 m
Neisseria PubMLST.org 29312 29306

identification number

NG: P1.18-11, 42-2: FA:
ST-192 (cc192)

3 (Episode 1)° 3 (Episode 2)°

Male Male
5-9 5-9
Negative Negative

Not applicable Not applicable

C6 deficiency C6 deficiency

2011 2012

Free State Free State
Recovered Recovered
CSF Blood
0.064 (S) 0.047 (S)
<0.002 (S) <0.002 (S)
3(R) 38 (R)
1(5 0.38 (S)
0.064 (S) 0.032 (S)
0.006 (S) 0.006 (S)
2 2

NG: P1.18-11, 42-2: FA:
ST-192 (cc192)

NG: P1.18-11, 42-2: FA:
ST-192 (cc192)

1,995,940 2,003,633
447 489
41961 41860

Abbreviations: COPD chronic obstructive pulmonary disease, C6 sixth complement component, CSF cerebrospinal fluid, S susceptible, R resistant, NG non-

groupable, PT PorA, F FetA, ST sequence type, cc clonal complex, A gene deletion

Patient three presented with two episodes of invasive meningococcal disease in 2011 (episode 1) and 2012 (episode 2, 8 months later), respectively. He was

diagnosed with deficiency of the sixth complement component (C6)

found in any other clonal complex nor in encapsulated iso-
lates in the PubMLST Neisseria database. The Burkina Faso
isolates were finetype NG: P1.18-11,42: FA: ST-192 (cc192)
whilst the SA and Malawi isolates were NG: P1.18-11,42-2:
FA: ST-192 (cc192). All 13 isolates harboured allele 112 for
the fHbp family 3/subfamily A antigen and lacked both the
fetA and nadA loci. Eleven of 13 isolates had allele 621 for
NHBA peptide 704.

Ribosomal MLST and cgMLST resolved the 13
ccl92 isolates into three groups, which were congru-
ent with country of origin. The SA and Malawi iso-
lates were more closely related to each other (variable
cgMLST loci: 183/959, 19%), compared to the Burkina

Faso isolates, which differed from the SA meningo-
cocci by 201 (21%) loci and the Malawi meningococci
by 217 (23%) loci, respectively (p =0.06) (Fig. 2). Iso-
late 29306 from patient two, differed by 13 (1%) and
15 ¢gMLST loci (2%) from isolates 41961 and 41860
which were from recurrent IMD episodes in patient
three, respectively. Isolates 41961 and 41860 differed
from each other by two ¢gMLST metabolic loci (0.2%)
(Additional file 3: Table S2). Further nucleotide ana-
lysis indicated that both genes differed by one nucleo-
tide. Overall, 660/959 (69%) of cgMLST loci shared
identical nucleotide sequences amongst the 13 cc192
isolates.
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Fig. 2 Phylogenetic analysis of 959 of 1605 core genes (cgMLST) genes in capsule null Neisseria meningitidis isolates (n = 93) belonging to clonal
complexes (cc) 53 (n=49), cc198 (n=13), cc192 (n=13), cc1136 (n=6), cc41/44 (n=8), cc1117 (n=3) and cc213 (n =1). Individual cgMLST phylogenies
are also illustrated for cc53 and cc192. Clusters are highlighted in grey and the invasive South African isolates are represented by red nodes. Isolates
41860 and 41961 were from recurrent invasive disease episodes in the same patient. The scale bars represent the number of variant loci. All genomes

-~ 41860 (2012)
- 41961 (2011) ..29306120]0'

Malawi
South Africa

Discussion

Four invasive cnl meningococci were detected from three
patients, including recurrent IMD in a C6 complement de-
ficient patient. There was no epidemiological link between
patients, and one isolate was NG: P1.7-2,30: F1-2: ST-53
(cc53) whilst the remaining three were NG: P1.18-11,42-2:
FA: ST-192 (cc192). These genotypes were different to in-
vasive cnl isolates reported in other countries [8—12]. One
invasive isolate did not contain a cul allele, but lacked
most genes from regions A and C of the ¢ps. This was
similar to that described previously in a non-groupable
cc41/44 carriage isolate from the USA [7].

