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airway epithelial cell apoptosis through an
ERK signalling-mediated mitochondria
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Background: Mycoplasma ovipneumoniae (M. ovipneumoniae) is a species of Mycoplasma bacteria that specifically
infects sheep and goat, causing ovine infectious pleuropneumonia. However, the mechanism underlying the
pathogen-host interaction between M. ovipneumoniae and airway epithelial cells is unknown.

Methods: A primary air-liquid interface (ALI) epithelial culture model generated from the bronchial epithelial cells
of Ningxia Tan sheep (ovis aries) was employed to explore the potential mechanism of M. ovipneumoniae-induced
cell apoptosis by characterizing the production of reactive oxygen species (ROS), methane dicarboxylic aldehyde

(MDA) and anti-oxidative enzymes, as well as the mitochondrial membrane potentials, cytochrome C release, and

activities of ERK and caspase signalling pathways.

Results: Increased ROS production and MDA concentration with mitochondrial membrane dysfunction and
apoptotic cell death but decreased expression of the antioxidant enzymes catalase (CAT), glutathione synthetase
(GSS), total superoxide dismutaes (T-SOD) and Mn-SOD were observed in sheep airway epithelial cells infected with
M. ovipneumoniae. Mechanistically, the M. ovipneumoniae-induced cell apoptosis and disruption of mitochondrial
integrity reflected mechanisms by which pathogen-activated mitogen-activated protein kinase (MAPK) signalling
sequentially led to mitochondrial damage and release of Cyt-C into the cytoplasm, which in turn triggered the
activation of caspase signalling cascade, resulting in the apoptosis of host cells.

Conclusions: These results suggest that M. ovipneumoniae-induced ROS and MAPK signalling-mediated mitochondrial
apoptotic pathways might play key roles in the pathogenesis of M. ovipneumoniae infection in sheep lungs.
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Background

Mycoplasma pneumonia (M. ovipneumoniae) is a species
of mycoplasma bacteria that specifically infect both
sheep (Ovis aries) and goats. Since these bacteria were
first isolated from the lung tissue of sheep with lung ad-
enoma in 1963 [1], the mechanisms underpinning its
pathogenesis have been extensively investigated. Studies
have been demonstrated that airway epithelial cells are
the main targets of M. ovipneumoniae infections and
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that these cells play an important role in host-pathogen
interactions and the pathogenesis of mycoplasma infec-
tions in the lung, beyond their roles as the first line of
physical barriers in defending against microbial infec-
tions and environmental stresses [2, 3]. In this context,
airway epithelial cells maintain local immune homeosta-
sis by producing cytokines and mucoproteins [4]. In
mycoplasma infections, the adhesion of the pathogens to
airway epithelial cells is the first key step towards infec-
tion, through which mycoplasma bacteria gain the ability
to escape from clearance host immune responses [5].

A compelling body of evidence suggests that the meta-
bolic products of mycoplasma cells induce significant
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oxidative damage, cell pathological changes and apop-
tosis by producing a large amount of H,O, after they ad-
hered to host epithelial cells [6—12]. Under physiological
conditions, the host cells can balance the metabolism of
oxygen-free radicals through defence mechanisms [13].
However, under pathological circumstances, oxidative
stress caused by excessive oxygen free-radicals might
lead to cell injury by mechanisms involved in mitochon-
drial dysfunction [14, 15] and the reduction of activities
of antioxidant enzymes, including superoxide dismutase
(SOD) [16], catalase (CAT) [17, 18] and glutathione syn-
thetase (GSS) [19, 20]. The increased production of re-
active oxygen species (ROS) [21-23] and methane
dicarboxylic aldehyde (MDA) [24] are often accompan-
ied with oxidative stress. Thus, a disruption of various
signal transduction pathways is the main underlying
mechanism of cell injury [25-29]. Among these signal-
ling pathways, mitogen-activated protein kinase
(MAPK)/extracellular signal-regulated kinase (ERK) sig-
nalling is a well-studied pathway involving the regulation
of oxidative stress-induced cell apoptosis and cell dam-
age [30, 31].

ERK is a member of the mitogen-activated protein ki-
nases (MAPKs) signalling cascade families, which in-
cludes the ERK1 and ERK2 subunits, with respective to
the molecular weights of 44 and 42 kD [32]. ERK1 and
ERK2 share 90 % homology and use the same substrate
in vitro. These enzymes can be activated through phos-
phorylation by different extracellular irritants, such as
mitogen, growth factors and oxidative stress [33]. The
ERK signalling pathway plays a key role in the regulation
of multiple cell functions, including cell proliferation,
survival, apoptosis and migration [34]. In addition, several
lines of evidence have suggested that the ERK signalling
pathway could be activated in response to cell damage by
oxidative stress in airway epithelial cells [35-37]. Mechan-
istically, oxygen-free radicals induce mitochondrial dam-
age, accompanied with a release of cytochrome C (Cyt-C)
into the cytoplasm, in which Cyt-C activates caspases,
such as caspase-9 and caspase-3, eventually promoting
cell apoptosis [38—40]. However, the BCL-2 family mem-
bers are mitochondrial membrane anti-apoptotic proteins
involved in the transformation of the mitochondria trans-
membrane potential [41]. The main anti-apoptotic pro-
teins of BCL-2 family, such as Bcl-2 and Bcl-x], inhibit the
release of Cyt-C and protect cells from apoptosis by inhi-
biting the activation of caspases acting as downstream sig-
nals of Cyt-C. Notably, the activation of pro-apoptotic
proteins also damages the structure and function of mito-
chondria [42]. Cell apoptosis could be induced by decreas-
ing the expression and inactivation of ERK1/2, and by
causing alterations in the expression of apoptosis-related
genes. For example, an increased expression and activa-
tion of ERK1/2 delays the onset of apoptosis and increases
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the expression of Bcl-xl [43]. In contrast, the inhibition of
ERK1/2 activity and expression could down-regulate the
expression of the anti-apoptotic homologues Bcl-2 and
Bcl-xl, although there is no effect on the expression of the
pro-apoptotic protein Bak [44].

These results suggest that pathogen-induced oxidative
stress is key for the pathogenesis of mycoplasma infec-
tion. Thus, we hypothesized that MAPK/ERK signalling
might be involved in the cell death induced by M. ovip-
neumoniae infection in sheep airway epithelial cells.
Therefore, we tested this hypothesis and examined the
pathogen-host interaction of M. ovipneumoniae cells
and normal sheep bronchial airway epithelial cells using
an air-liquid interface (ALI) culture model. The results
showed that an M. ovipneumoniae infection could in-
duce oxidative stress and mitochondrial dysfunction in
part through the MAPK/ERK signalling pathway in
sheep airway epithelial cells.

