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Abstract

Background: Bovine enterovirus (BEV) belongs to the species Enterovirus E or F, genus Enterovirus and family
Picornaviridae. Although numerous studies have identified BEVs in the feces of cattle with diarrhea, the pathogenicity
of BEVs remains unclear. Previously, we reported the detection of novel kobu-like virus in calf feces, by metagenomics
analysis. In the present study, we identified a novel BEV in diarrheal feces collected for that survey. Complete genome
sequences were determined by deep sequencing in feces. Secondary RNA structure analysis of the 5" untranslated
region (UTR), phylogenetic tree construction and pairwise identity analysis were conducted.

Results: The complete genome sequences of BEV were genetically distant from other EVs and the VP1 coding region
contained novel and unique amino acid sequences. We named this strain as BEV AN12/Bos taurus/JPN/2014 (referred
to as BEV-AN12). According to genome analysis, the genome length of this virus is 7414 nucleotides excluding the poly
(A) tail and its genome consists of a 5'UTR, open reading frame encoding a single polyprotein, and 3'UTR. The results
of secondary RNA structure analysis showed that in the 5'UTR, BEV-AN12 had an additional clover leaf structure and
small stem loop structure, similarly to other BEVs. In pairwise identity analysis, BEV-AN12 showed high amino acid (aa)
identities to Enterovirus F in the polyprotein, P2 and P3 regions (aa identity >82.4%). Therefore, BEV-AN12 is closely
related to Enterovirus F. However, aa sequences in the capsid protein regions, particularly the VP1 encoding region,
showed significantly low aa identity to other viruses in genus Enterovirus (VP1 aa identity <58.6%). In addition,
BEV-AN12 branched separately from Enterovirus E and F in phylogenetic trees based on the aa sequences of P1 and
VP1, although it clustered with Enterovirus F in trees based on sequences in the P2 and P3 genome region.

Conclusions: We identified novel BEV possessing highly divergent aa sequences in the VP1 coding region in Japan.
According to species definition, we proposed naming this strain as “Enterovirus K’, which is a novel species within
genus Enterovirus. Further genomic studies are needed to understand the pathogenicity of BEVs.
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Background

Bovine enterovirus (BEV) is a single positive-stranded
RNA virus belonging to the genus Enterovirus within
family Picornaviridae. The viral particle is composed of
a small, non-enveloped and icosahedral virion and 7.5 k-
base genome containing a single open reading frame
(ORF) flanked by untranslated regions (UTRs) at the 5°
and 3’ ends. The ORF encodes a single long polyprotein
containing structural proteins (VP1, VP2, VP3 and VP4
encoded in P1) and non-structural proteins (2A, 2B and
2C encoded in P2 as well as 3A, 3B, 3C and 3D encoded
in P3) [1, 2].

Genus Enterovirus is divided into 12 species defined as
Enterovirus A—H and J (EV-A, B, C, D, E, F, G, H and )
and Rhinovirus A—C (RV-A, B and C) [2]. BEVs belong
to EV-E and EV-F (formerly known as BEV-A and BEV-
B, respectively) and can be distinguished from other EVs
by the unique secondary structure of their RNA genome:
a 5'-cloverleaf and internal ribosome entry site (IRES)
linked by additional nucleotide sequences at the 5'UTR
[3-5]. Since the isolation of BEVs from cattle in the late
1950s [6—8], studies worldwide have detected BEVs not
only in cattle but also in other animal species including
possums, bottlenose dolphins, camels and alpacas [8-12].
Although BEVs have been classified based on virus antige-
nicity determined by cross neutralization testing [13-16],
the genotype based on the capsid protein (particularly in
VP1) amino acid sequences are also used to classify BEVs
[4, 10-12, 17, 18]. BEVs are classified into 4 sero-/geno-
types and 6 sero-/genotypes in EV-E (E1, E2, E3 and E4)
and EV-F (F1, F2, F3, F4, F5 and F6), respectively.

Although most EVs cause only mild symptoms, includ-
ing hand-foot-and-mouth disease, herpangina, pleuro-
dynia and rashes [19, 20], some members belonging to the
genus Enterovirus can cause severe diseases. The most
well known pathogen is poliovirus affecting humans.
Poliovirus and some of other EVs, including coxsackie
virus and echovirus, can invade the central nervous sys-
tem causing neurological diseases, including aseptic men-
ingitis, encephalitis and ataxia [21, 22]. In other animals,
although porcine teschovirus, formerly classified as por-
cine enterovirus, can cause a neurological disorder known
as Teschen/Talfan disease [23], the pathogenicity of EVs
infecting animals are still unclear. In case of cattle, foot-
and-mouth disease virus belonging to the genus
Aphthovirus of the family Picornaviridae can cause vesicu-
lar diseases leading to a serious economic impact for
farmers [24]; the pathogenicity of viruses belonging to the
genus Enterorovirus is still unclear. Several reports have
claimed that BEVs can cause diarrhea, respiratory diseases,
reproductive diseases and infertility in cattle [25-27];
however, BEVs have also been widely detected in asymp-
tomatic cattle and their environment, and experimental
infection trials of BEV have failed to produce clinical signs
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[28-30]. Therefore, whether BEV infection is clinically im-
portant remains unclear.

It is widely known that most viruses belonging to
genus Enterovirus utilize “canyon” as their binding site
to cells surface receptors, which is formed by outer cap-
sid proteins including VP1, VP2 and VP3 [31]. Several
studies of other enteroviruses revealed that sequences of
the VP1 coding region are responsible for the phenotype
of viruses; some amino acid substitutions in this region
altered the pathogenicity and cell tropism of the viruses
[32-34]. Although the cell surface receptor to BEV has
not been identified, it is likely that the capsid proteins,
including VP1, may be responsible for the phenotype of
BEVs, as their capsid proteins also form a “canyon” on
the outer side of the virion, and a strain isolated from
cattle with severe symptoms contained specific amino
acid substitutions in the capsid regions [27, 35]. To
elucidate the determinants of BEV virulence in hosts,
genomic information of BEVs must be determined.

Recently, deep sequencing techniques using high-
throughput sequencers have been used to evaluate vir-
ome including novel viruses in clinical samples without
viral isolation to determine total genomic information
within samples [36, 37]. We previously identified novel
viruses infecting the intestinal tracts of livestock using
high-throughput sequencers to study enterovirus, pi-
cornavirus and astrovirus in the feces of goat, swine and
cattle, respectively [38—41].

Previously, we reported the detection of novel kobu-
like virus in Japanese Black cattle, using feces of calf, by
metagenomics analysis. In the present study, we
identified a novel BEV in feces collected for that survey
[42]. To characterize the genomic features of this virus,
complete genome sequences were determined and
phylogenetic trees were constructed. In addition, sec-
ondary RNA structures in the 5"UTR and pairwise iden-
tity were analyzed.

Methods

Fecal sample and virus isolation

Previously, we reported the detection of a novel kobu-
like virus in Japanese black cattle by deep sequencing
method [42]. During the metagenomics surveillance, nu-
cleotide sequences with high similarity to BEVs were
identified in feces collected from a calf with diarrhea.
This feces was collected from a 1-month-old calf with
diarrhea in Kagoshima prefecture (Kagoshima sample) in
2014. No other clinical sign was observed except diar-
rhea. Feces was collected directly from the rectum on
the onset day. One gram feces was diluted with 9 mL
PBS (-) to prepare a 10% fecal suspension and centri-
fuged at 10,000 x g for 10 min. The supernatant was col-
lected and stored at —80 °C before RNA extraction and
virus isolation.
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The supernatant of the Kagoshima sample was sub-
jected to virus isolation. The fecal supernatant was fil-
tered through a 0.45-pm pore size membrane and
treated with 10 pg/mL acetylated trypsin (Sigma-Aldrich,
St. Louis, MO, USA) for 60 min at room temperature be-
fore virus isolation. Treated samples were inoculated into
Mardin-Darby bovine kidney cells. Blind passage was sub-
sequently conducted three times. Minimum Essential
Medium was used as negative control (Sigma-Aldrich).

Isolated BEV strains

In this study, three BEVs isolated in Japan, BEV 1S1/Bos
taurus/JPN/1990 (BEV-IS1) and IS2/Bos taurus/JPN/
1990 (BEV-IS2), were additionally sequenced and ana-
lyzed. These viruses were isolated from a fecal sample
collected from one cow at the same time in 1990 in the
Ishikawa prefecture (The clinical features of cattle in-
fected with BEV-IS1 and IS2 have not been recorded). In
addition, BEV Hol2/Bos taurus/JPN/2009 (BEV-Hol2)
was isolated from diarrheic feces collected in Hokkaido
in 2009 by as described above [39].

RNA extraction, cDNA library construction and whole
genome sequencing

Total RNA was extracted from 0.25-mL supernatants of
isolated viruses and 10% fecal samples using TRIzol LS
Reagent (Life Technologies, Carlsbad, CA, USA). RNA
samples were normalized to 10-100 ng of RNA per re-
action, using a Qubit_2.0 Fluorometer (Invitrogen,
Carlsbad, CA, USA). The ¢cDNA library of sample RNA
was constructed using the NEBNext Ultra RNA Library
Prep Kit for Illumina version 2.0 (New England Biolabs,
Ipswich, MA, USA) as described previously [40] and se-
quenced using MiSeq (Illumina, San Diego, CA, USA)
with the MiSeq reagent kit V2 (300 cycles) (Illumina).
Briefly, all reads were generated as 151 paired end reads.
Each sample was multiplexed with other 23 samples pre-
pared from diarrheal feces of other calves (data not
shown). 5°-Full RACE Core Set (TaKaRa Bio, Shiga,
Japan) and 3'Full RACE Core Set (TaKaRa Bio) were
used to complement virus sequences of the 5" end and
3" end, respectively.

Analysis of genome sequences

All nucleotide sequences determined by Miseq (referred
to as “reads”) were converted to FASTAQ format on
MiSeq reporter V2.3 and subsequently analyzed using
CLC Genomics Workbench 6.0 (CLC bio, Cambridge,
MA, USA). Briefly, the ends of all reads were trimmed
to remove adaptor sequences located at both ends of
each read. Trimmed reads were assembled into contigs
using a de novo assembly algorithm. Contigs generated
by de novo assembly algorithm were analyzed using
BlastN.
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Hypothetical polyprotein cleavage sites of the viruses
were predicted by multiple alignments with other BEVs
and confirmed by the NetPicoRNA [43]. Nucleotide (nt)
sequences or amino acid (aa) sequences were aligned
using ClustalW. Phylogenetic trees were constructed by
maximum likelihood (ML) methods on MEGA5.2.2 [44].
The mtREV24 + G + F model (5'UTR), rtREV + F model
(3'UTR), rtREV +G +F model (P1), rtREV+G+1 (P2
and P3), and WAG + G +1 (VP1) were employed as evolu-
tionary models for ML method. Pairwise identity was ana-
lyzed on CLC Genomics Workbench and the secondary
RNA structure of the 5'UTR was predicted by Mfold [45].

VP1 genome sequencing

RT-PCR was performed by using PrimeScript One Step
RT-PCR Kit Ver.2 (TaKaRa Bio) to confirm the
sequences of the contigs obtained from the Kagoshima
sample. Three primer sets were designed based on the
contig sequences of this sample. Primer sequences are
given in Additional file 1: Table S1. PCR products were
sequenced using a 3130xl Genetic analyzer (Applied
Biosystems, Foster City, CA, USA).

Detection of other pathogens causing diarrhea

To confirm the presence of other pathogens in the
Kagoshima sample, detection of agents causing diar-
rhea using our real-time PCR system, referred to as
“Dembo-PCR,” was performed [46]. This system can
identify 19 species of pathogens, including virus, bacteria
and protozoa. Briefly, viral DNA and RNA were extracted
by high pure viral nucleic acid extraction kit (Roche
Diagnostics GmbH, Mannheim, Germany) and bacteria
and protozoa DNA were extracted by QIAamp Fast DNA
stool mini kit (QIAGEN, Hilden, Germany). Nucleic acids
extracted by each kit were subjected to Dembo-PCR, ac-
cording to a previous report [46].

Results

Virus isolation and determination of viral genome
sequences

Although virus isolation using supernatants of the
Kagoshima feces was repeated three times, no cytopathic
effect could be detected. Therefore, RNA extracted from
the Kagoshima sample collected in 2014 and virus stocks
of BEV-IS1, BEV-IS2 and BEV-Hol2 were subjected to
deep sequencing. The Kagoshima sample was sequenced
twice, and all reads obtained from the two runs were
used to generate contigs (the first and second deep
sequencing yielded 1,304,032 and 929,976 reads, respect-
ively). The results of BlastN analysis revealed that bovine
enterovirus F, group A rotavirus (RVA), bovine kobu-like
virus and bovine picornavirus were identified with E
value = 0. However, RVA was not detected in feces by
Dembo-PCR.
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The total BEV read counts (percentages indicate BEV
reads per total reads of the first and second deep se-
quencing) of the Kagoshima sample were 1202 reads
(0.05%), and an approximately 7400 nt contig was ob-
tained from the integrated result with a 24.24 average
sequence read depth (maximum read depth was 46).
The complete genome was determined using 5" and 3’
end RACE methods. Because amino acid sequences of
VP1 were not similar to those of other enteroviruses by
homology analysis as described below, the VP1 genome
sequence was confirmed by directly sequencing the PCR
product. As a result, sequences obtained from direct se-
quencing agreed with the results of deep sequencing.
The genome length of BEV from the Kagoshima sample
was 7414 nt, excluding the poly (A) tail. We named this
BEV as BEV AN12/Bos taurus/JPN/2014 (BEV-AN12).

Viral genomes of isolated viruses including complete
ORFs were also determined. The genome lengths of BEV-
IS1, BEV-IS2 and BEV-Hol2 were 7413 nt (P1: 2517 nt,
P2: 1737 nt, and P3: 2271 nt), 7394 nt (P1: 2496 nt, P2:
1734 nt, and P3: 2271 nt), and 7350 nt (P1: 2496 nt, P2:
1734 nt, and P3: 2271 nt), respectively. The sequences of
BEV-AN12, BEV-Ho12, BEV-IS1 and BEV-IS2 were de-
posited in the DDBJ/EMBL/GenBank database under the
accession numbers LC038188, LC150008, LC150009 and
LC150010, respectively.

Pairwise identity and genome analysis

Table 1 shows the pairwise aa (polyprotein, 2C + 3CD, P1-
P3, VP1-VP4 and 3D) or nt (5'UTR and 3'UTR) identity
of BEV-AN12 to representative strains of each species
belonging to BEVs and other Japanese BEVs. Deduced aa
sequences encoding polyprotein, 2C + 3CD, P1, P2, P3, 3D
and four capsid proteins (encoding VP4, VP2, VP3 and
VP1) were compared to each EV-E and F. BEV-AN12 pos-
sessed showed identity to EV-Fs in polyprotein, 2C + 3CD,
P2, P3 and 3D than to those of EV-Es. However, low aa
identity (aa identity <70%) was observed in P1 to EV-Es
and EV-Fs. Particularly, the VP1 region of BEV-ANI12
encoded in P1 showed a significantly low aa identity to
other BEVs (54.7% < aa identity < 58.6%). As a result of
multiple alignment analysis, several motifs conserved
among the genomes of genus Enterovirus were detected in
the genome of BEV-ANI2. In particular, the [PS]
ALXAAXETG motif in VP1, GXCG motif in 2A,
GXXGXGKS motif for NTP-binding in 2C, GXCG motif
forming part of the catalytic active site in 3C, and KDE
[LI] R in 3D were identified [47-50]. However, the puta-
tive cleavage site at the junction of VP3/VP1 was a glu-
tamine/serine for BEV-AN12. In addition, a 6-aa insertion
in the 2A region was identified at position 835-840 aa
(PLRTTG) in the BEV-AN12 genome. Multiple alignment
using aa sequences encoding polyprotein is supplemented
as Additional file 2: Table S2.
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Secondary RNA structure of 5'UTR

The putative secondary 5'UTR RNA structure of BEV-
AN12 is shown in Fig. 1. Zell et al. reported that the 5’
UTR of BEVs form additional cloverleaf structures and
small stem loops between the 5'-cloverleaf structure and
IRES, which clearly distinguish BEVs from other EVs [3].
Similarly, our analysis revealed that all Japanese BEVs
had BEV-specific structures (domains I* and I*¥).
Domains II, III, IV, V and VI, which are the main do-
mains of type 1 IRES directing cap-independent transla-
tion [51], were also observed in all Japanese BEVs.

Phylogenetic analysis

Phylogenetic trees based on the nt sequences of 5'UTR
and 3'UTR and aa sequences of P1, P2, P3 and VP1 are
shown in Fig. 2 and Fig. 3, respectively. Phylogenetic
analysis showed that all Japanese strains of BEV includ-
ing BEV-AN12 formed a cluster with other BEVs in all
six trees. However, BEV-AN12 was completely separated
from other BEVs in the P1 and VP1 trees.

Detection of agents causing diarrhea by Dembo-PCR
Dembo-PCR was performed to identify agents causing
diarrhea in calf. According to the results, only BEV was
detected by this test. Genome of other pathogens was
not identified in the fecal sample of Kagoshima.