Meningococci of cc53 with cunl have previously been
found in 7% of N. meningitidis isolates from healthy car-
riers in Germany [6, 13]. Meningococcal carriage data
from the African meningitis belt suggest that cc53 is not
common in this region [18-20] with searches in the

PubMLST Neisseria database identifying only three
other non-groupable cc53 carriage isolates from this re-
gion: two from Senegal and one in Ethiopia. In addition
to an invasive Irish isolate which possessed the same
finetype as the South African isolate, 11 other invasive
non-groupable cc53 isolates were identified in Cuba,
Cyprus, France and the UK, of which six isolates were
NG: P1.7,30: F-ND: ST-53 (cc53). Carriage rates are cur-
rently unknown in South Africa and we have no know-
ledge of carried genotypes. Although we do not have
genotypic data for all of our invasive isolates the earliest
documentation of any cc53 strain in South Africa is the
cnl isolate identified in 2006, and described in this study.

In contrast to cc53, cc192 has been reported among
carriers in countries in the African meningitis belt in-
cluding Burkina Faso [20], Ghana [19], The Gambia,
Ethiopia, Mali, Uganda and Niger (PubMLST Neisseria
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database). According to the PubMLST Neisseria data-
base, 95% (72/76) of cc192 isolates were isolated in Af-
rica, and 4% (3/76) isolated in Europe; as opposed to
carriage cc53 isolates which were predominantly isolated
in Europe (74%, 312/419) and rarely observed in Africa
(1%, 6/419). Furthermore, two cc192 carriage isolates were
documented in Norway and Sweden, and one case of
bacteremia was documented in France (PubMLST
Neisseria database). The Swedish and French isolates
shared the same strain designation as the South African
and Malawi isolates, however genomic data were unavail-
able for these isolates. Three cases of invasive disease
caused by cnl ST-192 isolates occurred in Burkina Faso in
2003 and 2004, two of which were included in our study
along with two carriage isolates from 2003 [8, 20]. Core
genome MLST analysis of 13 African isolates revealed
three groups of cc192 isolates clustering according to their
respective countries, however the dataset in this study was
limited and more cc192 genomes would be required to
validate this geographic clustering and fully describe the
molecular epidemiology of this clone.

The lack of a polysaccharide capsule in disease-associated
isolates implies that factors other than encapsulation may
contribute to the ability of a strain to cause invasive disease,
including underlying disease conditions of the host. Disease
due to unencapsulated meningococci and recurrent IMD,
have been described in immunocompromised patients who
are deficient in terminal pathway complement proteins C5
through C9 [21-26]. In our study, one patient with C6 defi-
ciency had recurrent IMD with the same cn/ strain. A simi-
lar case was described in the USA in a 5-month-old male
who was also diagnosed with C6 deficiency [22]. He was
first diagnosed with meningitis followed by bacteremia six
months later. Both episodes were likely to have been caused
by the same unencapsulated meningococcal strain, based
on the fact that the isolates were non-groupable by pheno-
typic serogrouping and had identical outer membrane
vesicle profiles on SDS-PAGE, however additional geno-
typic data were not available for confirmation. These cases
of recurrent IMD may suggest persistent carriage in close
contacts which is further supported by Mueller et al. [20]
who identified non-groupable cc192 meningococci at three
consecutive monthly visits in six healthy carriers in Burkina
Faso. In South Africa, chemoprophylaxis is recommended
for close contacts of IMD patients to eradicate carriage,
however this particular strain may have persisted within the
family. This does not however exclude the possibility that
the second isolate may have been re-acquired from an indi-
vidual in the community. Philadelphia chromosome-posi-
tive (bcr-abl+) common acute lymphatic leukemia was
reported in a patient with IMD caused by a ST-845 (cc845)
cnl isolate in Germany, in 2004 [11]. In our study, the ST-
53 (cc53) isolate was the only organism to be cultured from
pleural fluid of a patient with empyema, indicating that this
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isolate was the most likely cause of invasive disease. Further,
IMD by the ST-53 (cc53) isolate occurred in a patient who
was immunocompromised due to diabetes mellitus and, in
addition, presented with multiple chronic illnesses which
may have contributed to his susceptibility to invasive dis-
ease with a cn/ strain.

Molecular epidemiology and previous data from serum
bactericidal assays (SBA) suggest that some groups of men-
ingococci are more inclined to cause invasive disease than
others, with encapsulated strains being more resistant to
complement killing than their unencapsulated counter-
parts [8, 10, 11, 27, 28]. Although the polysaccharide cap-
sule has been shown to be an important virulence
determinant, previous SBA data indicate that the ability of
the invasive cnl ST-192 (cc192) isolates from Burkina Faso
to resist complement killing in normal human sera, was
comparable to an encapsulated serogroup B strain [8]. The
invasive ST-192 (cc192) isolates from Burkina Faso were
also determined to be more resistant to complement killing
than a carriage ST-53 (cc53) isolate and an invasive ST-845
(cc845) isolate, which had similar resistance profiles to
each other and to an unencapsulated serogroup B mutant.
Exogenous lipooligosaccharide sialylation significantly in-
creased resistance to complement killing in two invasive
cnl isolates belonging to ST-198 (cc198), and was partially
attributed to their ability to cause invasive disease in appar-
ently healthy patients [9, 10]. However, this mechanism
was not identified in the invasive ST-192 (cc192) isolates
from Burkina Faso, the carriage ST-53 (cc53) isolate and
the invasive ST-845 (cc845) isolate [8].

In agreement with previous genome studies, most pu-
tative virulence loci were present in both carriage and
invasive cnl isolates [29-31]. Although Joseph et al. [32]
determined significant associations of mobile genetic el-
ements with invasive meningococci, their contribution
to meningococcal virulence is unknown. The ability of
cnl isolates to cause invasive disease may likely be due to
host risk factors, however differences in the virulence
potential may also be explained by variation in gene ex-
pression. Predisposing factors for one patient with inva-
sive disease that was caused by an ST-192 (ccl92)
isolate, were unknown. It is likely that this patient may
have also presented with underlying disease, however
SBA data for the invasive ST-192 (cc192) isolates from
Burkina Faso, indicate that these isolates may cause inva-
sive disease in healthy patients. In contrast, cc53 which
was previously shown to be sensitive to normal human
sera, may require an immunocompromised host to cause
IMD, as demonstrated in our study. We did not perform
serum bactericidal assays to confirm these findings.

In South Africa, the quadrivalent polysaccharide vaccine
and the quadrivalent conjugate vaccine which was recently
introduced in 2015, are recommended for individuals with
terminal complement deficiencies and may be offered to
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close contacts of IMD patients following post-exposure
chemoprophylaxis. The vaccination status of all three pa-
tients as well as the contacts for the first two were un-
known, however the mother of the patient with C6
deficiency was administered a single dose of Menactra®,
which is ineffective in preventing carriage of cn/ meningo-
cocci which lack a capsule. All 94 cnl meningococci includ-
ing those analyzed in this study lacked the nadA locus and
the P1.4 antigen; and most isolates expressed fHbp variants
which are not targeted by the Bexsero® vaccine (with the
exception of isolates that belong to cc198 and cc41/44,
which express variant 1 fHbp). The effectiveness of Bex-
sero’ to target cnl meningococci in general would therefore
be largely reliant on the expression and cross protective po-
tential of NHBA [15]. Although the bivalent fHbp vaccine
Trumenba® potentially elicits broad spectrum bactericidal
activity against serogroup B strains, its effect on fHbp vari-
ants and their level of expression in other serogroups and
¢nl meningococci is unknown [17].

Conclusion

Invasive meningococcal disease by cn/ meningococci in
South Africa is rare however such strains may have a
heightened tendency to cause IMD in an immunocom-
promised host, potentially coupled with currently unknown
non-capsular virulence mechanisms in the meningococcus.

Methods

Meningococcal surveillance, 2003-2013

National laboratory-based surveillance for IMD in South
Africa was established in 1999 [33] and was enhanced in
2003 through the Group for Enteric, Respiratory and
Meningeal Disease Surveillance (GERMS-SA) [34].
Approximately 200 microbiology laboratories from the
private and public sector submitted meningococcal iso-
lates and/or clinical specimens together with patient
demographic information to the National Institute for
Communicable Diseases (NICD) for confirmation and
characterization. A case of IMD was defined as the iden-
tification of N. meningitidis from a normally sterile site
specimen by culture, Gram stain and/or antigen
detection-latex agglutination result, or a positive PCR re-
sult [35, 36]. If a case of IMD was reported >21 days
after the first episode, it was regarded as a new case.

Bacterial culture and characterization

At the NICD, N. meningitidis identification was confirmed
using standard microbiological methods [37]. Minimum in-
hibitory concentrations for penicillin, chloramphenicol, ri-
fampicin, ciprofloxacin, trimethoprim-sulfamethoxazole,
and ceftriaxone were determined using E-test” (bioMérieux,
Marcy-I'Etoile, France), and interpreted using Clinical and
Laboratory Standards Institute guidelines [38]. Phenotypic
serogrouping was performed wusing capsule-specific
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antibodies (Remel Biotech Ltd, Dartford, United Kingdom)
for detection of serogroups A, B, C, W, X and Y. Real-time
PCR detection of ctrA, and genogrouping were performed
to detect serogroups A (csaB), B (csb), C (csc), W (csw), X
(csxB), and Y (csy) [36]. From 2003 through 2013, we iden-
tified five IMD isolates which were negative for ctrA and six
serogroups. N. meningitidis identity was reconfirmed using
API-NH (bioMérieux, Marcy-I'Etoile, France) and real-time
PCR to detect the superoxide dismutase (sodC) gene [35].
The five non-groupable isolates were characterized by
whole genome sequencing.

Genome sequencing, assembly and annotation

The Wizard® Genomic DNA Purification Kit (Promega,
Madison, USA) was used to extract DNA from suspen-
sions prepared from overnight cultures, according to
manufacturer instructions. DNA was quantified using
the Qubit® 2.0 fluorometer (Invitrogen, Oregon, USA)
and Qubit® dsDNA BR assay kit. Library preparation was
performed using the Nextera XT DNA Library Prep Kit
(llumina, California, USA), and sequenced using the
Mlumina platform. The reads were de novo assembled
using Velvet (version 1.2.08) combined with the Velve-
tOptimiser script (version 2.2.4) to a draft level [39, 40].
The minimum output contiguous assembly size was set
to 100bp with scaffolding turned off and all other
parameters were set as default. No read trimming was
performed. The sequence assemblies were uploaded into
PubMLST.org/Neisseria. Annotation of the genomes was
performed using the PubMLST Neisseria database,
which implements the Bacterial Isolate Genome Se-
quence (BIGSdb) platform and are publically available
[PubMLST: 29306, 29312, 37616, 41860 and 41961] [41].
Additionally, Illumina sequencing was performed for
four non-groupable cc192 isolates from Burkina Faso
(two carriage and two invasive) at Public Health Eng-
land, Colindale [PubMLST: 35416, 35417, 35418 and
35419] (Additional file 2: Table S1) [8, 20]. Sequence
reads were also deposited in the European Nucleotide
Archive (ENA) (http://www.ebi.ac.uk/ena), for the South
African [accession: ERR519863, ERR519789, ERR519785,
ERR1805704 and ERR1805705] and Burkina Faso iso-
lates [accession: ERR903637, ERR903631, ERR903647
and ERR903634].

Identification of capsule null isolates

Genome Comparator, a BIGSdb tool, was used to verify
PCR negative results for serogroups A, B, C, X, W and
Y, and to determine if isolates were serogroups E, H, I,
K, L or Z; or harboured a cul/ allele (PubMLST Neisseria
database locus identifier: NEIS2743) [2, 6, 41]. Capsule
regions A and C were further investigated to confirm
the presence of the cul allele using CLC Genomics
Workbench version 7.5.1 (CLC bio, Aarhus, Denmark).
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Additional non-groupable N. meningitidis genomes har-
bouring a cnl allele were identified in the PubMLST
Neisseria database at the time of this analysis, for phylo-
genomic comparison with the South African isolates
(Accessed: 01 July 2016 ). In addition, genes flanking the
cnl allele, namely, galE (NEIS0048) and fex (NEIS0059),
were compared in all isolates in the PubMLST Neisseria
database.

Strain typing of capsule null isolates

Species identity was confirmed in silico by the presence
of sodC (NEIS1339) and analysis of a 413bp fragment of
the 50S ribosomal protein L6 (rp/E NEIS0147) [42].
Multilocus sequence type (ST) and peptide typing frag-
ments for porin A (PorA) variable regions (VR) 1 and 2,
ferric enterochelin receptor (FetA) VR, factor H-binding
protein (fHbp), neisserial adhesin A (NadA) and neisser-
ial heparin-binding antigen (NHBA), were identified
from the whole genome data [43-46].

Phylogenomic comparison of capsule null meningococci

Genome Comparator was used to construct phylogenetic
networks to assess the relationships between the South
African cnl isolates and additional cnl genomes. Isolates
were compared using seven MLST genes, 53 rMLST genes
and 1605 core genes [cgMLST scheme v1.0] [47-49]. The
distance matrices were visualized as Neighbor-net phylog-
enies and annotated using SplitsTree version 4.13.1 [50].
The degree of relatedness between isolates was quantified
by calculating the mean number of differing core loci
between isolates and statistical significance was deter-
mined using the Fisher’s exact test (p < 0.05). Loci which
were absent in at least one isolate or incomplete as a result
of being situated at the end of a contig, were excluded
from analysis. Functional annotations for variable core loci
were determined using the PubMLST Neisseria database.

Identification of genetic markers for potential
differentiation of carriage and invasive capsule null
meningococci

The Genome Comparator tool was used to examine 117
previously defined putative virulence loci, in 51 carriage
and 14 invasive capsule null isolates with known epidemi-
ology (Additional file 4: Table S3) [30]. The ST-192 (cc192)
isolates from Malawi were not included in the analysis as
genome data were not available on the PubMLST Neisseria
database at the time of analysis (22 December 2016). A
mutually exclusive gene or allele was defined as being
present in all isolates in one group (carriage or invasive)
and absent in the other.

Transmission electron microscopy
The South African isolates were visualized using a previ-
ously described TEM method that was adapted for
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Gram-negative bacteria by substituting ruthenium red
with a 0.5% alcian blue pyridine variant (pH 7.2) [51].
Ultrathin sections were viewed using a 120 kV BioTwin
Spirit transmission electron microscope (FEI Company,
Oregon, USA). American Type Culture Collection
(ATCC®) isolate M-603, a N. meningitidis serogroup W
strain (ATCC-35559™) was used as an encapsulated con-
trol. NCDC A7515, a N. lactamica strain (ATCC-23970™)
was used as an unencapsulated control.

Additional files

Additional file 1: Figure S1. Nucleotide sequences of capsule null
locus (cnl) alleles identified in invasive and carried Neisseria meningitidis
isolates analyzed in this study (n =93), PUbMLST Neisseria database locus
identifier: NEIS2743. (TIFF 570 kb)

Additional file 2: Table S1. Epidemiological information, molecular
characterization and genome characteristics of all Neisseria meningitidis
isolates analyzed in this study (n = 94). (XLSX 18 kb)

Additional file 3: Table S2. Variable core loci (n = 2) identified in clonal
complex 192 capsule null Neisseria meningitidis isolates 41860 and 41961,
obtained from a patient with recurrent invasive meningococcal disease in
2011 and 2012, respectively. (XLSX 9 kb)

Additional file 4: Table S3. Putative virulence loci (n=117) analyzed in
51 carriage and 14 invasive capsule null meningococci, adapted from
Schoen et al. [30]. (XLSX 13 kb)
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