Results

The cell death and mitochondrial dysfunction of sheep
airway epithelial cells induced by M. ovipneumoniae
infection

Upon cell death and plasma membrane damage, lactate
dehydrogenase (LDH) is rapidly released into the cell
culture medium, therefore accessing the free LDH used
to quantify cell death in response to M. ovipneumoniae
infection [45]. Compared with the uninfected control,
the dose-dependent cytotoxicity of sheep airway epithe-
lial cells was observed in response to M. ovipneumoniae.
Consistent with our previous findings [27], 71.26 % of
cell death was determined in sheep ALI airway epithelial
cells infected by M. ovipneumoniae at an MOI of 100
(Fig. 1a). Importantly, the increased dose-dependent cell
death was inversely correlated with a decreased mito-
chondrial membrane potential in M. ovipneumoniae-in-
fected sheep airway epithelial cells based on the results
of the JC-1 assay, which assesses the integrity of the
mitochondrial membrane (Fig. 1b). JC-1 is a fluorescent
probe for testing mitochondrial membrane potential.
Compared with uninfected control cells, the fluorescent
intensity ratios (red/green) of JC-1 in airway epithelial
cells were decreased 3.76, 8.85 and 12.55 %, with in-
creased M. ovipneumoniae infection at an MOI of 1, 10
and 100, respectively (Fig. 1b). Mechanistically, a decline
in the mitochondrial membrane potential has been sug-
gested as a symbolic event during early periods of apop-
tosis [46].

Effect of M. ovipneumoniae infection on the production of
MDA and SOD

We next investigated whether the observed mitochondrial
dysfunction resulted from oxidative stress induced by M.
ovipneumoniae infection. To this end, we examined the
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Fig. 1 Impact of M. ovipneumoniae infection on the cell death and mitochondrial membrane potential of sheep airway epithelial cells. Sheep
airway epithelial cells cultured on an air-liquid interface model were apically infected with 1, 10 and 100 MOI of M. ovipneumoniae (MO) at 37 °C
for 24 h. The cell viability was detected in terms of a LDH assay (a) and the mitochondrial membrane potential was determined using a potential-sensing
fluorescent probe (JC-1) (b). a The percentage of cell death of ALl sheep airway epithelial cells infected with the indicated doses of MO, and a
dose-dependent cell death was induced by MO infections. b Mitochondrial membrane potential (AYm) of airway epithelial cells infected with
indicated dose of MO, and the fluorescence intensity of both mitochondrial JC-1 monomers (Aex 514 nm, Aem 529 nm) and aggregates (\ex 585 nm,
Aem 590 nm) were measured. The mitochondrial AWYm of airway epithelial cells were calculated as the fluorescence ratio of red over green. The
mitochondrial AYm decreased with increasing MOI of infection. Data were expressed as the means + SD of three independent experiments, and each
experiment had six replicated ALI cultures (N = 18). Compared with the uninfected controls, *: p < 0.05; **: p < 0.01. The cell numbers of each transwell
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production of MDA and SOD, using MDA as an indicator
of lipid peroxidation and a marker for oxidative stress.
SOD is an important antioxidant enzyme that induces dis-
proportionation by catalysing the superoxide anion, which
could serve as an anti-oxidative marker. As expected, M.
ovipneumoniae infection induced MDA generation and
markedly increased MDA production by 30.2 % in cells in-
fected with M. ovipneumoniae at an MOI of 100 com-
pared with the uninfected control (Fig. 2a), suggesting
that M. ovipneumoniae infection induced lipid peroxida-
tion in sheep airway epithelial cells. In contrast, M. ovip-
neumoniae infection showed a dose-dependent decrease
in SOD activity and expression (Fig. 2b). Compared with
the control, M. ovipneumoniae infection at an MOI of 100
reduced the total SOD (T-SOD) activity by 22.6 % (Fig. 2b).
In addition, the MDA/SOD ratio, an index of oxidative
stress, was also dramatically increased with infection in a
dose-dependent manner (Fig. 2c). Because Mn-SOD is a
major antioxidant enzyme of T-SOD, distributed primarily
throughout the mitochondrial matrix [47], the expression
of Mn-SOD was also examined. Consistent with this no-
tion, the Mn-SOD protein was significantly reduced in
sheep airway epithelial cells following M. ovipneumoniae
infection (Fig. 2d). These data suggest that M. ovipneumo-
niae can induce lipid peroxidation and oxidative stress in
sheep airway epithelial cells.

The effect of M. ovipneumoniae infection on the
production of CAT and GSS

Increased cellular ROS levels can damage proteins,
lipids, and nucleic acids and reduce the activities of
various antioxidant enzymes, such as CAT. Hence, we

determined the activities of CAT in airway epithelial cells
treated with M. ovipneumoniae. Compared with uninfected
cells, a 10.4 % decrease in CAT activity was observed in air-
way epithelial cells infected with M. ovipneumoniae at an
MOI of 100 (Fig. 3a). Moreover, glutathione synthetase
(GSS), another antioxidant enzyme, was reduced in re-
sponse to the increased ROS concentration. As expected,
these results showed that the expression of GSS protein
was significantly reduced in epithelial cells following an M.
ovipneumoniae infection (Fig. 3b).

RAS/MEK/ERK is involved in sheep airway epithelial cells
in response to M. ovipneumoniae infection

Accumulating evidence has shown that M. ovipneumo-
niae induces oxidative stress in airway epithelial cells.
Previous studies have revealed that increased ROS pro-
duction could induce oxidative stress [48] and impact
the regulation of the RAS/MEK/ERK signalling pathway
[49]. Thus, we next examined whether the ERK signal-
ling was involved in M. ovipneumoniae-induced ROS
generation. The airway epithelial cells were infected with
M. ovipneumoniae at an MOI of 100 in the presence or
absence of PD980025 (an ERK inhibitor). The ROS levels
were detected using 2’,7'-dichlorofluorescein diacetate
(DCFH-DA). The results showed that M. ovipneumoniae
infection significantly increased ROS production in ALI
cultures, while PD980025 markedly inhibited M. ovipneu-
moniae-induced ROS production (Fig. 4a), suggesting that
the ERK signalling was involved in M. ovipneumoniae-
induced ROS generation. In order to further understand
the underlying mechanism of RAS/MEK/ERK signalling
in airway epithelial cells in response to M. ovipneumoniae
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Fig. 2 Effects of M. ovipneumoniae infections on the production of MDA and SOD in sheep airway eplthehal cells. Sheep airway epithelial cells
cultured on an air-liquid interface model were apically infected with 1, 10 and 100 MOI of M. ovipneumoniae (MO) at 37 °C for 24 h, the levels of
MDA and SOD were measured using appropriate kits. a A dose-dependent increase of MDA production was observed in cells infected with MO.
b A dose-dependent decrease of total-SOD (T-SOD) level of airway epithelial cells was induced by the MO infection. ¢ A significant increase in
the MDA/SOD ratio in sheep airway epithelial cells infected with MO. d A representative image of immunoblot showing the reduced expression
of Mn-SOD protein in ALI cultures infected with MO (MOI = 100) (top panel) compared with the uninfected cells, which was significantly different
as determined based on the value of densitometric arbitrary units (A.U.) calculated as the densitometric signal of Mn-SOD protein over that of the
corresponding B-actin internal control (bottom panel). Data were expressed as the means £ SD from three independent experiments, and each
experimental had six replicated ALl cultures (N = 18) in a-c. Compared with the uninfected controls, *: p < 0.05; **: p < 0.01. The cell numbers of
each transwell with diameter of 24 mm was determined as 10’
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Fig. 3 Effects of M. ovipneumoniae infections on CAT activity and GSS expression. Sheep airway epithelial cells cultured on an air-liquid interface
model were apically infected with 1, 10 and 100 MOI of M. ovipneumoniae (MO) at 37 °C for 24 h, and the activities of CAT and GSS expression
were determined. a A dose-dependent decrease of CAT activity was observed in airway epithelial cells infected with MO. b A representative
image of immunoblot showed the reduced expression of GSS protein in ALl cells infected with MO (MOI = 100) (top panel) compared with the
uninfected cells, which was significantly different based on the value of densitometric arbitrary units (A.U.), which was calculated based on densitometric
signal of GSS protein over that of the corresponding (3-actin internal control (bottom panel). Data were expressed as the means + SD from three
independent experiments, with each experimental had six replicated ALl cultures (N=18) in A. Compared with the uninfected controls,
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24 h, and the production of ROS was measured by a fluorometrical assay using DCFH-DA dye (a), and changes in the expression of key molecules
of the MEK/ERK signalling pathway was assessed using an immunoblotting method. a An infection of MO led an increased production of ROS in
airway epithelial cells, which could be partially inhibited by MEK/ERK signalling inhibitor PD980025. b An immunoblotting assay revealed an
evoked expression of RAS, RAF, p-RAF, MEK, p-MEK, ERK and p-ERK proteins in cells infected with MO, and this induction was inhibited PD980025
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infection, an immunoblotting assay was employed to ana-
lyse the RAS, RAF phosphorylated-RAF (p-RAF), MEK,
p-MEK, ERK and p-ERK proteins in airway epithelial cells
in the presence or absence of NAC (a ROS scavenger) or
PD980025 (Fig. 4b and c). The results showed that M.
ovipneumoniae could activate the phosphorylation of
RAS, MEK and ERK, while the presence of NAC or
PD980025 remarkably inhibited the activation of phos-
phorylated RAS, MEK and ERK. These data clearly sug-
gest that the activation of the RAS/MEK/ERK signalling
pathway plays a major role in sheep airway epithelial cells
in response to M. ovipneumoniae infection, which also im-
pacts the increased ROS production in sheep airway epi-
thelial cells following M. ovipneumoniae infection.

Sheep airway epithelial cell apoptosis induced by M.
ovipneumoniae infection

In order to further reveal the potential molecular mechan-
ism underlying the mitochondria damage of sheep airway
epithelial cells induced by M. ovipneumoniae infection,

the changes in BCL-2 family proteins and downstream
Cyt-C and caspase signalling cascades were evaluated by
an immunoblotting assay [41, 42]. The immunoblots
showed that M. ovipneumoniae infections significantly
inhibited the expression of Bcl-2, Bcl-xl and Bak but that
it did not alter the expression of Bad (Fig. 5a and b). Inter-
estingly, the addition of the ROS scavenger NAC signifi-
cantly increased Bcl-2 and Bcl-xl protein levels, regardless
of M. ovipneumoniae infection, suggesting that the M.
ovipneumoniae-inhibited the expression of BCL-2 family
members in part by producing ROS in airway epithelial
cells (Fig. 5a and b). In addition, BCL-2 family members
are downstream genes of the ERK signalling pathway;
thus, we examined the effect of M. ovipneumoniae-acti-
vated phosphorylated ERK on the expression of BCL-2
family proteins. Interestingly, the presence of the ERK in-
hibitor PD980025 restored the expression of BCL-2 family
members following M. ovipneumoniae infection in sheep
airway epithelial cells (Fig. 5a and b), indicating that M.
ovipneumoniae induces mitochondrial dysfunction by
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Fig. 5 Induction of the expression of BCL-2 family in sheep airway epithelial cells infected with M. ovipneumoniae. Sheep airway epithelial cells
cultured on an air-liquid interface model were apically infected with M. ovipneumoniae (MO) at an MOI of 100 for 24 h, changes in the expression
of BCL-2 family members was assessed using an immunoblotting assay. a Representative images of immunoblots of indicated proteins, revealed
an evoked expression of pro-apoptotic proteins Bad, Bcl-2, Bcl-xl and Bak, and the MO-induced expression of these proteins could be diminished
by MEK/ERK signalling PD980025 or ROS scavenger NAC. b Semi-quantitative analysis of the expression of proteins in (a) by evaluating relative
densitometric densities using arbitrary units (A.U)), calculated based on the densitometric signal of a protein of interest over that of the corresponding

inhibiting the anti-apoptosis proteins, Bcl-2 and Bcl-xl,
through mechanisms involving ROS production and the
ERK signalling pathway.

The release of Cyt-C is another hallmark of mitochon-
drial dysfunction and cell apoptosis [39], immunoblotting
analysis also showed a strikingly increased abundance of
Cyt-C in airway epithelial cells following M. ovipneumo-
niae infection, and the addition of NAC or PD980025
significantly decreased Cyt-C release (Fig. 6a and b).
Consequently, increased cytosol Cyt-C triggers the acti-
vation of the caspase cascade and cell apoptosis [40].
Immunoblot analysis showed that M. ovipneumoniae
infection significantly increased the expression of p35-

caspase-9 and pl7-caspase-3 and decreased the ex-
pression of p32-caspase-3 (Fig. 7a and b). In contrast,
the expression of p35-caspase-9 increased, but the ex-
pression of pl7-caspase-3 and p32-caspase-3 de-
creased in the presence of ROS scavenger NAC (Fig. 7a
and b). Similarly, the decreased expression of p35-
caspase-9 and p32-caspase-3 was observed in cells ex-
posed to the ERK inhibitor PD980025 (Fig. 7a and b).
These data suggest that M. ovipneumoniae infection
could induce the release of Cyt-C into the cytoplasm
and activate caspase-9 and caspase-3 signalling cas-
cades through mechanisms involving ROS production

and ERK signalling pathways.
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Fig. 6 Induction of the expression of Cyt-c in sheep airway epithelial cells infected with M. ovipneumoniae. Sheep airway epithelial cells cultured on an
air-liquid interface model were apically infected with M. ovipneumoniae (MO) at an MOI of 100 for 24 h, changes in the expression of mitochondrial
Cyt-c were assessed by an immunoblotting assay. a Representative images of immunoblots of Cyt-c and B-actin, revealed an increased release of Cyt-c
in cells infected with MO, and the increased level of Cyt-c was reduced in the presence of MEK/ERK signalling PD980025 or ROS scavenger NAC.

b Semi-quantitative analysis of the expression of proteins in (a) by evaluating relative densitometric densities using arbitrary units (A.U.), which was
calculated with densitometric signal of a protein of interest over that of the corresponding (-actin internal control
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Discussion

We previously described MyD88-dependent toll-like re-
ceptor (TLR) signalling induced by M. ovipneumoniae in
sheep airway epithelial cells [27]. In the present study,
we examined the underlying mechanism of airway epi-
thelial cell death induced by M. ovipneumoniae infection
using an ALI culture model. The results showed that M.
ovipneumoniae infection induces ROS production, cell
death and mitochondrial membrane dysfunction and in-
creased MDA concentration but decreased the expres-
sion of antioxidant enzymes CAT, GSS, T-SOD and Mn-
SOD. Mechanistically, the M. ovipneumoniae-induced
cell death and mitochondrial dysfunction in part reflected
mechanisms by which the pathogen activates RAS/MEK/
ERK signalling, leading to mitochondrial damage and
Cyt-C release into the cytoplasm, which in turn triggers
the activation of the caspase signalling cascade, eventu-
ally leading to host cell apoptosis.

In the present study, an ALI culture model generated
using primary sheep bronchial epithelial cells was
employed to assess the pathogen-host interaction be-
tween M. ovipneumoniae and airway epithelial cells. The
epithelial cells cultured in an ALI status fully differenti-
ated into distinct epithelial cell types and formed a pseu-
dostratified epithelium comprising tight junctions. The
apical cell surface represented an environment compar-
able to the airway lumen in vivo [27, 50]. By using this
novel model, the mechanism of M. ovipneumoniae-in-
duced oxidative stress in sheep airway epithelial cell was
explored. In the present context, M. ovipneumoniae in-
duced the generation of ROS and reduced the expression

and activity of antioxidant enzymes, including T-SOD,
Mn-SOD, CAT and GSS, suggesting that oxidative stress
was induced by M. ovipneumoniae in sheep airway epi-
thelial cells. For example, Mn-SOD is one of the primary
defence substances in mitochondria and is located in the
mitochondrial matrix. Notably, reduced Mn-SOD activ-
ity is correlated with the lack of mitochondrial defence
[47]. Therefore, a decreased mitochondrial membrane
potential in airway epithelial cells following the M. ovip-
neumoniae infection suggests that the pathogen induces
oxidative stress to injure mitochondria, which sequen-
tially triggers a mechanism of mitochondrial damage.
Similarly, the MDA is a marker of lipid peroxide, which
reduces member fluidity and induces cell apoptosis [51].
Consistent with this notion, the increased concentration
of MDA and ROS was observed in cells infected with M.
ovipneumoniae, accompanied with the reduced expres-
sion and inactivation of antioxidant enzymes, as well as
the dysfunction and disruption of the mitochondrial
membrane structure in host cells, evidenced by a de-
creased mitochondrial membrane potential.

The BCL-2 family members are closely related to
mitochondrial membrane integrity, of which Bcl-2 and
Bcl-xl are anti-apoptotic factors of this family. In the
present study, the expression of Bcl-2, Bcl-xl and Bak in
sheep airway epithelial cells was inhibited in cells infected
by M. ovipneumoniae, indicating that an apoptotic event
might occur in these infected cells [42, 52]. Bak is an inter-
esting member of the BCL-2 family, which can exert both
pro-apoptotic and anti-apoptotic roles in a cell context-
dependent manner [53]. The reduced expression of Bak in
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M. ovipneumoniae-infected cells might suggest that this
enzyme plays an anti-apoptotic role in the M. ovipneumo-
niae-induced mitochondrial damage mechanism. In order
to investigate whether M. ovipneumoniae-induced oxida-
tive stress impacts the expression of BCL-2 family pro-
teins, cells infected with M. ovipneumoniae were treated
with the ROS scavenger NAC. Interestingly, M. ovipneu-
moniae-reduced the expression of Bcl-2 and Bcl-xl pro-
teins in airway epithelial cells, and this expression was
restored after the addition of NAC. Notably, M. ovipneu-
moniae infection did not significantly alter the expression
of Bad, likely reflecting the location of Bad in epithelial
cells, as this protein was not consistently located on mito-
chondria in a cell type-dependent context and could be
activated and translocated to mitochondria [42].

The transformation of the mitochondrial membrane
potential can convert the transformation of the mem-
brane permeability [46] through a mechanism involving
the release of cytochrome C (Cyt-C) [38] and the activa-
tion of the caspase 3/9 cascade [39, 40]. In the present
study, the increased release of Cyt-C and activation of
caspase3/9 signalling were observed in M. ovipneumo-
niae-infected sheep airway epithelial cells, suggesting
that a mitochondria-related signalling pathway was in-
volved in the M. ovipneumoniae-induced apoptosis of
epithelial cells. Equally noteworthy, the release of Cyt-C
and activation of caspase 3/9 reflected M. ovipneumo-
niae-induced oxidative stress, consistent with evidence
that the ROS scavenger NAC could suppress Cyt-C re-
lease and caspase-3 activation in M. ovipneumoniae-in-
fected airway epithelial cells. However, NAC had no
effect on caspase-9 activation, consistent with a previous
study showing that the activation of caspase-9 was not
dependent on the concentration of cytoplasmic Cyt-C
[54]. Therefore, these findings suggested that the M.
ovipneumoniae-induced mitochondrial damage most
likely depended on the levels of cytoplasm cytochrome
C in airway epithelial cells.

In addition, mitochondrial signalling occurs down-
stream of the ERK signalling pathway. Therefore, targeting
ERK signalling might impact the mitochondria-related
apoptotic signalling pathway. Indeed, the inhibition of
ERK signalling using PD980025 restored the expression
of anti-apoptotic BCL-2 family proteins, and suppressed
Cyt-C release and caspase 3/9 activation in M. ovipneu-
moniae-infected sheep airway epithelial cells. Together
with evidence that ROS activates ERK signalling and M.
ovipneumoniae infection activates the RAS/MEK/ERK
signalling pathway, these data suggested that the mito-
chondria signalling pathway was mediated by the RAS/
MEK/ERK signalling in sheep airway epithelial cells in
response to M. ovipneumoniae infections.

Interestingly, glycerol metabolism has been implicated
in the generation of H202 and ROS in many mycoplasma
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species [9-11, 55]. However, there are no data concerning
the involvement of glycerol metabolism in the production
of ROS and H,0, for M. ovipneumoniae, although the
genome sequence of the M. ovipneumoniae SC1 strain
was completed in 2011 [56]. Thus, the role of glycerol me-
tabolism in M. ovipneumoniae-induced oxidative stress
warrants further investigation in the future.

Conclusions

In the present study, we attempted to uncover the
mechanism underlying the pathogen-host interaction be-
tween M. ovipneumoniae and sheep airway epithelial
cells using an ALI culture model. The results demon-
strated a mechanism of cell death-regulated signalling
pathways in mitochondria of airway epithelial cells in re-
sponse to Mycoplasma infections (Fig. 8) [57], by which
a M. ovipneumoniae infection could induce oxidative
stress by increasing production of ROS and lipid peroxi-
dation, and the inhibition of antioxidant enzyme activity
in airway epithelial cells. Mechanistically, M. ovipneumo-
niae bacteria activate RAS/MEK/ERK signalling, which
disrupted the integrity of mitochondrial membrane
through the reduction of the expression of BCL-2 family
anti-apoptotic proteins, increasing the release of Cyt-C
and activating the caspase signalling cascade, thus se-
quentially inducing cell apoptosis.

Methods

Propagation of Mycoplasma Ovipneumoniae

The M. ovipneumoniae Queensland Strain Y98 [58] was
obtained from the China Institute of Veterinary Drug
Control (Beijing, China). As previously described [58],
the mycoplasma bacterium was cultured and propagated
in a mycoplasma broth containing mycoplasma broth
base CM403, supplement-G SR59 (OXOID, Hampshire,
UK), 0.5 % glucose, and 0.002 % phenol red at 37 °C in
1 % CO,. The titre of M. ovipneumoniae culture was de-
termined based on the metabolic activity of the bacterial
cells in the medium, presented as a colour change unit
(CCU)/mL [59]. The CCU assay is accurate and compar-
able to traditional colony formation units (CFU) on agar
plates for the titration of mycoplasma species, although
the results of this assay might provide a higher estimate
of cell numbers, consistent with the DNA content of the
cell pellet and published genome sizes [60, 61]. Prior to
use, the bacterial cells were washed three times in PBS
in order to minimize the effects of potential contami-
nants originating from the culture medium (e.g., LPS or
other molecules).

In vitro ALI culture of sheep bronchial epithelium and
infection

The present study was approved by the ethics committee
for the use of animals at Ningxia University. The bronchi
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of Chinese Tan sheep (O. aries) (1.5 to 2.0 years old) were
obtained from a local slaughterhouse. Despite the need for
consent is deemed unnecessary according to national reg-
ulations, an informed verbal consent was obtained from
the sheep owners. The ethics committee for the use of ani-
mals of Ningxia University approved this study. The ALI
culture of airway epithelial cells was generated as previ-
ously described [27]. Briefly, the bronchus was longitudin-
ally opened after the muscle and vascular tissues were
removed and washed in ice-cold 1 % Pen Strep—1.0 g/mL
fungizone PBS. Then, the bronchial specimens were incu-
bated in a tube filled with epithelial cell dissociation buffer
(DMEM Pen Strep—fungizone medium containing
1.5 mg/mL pronase and 10 pg/mL DNase I) at 4 °C for
24-36 h, with rotation during dissociation. The enzymatic
dissociation was terminated by adding FBS at a final con-
centration of 10 %, and the epithelial cells were then col-
lected by centrifugation at 500¢ for 10 min at 4 °C as
previously described [4]. The cell pellet was re-suspended
in DMEM 5 % FBS, followed by incubating the cells on
tissue culture plates (Primera; Becton-Dickinson Labware,
Franklin Lakes, NJ) for 2—4 h in 5.5 % CO, at 37 °C for
the adhesion of fibroblasts, after which the non-adherent
cells were collected by centrifugation and re-suspended in
Bronchial Epithelial cell Growth Medium (BEGM) (Lonza,
Basel, Switzerland). The number of total cells was deter-
mined using a haemocytometer counting chamber. In
vitro, ALI cultures of sheep bronchial epithelial cells
were cultured previously described [50]. Briefly, the

polycarbonate/polyester porous (0.4 pM pores) trans-
well membranes (PCF Millicell inserts, Millipore, Bed-
ford, MA) were pre-coated with 60 pg/mL of type I rat
tail collagen (BD Biosciences, San Jose, CA, USA). Ap-
proximately 1x 10° cells were seeded into a 0.6 cm?
Millicell insert membrane, and subsequently the inserts
were incubated in BEGM medium (containing 5 % FBS)
in the apical and basolateral compartment of a 24-well
plate at 37 °C in 6 % CO, for approximately 18-24 h.
Then, the membranes were washed with pre-warmed
PBS to remove unattached cells and re-fed with BEGM
medium and cultured for 2 additional days. To establish
an air-liquid interface, 2 % Ultroser G (USG) medium
(Pall, Port Washington, NY, USA) was added to the
basolateral side of the chamber. The medium was
refreshed twice a week, and the top of the membrane
culture remained visibly dry. The polarized and highly
differentiated airway epithelial cell layer was achieved
after 2 weeks of ALI culture. For a 2.4-cm diameter
Millicell insert membrane, 1 x 10" well-differentiated epi-
thelial cells were determined [50]. A well-differentiated
4-week ALI culture was used for infection. For infec-
tion, M. ovipneumoniae cells were suspended, diluted in
2 % Ultroser G medium, and applied on the apical sur-
face of ALI epithelial cells for infection at the indicated
time periods, and an equal volume of 2 % Ultroser G
medium was used as an uninfected control. Volumes of
0.5 and 0.1 mL were employed to cover the wells at di-
ameters of 2.4 and 1.2 cm, respectively.
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LDH assay

Cell death was measured using a lactate dehydrogenase
(LDH) assay based on the detection of the LDH released
from injured cells. Mechanistically, LDH can oxidize lac-
tate to generate NADH, which in turn reacts with INT,
determined as a yellow coloured substrate with max-
imum absorbance at 450 nm (Beyotime Company,
Jiangsu, China). The 6-week ALI cultures were infected
at a multiplicity of infection (MOI) of 1, 10 and 100 per
M. ovipneumoniae cell through the application of bac-
terial cells on the apical surface of cultures for 24 h and
then incubated with LDH staining solution at 37 °C for
1 h. Then, the supernatant was used to examine the rela-
tive LDH activity using a Tecan Safire 5 microplate
reader (450 nm).

Mitochondrial membrane potential (MMP) assay

The integrity of the mitochondrial membrane was evalu-
ated based on the mitochondrial membrane potential
(MMP) using a JC-1 fluorescent probe. In normal cells,
JC-1 exists as a monomer (green) in the cytosol and ac-
cumulates as aggregates (red) in mitochondria through
the induction of higher MMP. In apoptotic and necrotic
cells, JC-1 remains in the monomeric form and stains as
green fluorescence in the cytosol. The 6-weeks ALI cul-
tures were infected with MOI of 1, 10 and 100 of M.
ovipneumoniae by applying the bacterial cells on the ap-
ical surface for 24 h and then incubated with JC-1
(Beyotime Company, Jiangsu, China) staining solution
(5 pg/mL) at 37 °C for 20 min. The fluorescence inten-
sity of both mitochondrial JC-1 monomers (Aex 514 nm
and Aey, 529 nm) and aggregates (A 585 nm and Ay,
590 nm) was detected using a Tecan Safire 5 microplate
reader. The AY,, of the cells was calculated as the fluor-
escence ratio of red to green.

Measurement of MDA and SOD

The MDA concentration was determined using a thio-
barbituric acid (TBA) test as previously described [62].
MDA reacts with TBA to form MDA-(TBA), a red ad-
duct with a maximum absorbance at 532 nm (Beyotime
Company, Jiangsu, China). For the MDA measurement,
the cell lysates were added to the MDA detection solu-
tion and boiled for 15 min, followed by centrifugation at
1000 g for 10 min. Then, the supernatant was used to
examine the relative MDA units using a Tecan Safire 5
microplate reader at a wavelength of 532 nm. Total SOD
(T-SOD) activity was detected using SOD assay kits ac-
cording to the manufacturer’s instructions (Beyotime
Company, Jiangsu, China). Briefly, the cell lysates were
mixed with nitroblue tetrazolium (NBT) and enzyme
working solutions and incubated at 37 °C for 20 min.
The absorbance of T-SOD was recorded at 560 nm using
a Tecan Safire 5 microplate reader.
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Measurement of CAT

CAT activity was analysed according to the manufac-
turer’s instructions (Beyotime Company, Jiangsu, China).
The samples were treated with excessive hydrogen per-
oxide and incubated for 5 min. Then the hydrogen per-
oxide not decomposed by CAT was coupled with a
substrate to produce N-4-antipyryl-3-chloro-5-sulfonate-
p-benzoquinone-monoimine after peroxidase treatment,
which has an absorption maximum of 520 nm. The
CAT unit was defined as the amount of enzyme that cat-
alysed 1 pM of H,O, to H,O and O, per min at 25 °C.

ROS assay

The concentration of ROS was fluorometrically moni-
tored using DCFH-DA. The cells were treated with
MEK inhibitor PD980025 (Sigma, USA) for 24 h prior to
M. ovipneumoniae infection at an MOI of 100 through
the application of the bacterial cells on the apical sur-
face, followed by incubation at 37 °C overnight in 24-
well plates. After the membranes were washed three
times with PBS, DCFH-DA was diluted in fresh phenol
red-free DMEM to a final concentration of 5 uM and in-
cubated with the cells at 37 °C for 20 min. The chemi-
cals were then removed, and the cells were washed three
times. Relative ROS units were determined using a
Tecan Safire 5 microplate reader (Aex 485 nm and Aem
530 nm). Changes in the ROS concentration were
expressed as a percentage over the control.

Immunoblotting analysis

Whole cell extracts were prepared by homogenizing cells
in lysis buffer (50 mM Tris—HCI, pH 7.5, 5 mM EDTA,
150 mM NacCl, and 0.5 % NP-40) for 60 min on ice. The
soluble protein concentration was measured with Bio-
Rad Protein Assay (Bio-Rad Laboratories, Richmond,
CA, USA). The resulting clarified lysates (100 pg) were
separated using 8 % or 10 % sodium dodecyl sulphate
(SDS)-polyacrylamide gel (SDS-PAGE) and transferred
to nitrocellulose membranes for immunoblotting assay
against antigen-specific antibodies. The membrane was
blocked with 5 % fat-free dry milk in PBS containing
0.2 % Tween-20, and probed with antibodies against the
protein of interest. The antibodies used in the present
study included rabbit anti-SOD2, rabbit anti-RRAS,
rabbit anti-RAF1, rabbit anti-ERK1/2, rabbit anti-BAK,
rabbit anti-BAD, rabbit anti-BCL2, rabbit anti-Caspase
3, rabbit anti-Caspase 9, rabbit anti-Cytochrome c (Cyt-C)
(Proteintech Group, Campbell Park, Chicago, USA), rabbit
anti-phosphorylated Rafl (p-Rafl), rabbit anti-MEK1/2,
rabbit anti-phosphorylated MEK1/MEK2 (p-MEK1/2),
rabbit anti-phosphorylated ERK1/2 (p-ERK1/2) (Signalway
Antibody, MD, USA), rabbit anti-GSS (ABGENT, San
Diego, USA) and mouse anti-B-actin. These primary anti-
bodies were applied at a dilution of 1:1000. Following
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extensive washing, the membranes were incubated with
an appropriate HRP-labelled secondary antibody. The
blots were then developed using the enhanced Western
Bright ECL reagent (Advansta, Menlo Park, CA, United
States). The levels of protein expression were semi-
quantified by optical densitometry using Image] Software
version 1.46 (http://rsb.info.nih.gov/ij/). The ratio between
the net intensity of each sample divided by the p-actin in-
ternal control was calculated as a densitometric arbitrary
unit (A.U.), which served as an index of the relative ex-
pression of the protein of interest.

Statistical analysis

The data were obtained from at least three independent
experiments for each experimental condition and presented
as the means + standard deviation (SD). The statistical
significance was analysed using one-way ANOVA,
followed by Tukey’s multiple comparison test.

Additional file

Additional file 1: Original images of immunoblots for Figure 4B and
Figure 5A. (PDF 860 kb)

Abbreviations

A.U. Arbitrary unit; ALI: Air-liquid interface; BEGM: Bronchial epithelial cell
Growth Medium; CAT: Catalase; CCU: Colour change unit; Cyt-C: Cytochrome
C; DCFH-DA: 2',7"-dichlorofluorescein diacetate; ERK: Extracellular signal-
regulated kinase; GSS: Glutathione synthetase; LDH: Lactate dehydrogenase;
MAPKs: Mitogen-activated protein kinases; MDA: Methane dicarboxylic
aldehyde; MMP: Mitochondrial membrane potential; MO: M. ovipneumoniae/
Mycoplasma ovipneumoniae; MOI: Multiplicity of infection; NAC: N-acetyl-L-
cysteine; NBT: Nitroblue tetrazolium; p-ERK1/2: phosphorylated ERK1/2;
p-MEK1/2: phosphorylated MEK1/MEK2; p-Raf1: Phosphorylated Raf1;

ROS: Reactive oxygen species; SD: Standard deviation; SDS: Sodium dodecyl
sulfate; SDS-PAGE: (SDS)-polyacrylamide gel; SOD: Superoxide dismutase;
TBA: Thiobarbituric acid; TLR: Toll-like receptor; T-SOD: Total SOD;

USG: Ultroser G

Acknowledgements

The authors thank Mr. Fuyang Song for technical assistance with the
cytometric analysis, and Ms. Hui Yang and Ms. Jin Zeng for valuable
discussions and assistance.

Funding

This work was financially supported by the National Key Basic Research
Program of China (973 Program) (nos. 2012BAD12B07 and 2012CB518801)
and the National Natural Science Foundation of China (nos. 31572494 and
31460660). The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Availability of data and materials
All the data supporting our findings are contained within the article and its
Additional file 1.

Authors’ contributions

YL, XL and YW conceived and designed the experiments; YL, ZJ, DX and GD
analysed the data and drafted the manuscript; YL, ZJ and ML performed the
experiments and acquired the data; and YW and XL interpreted the data and
critically revised the manuscript. All authors read and approved the final
version of the manuscript.

Competing interests
The authors declare that they have no competing interests.

Page 11 of 13

Consent for publication
Not applicable.

Ethics approval and consent to participate

The experiments involving sheep were performed according to protocols
approved by the Institutional Animal Care and Use Committee of Ningxia
University (NXU-2014-007). The need for consent is deemed unnecessary
according to national regulations, but an informed verbal consent was
obtained from the sheep owners. The ethics committee for the use of
animals of Ningxia University approved this study.

Author details

'Key Laboratory of Ministry of Education for Conservation and Utilization of
Special Biological Resources in the Western, Yinchuan, Ningxia 750021, China.
“College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China.
*Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, the General
Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China.

Received: 12 February 2016 Accepted: 17 September 2016
Published online: 23 September 2016

References

1. Mackay J, Nisbet D, Foggie A. Isolation of pleuropneumonia-like organisms
(Genus Mycoplasma) from case of sheep pulmonary adenomatosis (SP A).
Vet Rec. 1963;75(21):550-1.

2. Eckerle |, Ehlen L, Kallies R, Wollny R, Corman VM, Cottontail VM, Tschapka
M, Oppong S, Drosten C, Muller MA. Bat airway epithelial cells: a novel tool
for the study of zoonotic viruses. PLoS One. 2014;9(1):e84679.

3. Olson N, Hristova M, Heintz NH, Lounsbury KM, van der Vliet A.
Activation of hypoxia-inducible factor-1 protects airway epithelium
against oxidant-induced barrier dysfunction. Am J Physiol Lung Cell Mol
Physiol. 2011;301(6):L993-L1002.

4. Liu X, Luo M, Zhang L, Ding W, Yan Z, Engelhardt JF. Bioelectric properties
of chloride channels in human, pig, ferret, and mouse airway epithelia. Am J
Respir Cell Mol Biol. 2007;36(3):313-23.

5. Jones GE, Keir WA, Gilmour JS. The pathogenicity of Mycoplasma
ovipneumoniae and Mycoplasma arginini in ovine and caprine tracheal
organ cultures. J Comp Pathol. 1985;95(4):477-87.

6. Abdul-Wahab OM, Ross G, Bradbury JM. Pathogenicity and cytadherence of
Mycoplasma imitans in chicken and duck embryo tracheal organ cultures.
Infect Immun. 1996;64(2):563-8.

7. Hatchel JM, Balish MF. Attachment organelle ultrastructure correlates with
phylogeny, not gliding motility properties, in Mycoplasma pneumoniae
relatives. Microbiology. 2008;154(Pt 1):286-95.

8. Bischof DF, Janis C, Vilei EM, Bertoni G, Frey J. Cytotoxicity of Mycoplasma
mycoides subsp. mycoides small colony type to bovine epithelial cells. Infect
Immun. 2008;76(1):263-9.

9. Maenpuen S, Watthaisong P, Supon P, Sucharitakul J, Parsonage D, Karplus
PA, Claiborne A, Chaiyen P. Kinetic mechanism of L-alpha-glycerophosphate
oxidase from Mycoplasma pneumoniae. FEBS J. 2015;282(16):3043-59.

10.  Pritchard RE, Balish MF. Mycoplasma iowae: relationships among oxygen,
virulence, and protection from oxidative stress. Vet Res. 2015;46:36.

11.  Pritchard RE, Prassinos AJ, Osborne JD, Raviv Z, Balish MF. Reduction of
hydrogen peroxide accumulation and toxicity by a catalase from
Mycoplasma iowae. PLoS One. 2014,9(8):e105188.

12. Szczepanek SM, Boccaccio M, Pflaum K, Liao X, Geary SJ. Hydrogen peroxide
production from glycerol metabolism is dispensable for virulence of
Mycoplasma gallisepticum in the tracheas of chickens. Infect Immun.
2014,82(12):4915-20.

13. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals
and antioxidants in normal physiological functions and human disease. Int J
Biochem Cell Biol. 2007;39(1):44-84.

14. Ahmad S, White CW, Chang LY, Schneider BK, Allen CB. Glutamine protects
mitochondrial structure and function in oxygen toxicity. Am J Physiol Lung
Cell Mol Physiol. 2001;280(4):L.779-791.

15. Berman SB, Hastings TG. Dopamine oxidation alters mitochondrial
respiration and induces permeability transition in brain mitochondria:
implications for Parkinson'’s disease. J Neurochem. 1999;73(3):1127-37.

16. Chen JR, Weng CN, Ho TY, Cheng IC, Lai SS. Identification of the copper-zinc
superoxide dismutase activity in Mycoplasma hyopneumoniae. Vet Microbiol.
2000;73(4):301-10.


http://rsb.info.nih.gov/ij/
dx.doi.org/10.1186/s12866-016-0842-0

Li et al. BMC Microbiology (2016) 16:222

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.
33.

34.

35.

36.

37.

38.

Willekens H, Chamnongpol S, Davey M, Schraudner M, Langebartels C,
Van Montagu M, Inze D, Van Camp W. Catalase is a sink for H202 and
is indispensable for stress defence in C3 plants. EMBO J.
1997;16(16):4806-16.

Simmons WL, Dybvig K. Catalase Enhances Growth and Biofilm Production
of Mycoplasma pneumoniae. Curr Microbiol. 2015;71(2):190-4.
Avsian-Kretchmer O, Eshdat Y, Gueta-Dahan Y, Ben-Hayyim G. Regulation of
stress-induced phospholipid hydroperoxide glutathione peroxidase
expression in citrus. Planta. 1999;209(4):469-77.

Vitula F, Peckova L, Bandouchova H, Pohanka M, Novotny L, Jira D, Kral J,
Ondracek K, Osickova J, Zendulkova D, et al. Mycoplasma gallisepticum
infection in the grey partridge Perdix perdix: outbreak description,
histopathology, biochemistry and antioxidant parameters. BMC Vet Res.
2011;7:34.

McCord JM, Fridovich I. Superoxide dismutase. An enzymic function for
erythrocuprein (hemocuprein). J Biol Chem. 1969,244(22):6049-55.

Bai F, Ni B, Liu M, Feng Z, Xiong Q, Shao G. Mycoplasma
hyopneumoniae-derived lipid-associated membrane proteins induce
inflammation and apoptosis in porcine peripheral blood mononuclear
cells in vitro. Vet Microbiol. 2015;175(1):58-67.

Ni B, Bai FF, Wei Y, Liu MJ, Feng ZX, Xiong QY, Hua LZ, Shao GQ.
Apoptosis induced by lipid-associated membrane proteins from
Mycoplasma hyopneumoniae in a porcine lung epithelial cell line with
the involvement of caspase 3 and the MAPK pathway. Genet Mol Res.
2015;14(3):11429-43.

Romieu |, Barraza-Villarreal A, Escamilla-Nunez C, Almstrand AC, Diaz-
Sanchez D, Sly PD, Olin AC. Exhaled breath malondialdehyde as a marker of
effect of exposure to air pollution in children with asthma. J Allergy Clin
Immunol. 2008;121(4):903-9. e906.

Gomersall AC, Phan HA, lacuone S, Li SF, Parish RW. The Mycoplasma
hyorhinis p37 Protein Rapidly Induces Genes in Fibroblasts Associated with
Inflammation and Cancer. PLoS One. 2015;10(10):20140753.

Majumder S, Zappulla F, Silbart LK. Mycoplasma gallisepticum lipid
associated membrane proteins up-regulate inflammatory genes in chicken
tracheal epithelial cells via TLR-2 ligation through an NF-kappaB dependent
pathway. PLoS One. 2014;9(11):e112796.

Xue D, Ma Y, Li M, Li Y, Luo H, Liu X, Wang Y. Mycoplasma ovipneumoniae
induces inflammatory response in sheep airway epithelial cells via a
MyD88-dependent TLR signaling pathway. Vet Immunol Immunopathol.
2015;163(1-2):57-66.

Thannickal VJ, Fanburg BL. Reactive oxygen species in cell signaling. Am J
Physiol Lung Cell Mol Physiol. 2000,279(6):.1005-1028.

Halliwell B, Whiteman M. Measuring reactive species and oxidative damage
in vivo and in cell culture: how should you do it and what do the results
mean? Br J Pharmacol. 2004;142(2):231-55.

Lee KE, Kim KW, Hong JY, Kim KE, Sohn MH. Modulation of IL-8 boosted by
Mycoplasma pneumoniae lysate in human airway epithelial cells. J Clin
Immunol. 2013;33(6):1117-25.

You X, Wu Y, Zeng Y, Deng Z, Qiu H, Yu M. Mycoplasma genitalium-
derived lipid-associated membrane proteins induce activation of MAPKs,
NF-kappaB and AP-1 in THP-1 cells. FEMS Immunol Med Microbiol.
2008;52(2):228-36.

Cobb MH. MAP kinase pathways. Prog Biophys Mol Biol. 1999;71(3-4):479-500.
Whitmarsh AJ, Davis RJ. Transcription factor AP-1 regulation by
mitogen-activated protein kinase signal transduction pathways. J Mol
Med (Berl). 1996;74(10):589-607.

Ramos JW. The regulation of extracellular signal-regulated kinase (ERK) in
mammalian cells. Int J Biochem Cell Biol. 2008;40(12):2707-19.

Whelchel A, Evans J, Posada J. Inhibition of ERK activation attenuates
endothelin-stimulated airway smooth muscle cell proliferation. Am J Respir
Cell Mol Biol. 1997;16(5):589-96.

Wesley UV, Bove PF, Hristova M, McCarthy S, van der Viiet A. Airway
epithelial cell migration and wound repair by ATP-mediated activation of
dual oxidase 1. J Biol Chem. 2007;282(5):3213-20.

Bae CH, Kim JS, Song SY, Kim YW, Park SY, Kim YD. Insulin-like growth
factor-1 induces MUC8 and MUC5B expression via ERKT and p38 MAPK
in human airway epithelial cells. Biochem Biophys Res Commun.
2013;430(2):683-8.

Arnoult D, Parone P, Martinou JC, Antonsson B, Estaquier J, Ameisen JC.
Mitochondrial release of apoptosis-inducing factor occurs downstream of

39.

40.

41.

42.

43.

45.

46.

47.

48.

49.

50.

51

52.

53.

54.

55.

56.

57.

58.

Page 12 of 13

cytochrome c release in response to several proapoptotic stimuli. J Cell Biol.
2002;159(6):923-9.

Garrido C, Galluzzi L, Brunet M, Puig PE, Didelot C, Kroemer G.
Mechanisms of cytochrome ¢ release from mitochondria. Cell Death
Differ. 2006;13(9):1423-33.

Slee EA, Harte MT, Kluck RM, Wolf BB, Casiano CA, Newmeyer DD,
Wang HG, Reed JC, Nicholson DW, Alnemri ES, et al. Ordering the
cytochrome c-initiated caspase cascade: hierarchical activation of
caspases-2, =3, =6, =7, =8, and —10 in a caspase-9-dependent manner.
J Cell Biol. 1999;144(2):281-92.

Goldsmith KC, Gross M, Peirce S, Luyindula D, Liu X, Vu A, Sliozberg M, Guo
R, Zhao H, Reynolds CP, et al. Mitochondrial Bcl-2 family dynamics define
therapy response and resistance in neuroblastoma. Cancer Res.
2012;72(10):2565-77.

Brunelle JK, Letai A. Control of mitochondrial apoptosis by the Bcl-2 family. J
Cell Sci. 2009;122(Pt 4):437-41.

Larbi A, Douziech N, Fortin C, Linteau A, Dupuis G, Fulop Jr T. The role of
the MAPK pathway alterations in GM-CSF modulated human neutrophil
apoptosis with aging. Immun Ageing. 2005;2(1):6.

Boucher MJ, Morisset J, Vachon PH, Reed JC, Laine J, Rivard N. MEK/ERK
signaling pathway regulates the expression of Bcl-2, Bcl-X(L), and Mcl-1 and
promotes survival of human pancreatic cancer cells. J Cell Biochem.
2000;79(3):355-69.

Parhamifar L, Andersen H, Moghimi SM. Lactate dehydrogenase assay
for assessment of polycation cytotoxicity. Methods Mol Biol.
2013;948:13-22.

Lizard G, