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Competition assays and physiological @
experiments of soil and phyllosphere yeasts
identify Candida subhashii as a novel

antagonist of filamentous fungi
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Abstract

Background: While recent advances in next generation sequencing technologies have enabled researchers to
readily identify countless microbial species in soil, rhizosphere, and phyllosphere microbiomes, the biological
functions of the majority of these species are unknown. Functional studies are therefore urgently needed in order
to characterize the plethora of microorganisms that are being identified and to point out species that may be used
for biotechnology or plant protection. Here, we used a dual culture assay and growth analyses to characterise
yeasts (40 different isolates) and their antagonistic effect on 16 filamentous fungi; comprising plant pathogens,
antagonists, and saprophytes.

Results: Overall, this competition screen of 640 pairwise combinations revealed a broad range of outcomes,
ranging from small stimulatory effects of some yeasts up to a growth inhibition of more than 80% by individual
species. On average, yeasts isolated from soil suppressed filamentous fungi more strongly than phyllosphere yeasts
and the antagonistic activity was a species-/isolate-specific property and not dependent on the filamentous fungus
a yeast was interacting with. The isolates with the strongest antagonistic activity were Metschnikowia pulcherrima,
Hanseniaspora sp., Cyberlindnera sargentensis, Aureobasidium pullulans, Candida subhashii, and Pichia kluyveri. Among
these, the soil yeasts (C. sargentensis, A. pullulans, C. subhashii) assimilated and/or oxidized more di-, tri- and
tetrasaccharides and organic acids than yeasts from the phyllosphere. Only the two yeasts C. subhashii and M.
pulcherrima were able to grow with N-acetyl-glucosamine as carbon source.

Conclusions: The competition assays and physiological experiments described here identified known antagonists
that have been implicated in the biological control of plant pathogenic fungi in the past, but also little
characterised species such as C. subhashii. Overall, soil yeasts were more antagonistic and metabolically versatile
than yeasts from the phyllosphere. Noteworthy was the strong antagonistic activity of the soil yeast C. subhashii,
which had so far only been described from a clinical sample and not been studied with respect to biocontrol.
Based on binary competition assays and growth analyses (e.g., on different carbon sources, growth in root
exudates), C. subhashii was identified as a competitive and antagonistic soil yeast with potential as a novel
biocontrol agent against plant pathogenic fungi.
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Background

The fungal kingdom includes important plant pathogens
that cause a plethora of diseases in all crops worldwide. Of
particular concern are rot and wilt diseases caused by
soilborne fungi, fungal spots, blights and blotches, rusts,
mildews, cankers and anthracnoses, as well as postharvest
decay of fruits and vegetables [1, 2]. Infestations by aggres-
sive, fungal pathogens can severely constrain agricultural
production and often the only resort is crop rotation,
fallow, or even an abandonment of the cropland [3, 4].

Soil, roots, and the phyllosphere harbour complex
microbiomes consisting of thousands of bacterial and
fungal species that may suppress diseases, act as patho-
gens, or affect plant health and growth by various other
mechanisms [5-8]. Yet, microbiomes are still a largely
untapped resource for protecting crop plants against
pathogens and for increasing agricultural productivity [9,
10]. Considerable efforts are therefore undertaken to
harness and use microbiota for novel applications in
agriculture [11-14]. Microbiomes of plants, rhizosphere,
or soil have been elucidated by large-scale, DNA
sequencing-based metagenomics approaches [7, 15, 16],
but the contributions and functions of the large majority
of the species are still mostly unknown. Microbiota thus
consist predominantly of yet uncharacterized bacteria
and fungi, tritagonists, that regulate microbial interac-
tions [17].

Yeast-like fungi inhabit all aerobic environments; from
the arctic and glaciers to the tropics or even the desert
and from dry to saline and high-sugar habitats [18—24].
Many yeast species are particularly well known for their
biotechnological applications or medical relevance. In
agriculture, yeasts have been identified as powerful an-
tagonists of fungal pathogens causing postharvest and
storage diseases and of microorganisms attacking flowers
and leaves [25-31]. Few yeast species have reached the
market as commercial products for the postharvest con-
trol of pathogens (e.g., Aureobasidium pullulans as
BoniProtect, Candida oleophila strain 1-182 as Aspir-
e™, Candida sake as Candifruit, Metschnikowia fructi-
cola as Shemer, or Cryptococcus albidus as YieldPlus) or
against fireblight (e.g., A. pullulans as BlossomProtect);
some of which are not marketed anymore or only regis-
tered locally [32-37]. Yeasts suppressing soilborne path-
ogens have been described rarely and a commercial
application has not been considered yet. Candida valida,
Rhodotorula glutinis and Trichosporon asahii protected
sugar beet against the soil pathogen Rhizoctonia solani
[38]. In another study, Saccharomyces unispora and
Candida steatolytica antagonised Fusarium oxysporum
causing wilt disease in kidney beans [39] and Saccharo-
myces cerevisiae controlled a Fusarium infection of sugar
beet [40]. In a successful example of postharvest biocon-
trol, M. fructicola has been employed as part of a
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combined strategy to control the soilborne pathogen
Thielaviopsis basicola on carrots [41]. These examples
clearly document the potential of yeasts to suppress and
antagonise soilborne pathogens, but also highlight the
limited knowledge on their biological functions in soil.

The genus Candida comprises several species that
have been studied extensively with respect to biotechno-
logical applications, biocontrol, but also as human path-
ogens. Candida guilliermondii is a ubiquitously present,
saprophytic yeast that has received particularly broad at-
tention because of its presence in clinical samples, the
biotechnological production of metabolites and enzymes,
applications in bioremediation, or the control of plant
pathogenic fungi [42]. The antagonistic potential of C.
guilliermondii against diverse fungal pathogens (e.g., Bo-
trytis cinerea, Colletotrichum capsici, Penicillium expan-
sum, Penicillium digitatum, Rhizopus stolonifer) has
been demonstrated in various cultures such as apple, cit-
rus, nectarine, peach, or tomato ([42], and references
therein). Other Candida species have also been studied
for their biocontrol potential and as commercial plant
protection agents against postharvest decay of fruits,
based on Candida species, have been developed (see
above) [29, 43, 44].

In the course of the work described here, we used
binary competition assays to determine the antagonis-
tic activity of soil and phyllosphere yeasts from
Switzerland against a range of pathogenic and sapro-
phytic filamentous fungi. Among the six most antag-
onistic yeasts out of a collection of 40 different
isolates (A. pullulans, Candida subhashii, Cyberlind-
nera sargentensis, Hanseniaspora sp., Metschnikowia
pulcherrima, and Pichia kluyveri), C. subhashii was
the only one that has so far not been studied with re-
spect to biocontrol. This species has only been re-
ported from a patient suffering from peritonitis
during a long-term peritoneal dialysis treatment and
an isolate highly similar to this type strain (99.8%
identity in the 26S rDNA D1/D2 domain, 1.3% se-
quence difference for the 5.8S-ITS region) was ob-
tained from a soil sample from East Japan [45, 46].
Except for these two reports, only one additional pub-
lication reporting the mitochondrial genome of C.
subhashii has appeared [47]. Here, we describe C.
subhashii as a common and frequent soil fungus that
has broad metabolic capabilities, grows in root exu-
dates, and that strongly antagonizes a wide range of
filamentous fungi (all species tested in this study, in-
cluding notorious plant pathogens, saprophytes, but
also other antagonists of the genus Trichoderma).
Since it has not been experimentally confirmed that
C. subhashii is indeed a pathogen, and based on its
broad distribution in different soils and the apparent
adaptations to the soil environment, it is concluded
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that C. subhashii is a competitive soil fungus and po-
tential candidate for the biological control of soil-
borne fungal pathogens.

Methods

Isolation and cultivation of fungi

Soil or plant material (e.g., apple leaves, flowers, bark,
skin) was diluted 10-fold (w/v) with peptone water (1 g/
L Bacto Peptone) [48], vigorously mixed, and shaken
(20 min, 25 °C, 250 rpm, on an orbital shaker). The
resulting suspensions were diluted and different dilu-
tions (usually 1:50 and 1:100) were plated on Difco™
potato dextrose agar (PDA; Becton, Dickinson and Com-
pany, Le Pont de Claix, France) supplemented with 5 ml
chloramphenicol and tetracycline HCI (5 mg/ml in etha-
nol or water, respectively), and incubated at 22 °C for 2—
4 days. Single fungal colonies were transferred to PDA
agar plates without antibiotics and repeatedly streaked
out until pure cultures were obtained. Isolates were
maintained on PDA agar plates and stored in 15% (v/v)
glycerol at —80 °C.

Identification of fungal isolates

Species identification was first attempted by MALDI-
TOF as previously described [49]. In cases where
MALDI-TOF did not allow species identification, the
fungal ITS region was amplified with primers ITS1f [50]
and ITS4 [51], PCR products were directly used for se-
quencing, and all isolates were assigned a species hy-
pothesis according to the UNITE database [52, 53] (see
also Table 1). Crude protein extracts of isolates that were
identified based on their ITS sequence were used to gen-
erate reference MALDI-TOF spectra for future identifi-
cations of the same species [49]. All isolates generated in
the course of this study have been deposited and are
available at the Culture Collection of Switzerland (CCoS;
https://www.ccos.ch; Table 1).

Quantification of yeast antagonism against filamentous
fungi in vitro

Yeasts were collected from a PDA plate (less than 2
weeks old), diluted in water, and adjusted to an ODg, of
0.1. Fifteen microlitre of this suspension was plated on
PDA plates (5.5 cm in diameter) in quadruples. Conidia
of filamentous fungi were collected in water, diluted
(ODgoo =0.1), and 5 pl were inoculated in the centre of
the plates (previously overlaid with yeasts or fresh PDA
plates as a control). Plates were incubated at 22 °C for 3
to 15 days depending on the fungal species. Growth of
the filamentous fungus was quantified before it reached
the edge of the control plate (plate without yeasts) with
the help of a planimeter (Planix 5, Tamaya Technics Inc.,
Tokyo, Japan). The average of the relative growth
(growth in presence of yeast/growth on control plate) of
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four replicates for each of the 640 combinations was cal-
culated, log,-transformed, and all data were clustered
using  EPCLUST  (http://www.bioinf.ebc.ee/EP/EP/
EPCLUST/) for visualisation (correlation measure based
distance (uncentered), complete linkage).

Growth analysis of yeasts at different temperatures
Yeasts were collected from a PDA plate, resuspended in
sterile water, adjusted to an ODggq of 1, and 10-fold dilu-
tions were prepared in a microtiter plate. The dilutions
were spotted onto PDA plates with a multi-blot replica-
tor (delivered volume approx. 3 pl) (V & P Scientific,
Inc.,, San Diego, USA). The plates were incubated at
temperatures ranging from 15 to 37 °C and the maximal
dilution to which the yeast grew was recorded. Each ex-
periment was performed at least twice for each isolate
and the average fold-dilution is indicated as reflective of
the growth.

Microarray phenotype analysis

Overnight liquid cultures were grown in Difco™ potato
dextrose broth (PDB; Becton, Dickinson and Company,
Le Pont de Claix, France). Cells were pelleted by centri-
fugation (4 °C, 10 min, 650 g), the supernatant was dis-
carded, and the cells were washed twice with sterile
water. For each yeast isolate, a suspension with an
ODggo of 1 was prepared and 100 pl of this solution
were inoculated in each well of a Biolog YT MicroPla-
te™ (Endotell AG, Allschwil, Switzerland) [54]. The ab-
sorption at 590 nm was determined in a plate reader
(Infinite® 200 Pro; Tecan Group Ltd., Switzerland) daily
for 3 days. All data were normalized with the corre-
sponding water control and growth was expressed rela-
tive to the initial measurement at day 0. The maximal
relative growth at any of the three time-points was re-
corded (rounded to the first integer). For each yeast, the
experiment was performed twice and the average of the
two measurements is shown. Substrates that did not lead
to detectable growth for any of the yeasts are not shown.
For four carbon sources (glucose, maltose, N-acetyl-
glucosamine, melezitose), the microarray phenotype re-
sults were confirmed by performing growth analyses in
defined medium. Yeast nitrogen base (with amino acids
and ammonium sulphate) was supplemented with glu-
cose, maltose, N-acetylglucosamine or melezitose (stock
solutions were filter sterilized, final concentration 10 g/
L) and growth was followed by measuring the ODgqp in
a plate reader (Infinite® 200 Pro; Tecan Group Ltd,,
Switzerland). The final measurement (mean of five repli-
cates and standard error) after 42 h is shown.

Growth in root exudates
Mung bean (Vigna radiata) root exudates were collected
according to Barbour et al. [55] and used at a final
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Table 1 Yeasts and filamentous fungi used in this study. All strains that were isolated in the course of this study are deposited and
available at the Culture Collection of Switzerland (CCoS; https://www.ccos.ch)

Culture Isolate SH-number Name Source Origin/Reference
Collection

40 yeast isolates CCOS995 BC 1.01 SH216366.07FU  Rhodosporidium Agricultural soil This study, Switzerland

tested in this study sphaerocarpum
CCOS99%6 BC 1.03 SH218818.07FU  Candida subhashii Agricultural soil This study, Switzerland
CCOS997 BC 1.06 SH196641.07FU  Trichosporon dehoogii Agricultural soil This study, Switzerland
CCOS998 BW 2.02 SH19553807FU  Trichosporon ovoides Agricultural soil This study, Switzerland
CCOS999 BW 5.01 SH196643.07FU  Trichosporon moniliforme ~ Agricultural soil This study, Switzerland
CCOS1000  BW 7.01 A SH190095.07FU  Schwanniomyces yamadae — Agricultural soil This study, Switzerland
CCOSs1001  BW 7.02 SH182010.07FU  Trichosporon gracile Agricultural solil This study, Switzerland
CCOS1009  SHA 103 SH175136.07FU  Candida sp Agricultural soil This study, Switzerland
CCOS1010  SHA 154 SH205045.07FU  Cryptococcus laurentii Agricultural soil This study, Switzerland
CCOS1011 SHA 172 SH19557807FU  Cyberlindnera saturnus Agricultural soil This study, Switzerland
CCOS1012  SHA 253 SH031361.07FU  Barnettozyma vustinii Agricultural soil This study, Switzerland
CCOS1013  SHA 43.1 SH216362.07FU  Rhodotorula graminis Agricultural soil This study, Switzerland
CCOS1014  SHA 51.1 SH212824.07FU  Guehomyces pullulans Agricultural solil This study, Switzerland
CCOS1015  SHA 7.1 SH175136.07FU  Candida sp Agricultural soil This study, Switzerland
CCOS1008  NBB 7.2.1 SH195774.07FU  Aureobasidium pullulans Orchard soil This study, Switzerland
CCOS1004  FGA 22 SH218818.07FU  Candida subhashii Potting soil This study, Switzerland
CCOS1005  FGA 33 SH196641.07FU  Trichosporon dehoogii Potting soil This study, Switzerland
CCOS1006  KS 1/d7.18  SH192275.07FU  Candida boidinii Old compost This study, Germany
CCOS1003  F26 SH198057.06FU  Cryptococcus heimaeyensis — Irrigation water This study, Switzerland
CCOS1002  Dip141103.2 SH199823.07FU  Pichia membranifaciens Insect (Drosophila)  This study, Switzerland
CCOS976 ~ APC 1.1 SH194776.07FU  Rhodotorula slooffiae Apple flowers This study, Switzerland
CCOs977 APC 1.10 SH005240.07FU  Dioszegia sp Apple flowers This study, Switzerland
CCOS978 APC 1.2 SH180747.07FU  Metschnikowia pulcherrima — Apple flowers This study, Switzerland
CC0OSs979 APC 15 SH221435.07FU  Cryptococcus wieringae Apple flowers This study, Switzerland
CCOS980 APC 1.7 SH192046.07FU  Basidiomycota sp Apple flowers This study, Switzerland
CCOS981 APC 10.2 SH207120.07FU  Basidiomycota sp Apple leaves This study, Switzerland
CCOS982 APC 11.10 B SH204094.07FU  Pichia kluyveri Apple bark This study, Switzerland
CCOS983 APC 113 SHO019470.07FU  Tremella moriformis Apple bark This study, Switzerland
CCOS984 APC 12.1 SH177122.07FU  Hanseniaspora sp. Apple bark This study, Switzerland
CCOS985 APC 132 SH194503.07FU  Sporidiobolales sp Apple bark This study, Switzerland
CCOS986 APC 183 SH194739.07FU  Erythrobasidium Apple leaves This study, Switzerland

hasegawianum

CCOS987 APC 19.2 SH194775.07FU  Rhodotorula pinicola Apple leaves This study, Switzerland
CCOS988 APC 23 SH204123.07FU  Starmerella bombicola Apple flowers This study, Switzerland
CCOS989 APC 274 SH206552.07FU  Cryptococcus cerealis Apple bark This study, Switzerland
CCOS990 APC 34 SH205935.07FU  Sporobolomyces oryzicola Apple flowers This study, Switzerland
CCOS991 APC 6.7 SH193763.07FU  Leucosporidiella creatinivora  Apple leaves This study, Switzerland
CC0OSs992 APC 9.2 SH18162807FU  Cryptococcus victoriae Apple leaves This study, Switzerland
CCOS993 AS 1.02 SH181630.07FU  Cryptococcus sp Apple fruit This study, Germany
CCOS9%4 AS 1.06 SH190089.07FU  Debaryomyces prosopidis Apple fruit This study, Germany

EUROSCARF  BY4741

Saccharomyces cerevisiae

(59]
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Table 1 Yeasts and filamentous fungi used in this study. All strains that were isolated in the course of this study are deposited and

available at the Culture Collection of Switzerland (CCoS; https://www.ccos.ch) (Continued)

16 test strains (filamentous CCOS1018  BC 4.14 SH216250.07FU
fungi) CCOS1019  BC 8.11 SH207825.07FU
CCOS1020  BC 814 SH21362007FU
CCOS1022  SHA 181  SH18837407FU
CCOS1023  SHA 9.1 SH18577807FU
CCOS1007 NBB 242  SH19086807FU
CCOS1021  F 21 SH181342.07FU
CCOS1017  Asp 1.1 SH219673.07FU
A 065 SH215493.07FU
- FP13013
- FL13014
CBS 121292 FGO410
- FCr11115
. 115D14 .
- 106 -
ARSEF 1095 F52/Met52 -

Mycosphaerella tassiana
Trichoderma ghanense
Gibberella fujikuroi
Mucor moelleri

Mucor circinelloides
Trichoderma spirale
Trichoderma viride
Fusarium proliferatum

Alternaria eichhorniae

Fusarium poae

Fusarium langsethiae

Fusarium graminearum

Fusarium crookwellense

Monilinia fructicola
Rhizoctonia solani

Metarhizium brunneum

Agricultural soil
Agricultural soil
Agricultural soil
Agricultural solil
Agricultural soil
Orchard soil

Irrigation water

Infected asparagus

Diseased, stored
apple

Oat

Oat

Wheat

Wheat

Infected apricot

Cydia pomonella

This study, Switzerland
This study, Switzerland
This study, Switzerland
This study, Switzerland
This study, Switzerland
This study, Switzerland
This study, Switzerland
This study, Switzerland
Laimburg, ltaly

S. Vogelgsang,
Agroscope

S. Vogelgsang,
Agroscope

S. Vogelgsang,
Agroscope

S. Vogelgsang,
Agroscope

(49]
[107]

Austria

concentration of 0.1 mg/ml. Yeasts were inoculated to
an initial ODggy of 0.1 and growth was measured in a
plate reader (Infinite® 200 Pro; Tecan Group Ltd,
Switzerland) for 3 days. The mean of six replicates and
the standard error are shown.

Sequencing and analysis of the C. subhashii FGA 2.2
mitochondrial genome
Candida subhashii strain FGA 2.2 genomic DNA was
extracted using the Qiagen DNeasy Plant Mini Kit and
sequenced on the PacBio RS II platform (performed at
the Functional Genomics Center Zurich). Subsequent de
novo genome assembly and resequencing were per-
formed using PacBio SMRT Portal 2.3.0 [56]. Assembly
was generated using protocol RS_HGAP_Assembly.3.
The contig corresponding to the mitochondrial genome
revealed a linear DNA molecule. Manual curation was
performed to extend both telomeres to their full length
of 729 bp, resulting in a mitochondrial DNA (mtDNA)
assembly of 29,930 bp. One additional resequencing step
was performed using SMRT portal protocol RS_Rese-
quencing.1, which resulted in a mean coverage depth of
567-fold. The C. subhashii strain FGA 2.2 mitochondrial
genome was annotated by reference to the C. subhashii
type strain CBS10753 [47].

To construct a phylogenetic tree, the mtDNA sequences
of 22 diverse yeast species, selected based on previous stud-
ies and the availability of complete and annotated

mitochondrial genomes [47], were obtained from NCBI
(Table 2). The amino acid sequences of the conserved pro-
teins Atp6, Atp8, Atp9, Cob, Cox1, Cox2 and Cox3 were ex-
tracted from the downloaded sequences as well as from the
C. subhashii mtDNA assembly. Multiple sequence align-
ment (MSA) using MUSCLE 3.8 [57] and trimming of over-
hanging sequences ensured that the amino acid sequences
of all genes and all 22 strains were of similar length. The
amino acid sequences of all proteins were concatenated for
every strain and a final MSA with MUSCLE was performed.
The resulting alignment of 1743 amino acids was used to
create a phylogenetic tree by RAXML 8.1 applying the JTT
+T model [58]. The phylogeny was tested by performing
100 bootstrap replicates.

Results

The antagonistic activity of naturally occurring yeasts
against filamentous fungi in vitro

From a collection of yeasts naturally occurring in agricul-
tural environments, a subset of 40 species was selected
(Table 1). These isolates represented the taxonomic diver-
sity in our collection and mostly originated from soil sam-
ples (agricultural soil, orchard soil, potting soil, compost;
18 isolates), and the apple phyllosphere (flowers, leaves,
fruits, bark; 19 isolates) (Table 1). In addition, one isolate
each from irrigation water or a Drosophila species (col-
lected in Wadenswil, Switzerland) was included. Finally,
for comparison, a reference strain of Saccharomyces
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Table 2 Strain designations and accession numbers of the mitochondrial genomes used for calculating the maximum likelihood

phylogeny

Species Strain Accession Comment
Candida albicans L757 JQ864233 CTG clade

Candida metapsilosis MCO448 AY962591 CTG clade

Candida neerlandica NRRL Y-27057 EU334437 CTG clade

Candida parapsilosis CBS 7157 (SR 23) X74411 CTG clade

Candida sake CBS 159 KC993194 CTG clade

Candida subhashii FR 392/CBS10753 GU126492 CTG clade

Candida subhashii FGA 2.2/CCOS1004 KX781248 CTG clade

Candida tropicalis CBS 94 KC993185 CTG clade

Debaryomyces hansenii CBS767 DQ508940 CTG clade

Meyerozyma guilliermondii CBS 2030 KC993176 CTG clade

Pichia farinosa CBS7064 FN356025 CTG clade

Candida glabrata ATCC 2001 AJ5T1533 WGD clade
Saccharomyces castellii NRRL Y-12630 AF437291 WGD clade
Saccharomyces cerevisiae $288c KP263414 WGD clade
Saccharomyces pastorianus Weihenstephan 34/70 EU852811 WGD clade
Saccharomyces servazzii NRRL Y-12661 AJ430679 WGD clade
Barnettozyma californica CBS 252 KC993183

Cyberlindnera jadinii CBS 1600 KC993189

Kluyveromyces lactis (CBS2359 AY654900

Kluyveromyces thermotolerans CBS 6340 AJ634268

Wickerhamomyces pijperi CBS 2887 KC993192

Yarrowia lipolytica W29 AJ307410 outgroup

cerevisiae (BY4741) [59] was included. The antagonistic ac-
tivity of these 40 yeasts against 16 fungal test strains (a
broad selection of commonly isolated, pathogenic, antagon-
istic, or saprophytic filamentous fungi) (Table 1) was quanti-
fied by determining the relative growth of each filamentous
fungus in the presence of each yeast (relative to the growth
in the absence of yeasts) (Fig. 1; Additional file 1).

All data were clustered based on the outcome of the
pairwise interactions of all filamentous fungi with each
yeast isolate (Fig. 2a). Overall, the majority of yeast iso-
lates reduced the growth of filamentous fungi, but in a
few interactions a small stimulatory effect of a yeast iso-
late was detected (Fig. 2a; Additional file 1). Based on
their growth profiles in the presence of all 40 yeast iso-
lates, the three Trichoderma isolates were clustered to-
gether with the two Mucor isolates, while nine plant
pathogenic species (six Fusarium isolates, Alternaria
eichhorniae, Mycosphaerella tassiana, Monilinia fructi-
cola) formed a second, broad cluster (Fig. 2a). The
growth profiles of R. solani and Metarhizium brunneum
in the presence of yeasts strongly differed from each
other and from all other filamentous fungi. Clustering of
the different yeasts based on their effect on the growth
of all 16 filamentous fungi lead to a clear separation of

isolates obtained from the apple phyllosphere and those
isolated from soil (Fig. 2a).

The overall average relative growth of filamentous
fungi (over all 16 isolates used in this study) in the pres-
ence of each yeast isolate revealed a broad spectrum of
responses (Fig. 2b). While, on average, some yeast iso-
lates (e.g., APC 18.3) exhibited no detectable effect on
filamentous fungi, others (e.g., APC 1.2) reduced their
growth by more than 80%. The variance of this measure,
for each yeast, was small and similar over the entire
range of overall relative growth, suggesting that the aver-
age antagonistic activity, against a broad range of fila-
mentous fungi, is an inherent property of a particular
yeast isolate. The same effect was documented by rank-
ing all 40 yeasts according to their effect on the relative
growth of all 16 filamentous fungi (most antagonistic
yeast ranked as “1”; least antagonistic isolated as “40”)
(not shown). Based on both measures, the overall aver-
age relative growth and the average rank for all filament-
ous fungi, the same six yeast isolates were identified as
having the highest antagonistic activity (APC 1.2:
Metschnikowia pulcherrima, APC 12.1: Hanseniaspora
sp., SHA 17.2: Cyberlindnera sargentensis, NBB 7.2.1: A.
pullulans, FGA 2.2: C. subhashii, APC 10.11 B: Pichia
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quantified (in quadruples)

Fig. 1 Example of the binary competition assay that was used to quantify the interactions of 40 yeast isolates with 16 filamentous test fungi.
Competition assays were performed by quantifying the growth area of a filamentous fungus (e.g., the plant pathogen Gibberella fujikuroi BC 8.14)
on control plates (left) and in the presence of a yeast isolate (e.g., C. subhashii, right). Overall, 640 competition assays were carried out and

Kluyveri). In 10 interactions with filamentous fungi, M.
pulcherrima (APC 1.2) was the most antagonistic yeast
isolate among those tested here (average relative growth
of 0.1, average rank of 1.9). Although the two most an-
tagonistic yeast isolates were obtained from apple (APC
1.2 and APC 12.1), overall the results indicated weaker
antagonism of yeasts isolated from apple as compared to
the isolates obtained from soil samples (Fig. 2b). Com-
paring the average relative growth of each filamentous
fungus in the presence of yeasts from soil (17 isolates)
or from apple (19 isolates) documented this finding: as
compared to the apple yeasts, soil yeasts more strongly
reduced the growth of all tested filamentous fungi
(Fig. 2c). The overall relative growth of the 16 filament-
ous fungi ranged from 0.3 to 0.9 (average 0.6) and
above-ground plant pathogens (e.g., M. tassiana, F. gra-
mineaurm, F. poae, M. fructicola, F. langsethiae, F.
crookwellense, A. eichhorniae) were generally more sensi-
tive to inhibition by yeasts than soil fungi (Fig. 2c). Fast-
growing, saprophytic soil fungi such as Mucor circinel-
loides, Mucor moelleri, and the soil pathogen R. solani
were least inhibited in their growth by yeasts.

Physiological characteristics of strongly antagonistic
yeasts from soil or apple

The six overall strongest antagonists comprised three
yeasts from apple (APC 1.2: M. pulcherrima; APC 12.1:
Hanseniaspora sp.; APC 10.11 B: P. kiuyveri) and soil
each (SHA 17.2: C. sargentensis; NBB 7.2.1: A. pullulans;
FGA 2.2: C. subhashii). In order to identify common and
distinguishing characteristics that may affect the poten-
tial as biocontrol agents, these six most antagonistic
yeasts were further characterized with respect to their
growth requirements.

All six yeast isolates grew well at temperatures up to
30 °C and two isolates, one isolate each from apple and
soil (APC 11.10 B: P. kluyveri; FGA 2.2: C. subhashii, re-
spectively), were able to multiply at 37 °C (Fig. 3a).
Microarray phenotype analysis, using the Biolog YT
MicroPlate™, revealed a broader metabolic versatility of
the three soil yeasts as compared to the three isolates
obtained from the apple phyllosphere (Fig. 3b). Most
noteworthy were a number of di-, tri- and tetrasacchar-
ides (e.g., maltose, melebiose, palatinose, sucrose, malto-
triose, melezitose, raffinose, stachyose) that were
assimilated and/or oxidized by at least one soil yeast,
while none of these carbon sources were utilized by any
of the three yeast isolates obtained from the apple phyl-
losphere. In particular the two yeasts A. pullulans (NBB
7.2.1) and C. subhashii (FGA 2.2) assimilated and/or oxi-
dized a large number of compounds (34 and 20, respect-
ively), including different acids (e.g., acetic, formic,
aspartic, fumaric, malic acids) (Fig. 3b). In contrast, P.
Kluyveri (APC 11.10 B) only grew with glucose and M.
pulcherrima (APC 1.2) and Hanseniaspora sp. (APC
12.1) only showed detectable growth with 9 and 11 car-
bon sources, respectively. Interestingly, however, the
phyllosphere yeast M. pulcherrima, as well as C. subha-
shii and A. pullulans, were able to utilize N-acetyl-
glucosamine (GlcNac), a component of bacterial and
fungal cell walls and insect exoskeletons. The broad
metabolic versatility observed, for example for A. pullu-
lans, did not go along with the ability to grow with root
exudates as the sole source of nutrients (Fig. 3c). Aureo-
basidium pullulans (NBB 7.2.1) and Hanseniaspora sp.
(APC 12.1) did not grow solely in root exudates (0.1%).
In contrast, P. kluyveri (APC 11.10 B), which grew only
in the presence of glucose in the phenotype microarray
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Fig. 2 Binary competition assays identify strongly antagonistic yeasts with potential for biocontrol applications. a The average relative growth
(four replicates) of 16 filamentous fungi in the presence of 40 different yeasts was log,-transformed and all data were clustered (correlation
measure based distance (uncentered), complete linkage). Colours (see legend) range from strong inhibition (—8; dark blue), via no effect (white) to
strong growth promotion (8; dark pink). Missing data are indicated by grey squares. b The overall average relative growth of filamentous fungi
(over all 16 test strains used in this study) in the presence of each yeast isolate. The strain S. cerevisiae BY4741 is included as a reference. ¢ The
average relative growth of each filamentous fungus (average of relative growth in presence all apple or soil yeast isolates). Data obtained with
yeasts that were isolated from the apple phyllosphere or from soil are marked in red and yellow, respectively

analysis, was able to multiply in 0.1% (w/w) mung bean root
exudate. Of the six yeast isolates tested here, the soil isolate
SHA 17.2 of C. sargentensis grew best in root exudates.

Candida subhashii is an abundant soil fungus
One of the overall strongest antagonists was C. subha-
shii, a species that has previously only been described in
a patient sample in Canada and was considered a human
pathogen [45]. During our collection of fungal isolates
from Swiss agricultural samples, C. subhashii was repeat-
edly isolated from agricultural soil and from commer-
cially available potting substrates. In one of the latter, C.
subhashii constituted approx. 50,000 CFU per gram of
soil and was the fourth most frequent taxon based on
ITS barcode sequencing (data not shown). To further
confirm that the C. subhashii soil isolate was indeed the
same species as the clinical isolate, the mitochondrial
genome of the Swiss C. subhashii isolate was sequenced
(available at NCBI under the accession number
KX781248) and phylogenetic analyses were performed.
The mitochondrial genome sequence of the C. sub-
hashii soil isolate FGA 2.2 was identical to the C.
subhashii type strain (FR 392/CBS 10753), except that
the former had an insertion of 135 bp in a non-
coding region between two genes (bases 15,872 to
16,006 in the assembly of FGA 2.2). Consequently,
the FGA 2.2 mitochondrial genome exhibited the
same peculiarities as the corresponding genome of
the type strain: exceptionally high GC content
(52.7%), a lack of introns in coding sequences, and
telomere-like termini of the linear molecules. A max-
imum likelihood phylogenetic tree of seven mitochon-
drial proteins (Atp6, Atp8, Atp9, Cob, Coxl, Cox2,
Cox3) revealed the C. subhashii sequences as a group
basal to the C. parapsilosis/C. albicans/C. tropicalis
cluster, within the CTG clade. The CTG clade com-
prises the majority of Candida species and forms a
monophyletic group of yeasts that exhibit a genetic
code transition, causing the codon CTG to be trans-
lated as serine instead of leucine [60-62] (Fig. 4).
Based on these results it was concluded that the two
C. subhashii isolates indeed belong to the same spe-
cies, are virtually identical despite the vastly different
sources of origin, and that soil is a natural habitat of
C. subhashii.

Discussion

Soil yeasts are generally more antagonistic and
metabolically versatile than apple phyllosphere yeasts
Our competition experiments indicated that, on aver-
age and under the in vitro conditions tested here,
yeasts isolated from soil suppress filamentous fungi
more strongly than phyllosphere yeasts. This was the
case irrespective of whether the filamentous fungus
was isolated from soil or the phyllosphere, or if it
was a pathogen or saprophyte. Furthermore, the com-
parison of three strongly antagonistic yeasts from soil
and from the apple phyllosphere suggested a higher
metabolic diversity of soil yeasts.

Due to rapidly fluctuating temperatures, low humidity,
scarce nutrient availability, and UV irradiation, the phyl-
losphere is considered a harsh environment [63], but
likely features a lower niche complexity as compared to
soil. Consequently, interspecific competition between
phyllosphere microorganisms is strong and favours the
evolution of antagonistic activities to ward off competing
microbes. Soil, in contrast, is a highly heterogeneous and
rich habitat with a plethora of niches and thus hosts a
complex microbiome [64]. In addition to environmental
factors and interspecific competition, plants release root
exudates and thereby also shape the microbial commu-
nity in the rhizosphere [6, 65, 66]. The ability to
metabolize root exudates may thus indicate adaptation
of the corresponding yeast to soil. Indeed, soil yeasts
were able to grow in the presence of various sugars and
organic acids (e.g., maltose, sucrose, raffinose, acetic, for-
mic, aspartic, fumaric, malic acids) that have been de-
tected in root exudates of higher plants [67], while the
tested, strongly antagonistic phyllosphere yeasts were
unable to utilize these substrates. Nevertheless, the two
phyllosphere yeasts M. pulcherrima and P. kluyveri were
both able to multiply in root exudates, suggesting that
on one hand plants likely release factors that allow these
species to grow and that on the other hand M. pulcher-
rima and P. kluyveri may have the potential to colonize
the rhizosphere, even though they were usually isolated
from the phyllosphere. This finding is particularly rele-
vant with respect to potential biocontrol applications
against soilborne fungal pathogens, where rhizosphere
competence is a factor that can contribute to a success-
ful control [68-70].
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Binary competition assays identify strongly antagonistic
yeasts with potential for biocontrol

The dual culture assays employed here revealed the an-
tagonistic activity of 40 yeast isolates against 16 fila-
mentous fungi. The level of inhibition ranged from no
effect at all (even slight stimulatory activities were de-
tected in some interactions) to a growth reduction of
more than 80% as compared to growth on the control
plates (in the absence of yeasts). The most strongly in-
hibitory yeasts were M. pulcherrima, Hanseniaspora sp.,
C. sargentensis, A. pullulans, C. subhashii, and P.

kluyveri. Except for C. subhashii, these species, or close
relatives thereof, are known antagonists and have been
implicated in the biological control of plant pathogenic
fungi in the past. The general nature of the antagonistic
activity observed under the experimental conditions
used here suggests that yeasts inhibited filamentous
fungi based on their strong competitiveness for micro-
and/or macro-nutrients or due to indirect effects, which
is an advantageous property for a potential biocontrol
agent. Further studies will have to reveal the mode of
antagonism and to decipher the contribution of
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competition, indirect effects of metabolites, or specific
antagonistic factors, in each interaction, in more detail.
In the experiments described here, M. pulcherrima
was the overall most strongly antagonistic yeast. Pul-
cherrimin, an iron-binding pigment produced by M. pul-
cherrima, is believed to mediate this antagonistic activity
against other fungi [71-74]. In the past, M. pulcherrima
has been studied as an antagonist of fruit rot diseases
(for example caused by Alternaria alternata, B. cinerea,
P. expansum) (31, 75, 76] and a related species, M. fruc-
ticola, is being used for postharvest biocontrol applica-
tions against storage diseases of sweet potatoes and
carrots [77]. A strong antagonistic activity against soil-
borne fungal pathogens and species of Fusarium has not
been reported. Hanseniaspora species are widespread
and frequent in the environment, mostly studied with
respect to their occurrence on grapes and winemaking,
and their antagonistic activity against green mould of
citrus or B. cinerea was shown [78-82]. Cyberlindnera
sargentensis (synonym Williopsis sargentensis) belongs to
a genus of yeasts that have been shown to promote plant

growth, produce volatile sulphur compounds, and kill
other fungi or bacteria via killer proteins [83-88]. The
basidiomycetous yeast A. pullulans is a cosmopolitan
species that is used in biotechnology and acts as an an-
tagonist against fungal and bacterial plant pathogens
such as postharvest diseases or fire blight [25, 89-95].
Pichia kiuyveri and related species (e.g., Wickerhamo-
myces anomalus, P. fermentans, etc.) are widely studied
with respect to wine fermentation as well as biological
control, mostly of fungal postharvest diseases of fruits
[30, 96-101].

Besides the identification of known antagonists (as
well as at least one new antagonist; C. subhashii), this
study also identified soilborne pathogens and several Fu-
sarium species as new, potential targets of antagonistic
yeasts. The results presented also suggest that yeast an-
tagonism is an isolate-/species-specific property and lit-
tle dependent on the target organism: a strongly
antagonistic yeast exhibits this activity against a broad
range of fungi. This finding has important implications
for using and studying such yeasts with respect to their
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application in biocontrol. For example, it may be more
promising to optimize the activity of demonstrably
strong antagonists than isolating “new” antagonists for
each pathogenic fungus to be controlled. An intriguing
possibility for optimizing the activity of biocontrol or-
ganisms are communities of compatible strains that may
achieve better control of plant pathogens than single
strains. Initial experiments with mixtures of weakly an-
tagonistic yeasts show that such synergistic effects can
indeed be observed (data not shown). With respect to
research, these results emphasize the need to study and
reveal modes of antagonism that will enable translating
strong antagonistic activity in the laboratory to an effect-
ive and reliable control in the field. Reliable, biological
assays, but also 3rd generation DNA sequencing tech-
nologies and bioinformatics tools that have become
available as of late, are the foundations for characterizing
potential biocontrol strains and for identifying modes of
antagonism goal-oriented and rapidly.

Candida subhashii is an antagonistic soil fungus

Among the strongly antagonistic yeasts, C. subhashii
was the least studied species and not described as an an-
tagonist of saprophytic and pathogenic, filamentous
fungi. In fact, C. subhashii was considered a human
pathogen because it has been isolated from a patient
sample [45]. Nevertheless, it must be noted that only
one case report of a C. subhashii infection exists: a pa-
tient on a long-term peritoneal dialysis treatment devel-
oped a peritonitis that was ascribed to a C. subhashii
infection and successfully treated with fluconazole,
ampicillin, and amoxicillin [45]. Whether or not C. sub-
hashii can indeed colonise and cause symptoms in a
healthy mammalian host has not been tested. The ther-
motolerance (growth at 37 °C) of C. subhashii, also ob-
served for the isolates described here and for an isolate
similar to C. subhashii described from Japan [46], is a re-
quirement for human pathogenicity, but many isolates
exhibiting this property, more frequently found within
the Ascomycota than the Basidiomycota, have not yet
been described as mammalian, let alone human patho-
gens [102].

Here, C. subhashii was repeatedly isolated from soil
samples and from commercially available potting sub-
strates, where it occurred in large concentrations
(among the most frequent fungi in potting substrate:
approx. 50,000 CFU per gram of substrate, the fourth
most frequent taxon based on ITS barcode sequen-
cing (data not shown)). In addition, C. subhashii was
highly competitive against different soil fungi, metab-
olized carbohydrates commonly found in the rhizo-
sphere, and grew in root exudates as well as on roots
and in soil. The metabolic profile of the Swiss C.
subhashii isolate FGA 2.2 was comparable to the one
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of Candida sp. NY7122, a pentose-fermenting soil
yeast that is similar to C. subhashii and that was iso-
lated from a Japanese soil. However, the latter isolate
was able to assimilate L-arabinose and D-xylose [46],
which was not the case for C. subhashii FGA 2.2
under the conditions tested here. Based on these re-
sults it was concluded that soil is the natural habitat
for C. subhashii, where this species is a common and
competitive organism. Specifically, the particular large
number of C. subhashii cells in potting substrate,
comprised of white and black peat (of European ori-
gin), suggests that either or both of these components
are a natural reservoir of this antagonistic soil yeast.

The extremely high similarity of the mitochondrial ge-
nomes of the Swiss and clinical (Canadian) C. subhashii
isolates is surprising and unexpected, particularly when
considering the vastly different origins of the two iso-
lates. However, identical or almost identical mitochon-
drial genomes have also been reported, for example, in
Penicillium isolates from Spain and China, respectively,
and may indicate a rapid, global spread of one particular
isolate of C. subhashii [103]. On the other hand, the
identical mitochondrial genomes are in contrast to stud-
ies reporting considerable intra-species variation in size,
intron content, and recombination in fungal mitochon-
drial genomes [104—106]. At present, it is not clear why
the C. subhashii mitochondrial genome is so conserved
and future studies will have to address the conservation
and evolution of the mitochondrial genome in more de-
tail as well as reveal the entire genome sequence of C
subhashii as a basis for identifying genes mediating an-
tagonistic functions.

Conclusions

The work presented here combines a broad screening of
the antagonistic activity of naturally occurring yeasts
against saprophytic and pathogenic filamentous fungi
with growth analyses to compare the metabolic potential
of the most antagonistic yeasts. Among the most
strongly antagonistic yeasts were M. pulcherrima, A.
pullulans, Hanseniaspora sp., C. sargentensis, P. kluyveri
and C. subhashii. Competition assays indicated that the
antagonistic activity of yeasts is an inherent property of
particular yeast isolates and species and little dependent
on the interacting filamentous fungus. Among the
strongly antagonistic yeasts, soil yeasts were generally
more antagonistic and metabolically versatile as com-
pared to yeasts isolated from the phyllosphere. The iden-
tification of C. subhashii as a strongly antagonistic soil
yeast is particularly noteworthy, because previously the
natural habitat of this species was unknown and it was
described, in one publication, as a human pathogen. The
results presented here thus define C. subhashii as a com-
mon and competitive soil yeast.
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