Discussion

According to the species demarcation criteria for the
genus Enterovirus defined by the International Committee
on Taxonomy of Viruses, members of a species in the
genus Enterovirus should share high aa identity (aa >70%
in the polyprotein, aa >60% in P1 and >80% aa identity in
2C+3CD) and compatibility in processing, replication
and encapsidation [2]. In addition, EV-E and F can be dis-
tinguished from other EVs because of their unique sec-
ondary RNA structures in the 5'UTR region (domains I*
and I**) [4]. Our genome analysis revealed that BEV-
AN12 shared aa sequences and protease cleavage site
positions with EV-Fs. In addition, BEV-AN12 contained
domains I* and II* in the 5'UTR similarly to other BEVs.
Therefore, BEV-AN12 is closely related to EV-Fs. How-
ever, pairwise identity analysis revealed that aa sequences
in the VP1 region of the BEV-AN12 genome had sig-
nificantly low identities to other BEVs strains (VP1 aa
identity <58.6%). Furthermore, BEV-AN12 did not cluster
with any other EV-E and EV-F in the VP1 phylogenetic
tree, although its P2 and P3 regions were closely related to
EV-F. The percentage of aa identity of VP1 is commonly
utilized for species and sero-/genotype definition (range
from 50 to 55% for heterologous species, 70 to 85% for
heterologous sero-/genotypes/homologous species, and
greater than 90% for homologous sero-/genotypes) [4].
According to the classification definition, our results
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indicate that BEV-AN12 is taxonomically distant from
previously reported BEVs. Therefore, we named this strain
as “Enterovirus K’, which is a novel species within the
genus Enterovirus. Other Japanese BEVs were classified as
typical BEVs (BEV-IS1: EV-E2, BEV-IS2 and BEV-Hol2:
EV-F4).

Our recombination analysis could not reveal the source
of mutation (data not shown), although several reports
suggested that recombinant viruses belonging to the genus
Enterovirus were generated by intra/interspecies transmis-
sion [52, 53]. Point mutations in the viral genome are
common among picornaviruses because their polymerase
lacks the proofreading ability and fidelity of amplification
[54—56]. In addition, VP1 is a capsid protein, which likely
influences host immunity in infected animals [35]. There-
fore, the accumulation of mutations in the viral genome
and subsequent selection by immunity in infected hosts
may result in the generation of novel species.

Although the complete ORF and complete or partial
UTRs sequences of four Japanese BEVs were determined,
the virus could not be isolated from one diarrheal feces of
a calf (BEV-AN12). BEV-AN12 has mutations in VP1 and
2A, which are involved in the formation of the capsid
protein-host receptor binding site and cell proliferation,
respectively [35, 49]. Although critical motifs for their
function including [PS] ALXAXETG and GXCG were
identified in the BEV-AN12 genome, a short insertion
(6 aa) in the 2A protein region and non-synonymous

substitution at the junction of VP3/VP1 were observed in
the BEV-AN12 genome. Because these mutations may
show alter receptor binding or virus replication, further
crystal structure analysis of virions should be conducted.
The VP1 proteins in viruses belonging to the genus
Enterovirus are widely known to components that form
the receptor binding site (this site is referred to as the
“canyon”) together with VP2 and VP3 [31]. Reverse gen-
etic analysis of other enteroviruses revealed that amino
acid substitution in the VP1 region was responsible for
the virus phenotype, such as pathogenicity and cell
tropism [32-34]. Mutations in capsid protein genes may
influence the structure of the “canyon” and receptor-
binding capacity. BEVs also form a “canyon” on the
outer side of the virion, although the cell surface recep-
tor for BEVs is unknown. Therefore, BEVs may also have
specific determinants for their phenotypes based on the
aa sequences in the capsid protein encoding region. We
also tried to investigate the prevalence of BEV-ANI2,
using VP1 specific primers, (Additional file 1: Table S1)
in 38 diarrheal and 28 non-diarrheal feces samples
collected from calves in Kagoshima prefecture during
2014-2015; feces from only one calf was positive, as re-
vealed in the results. Therefore, we could not analyze
the relationship between BEV-AN12 and its pathogen-
icity. According to the results of deep sequencing, we
identified bovine picornavirus- and bovine kobu-like
virus in the Kagoshima sample. There are reports
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suggesting that bovine picornavirus and bovine kobu-
virus are associated with diarrhea [39, 57]. However, the
pathogenicity of these viruses is still unknown. There is
a possibility that all viruses can cause diarrhea. To clarify
the determinants of the pathogenicity of BEVs, experi-
mental infection based on reverse genetic analysis is
necessary.

Conclusions

The present study identified novel BEV possessing
highly divergent aa sequences in the VP1 coding region
in Japan. We name this strain as “Enterovirus K”, which
is a novel species within the genus Enterovirus. To
exclude the pathogenicity of BEVs, further genomic
information must be accumulated.
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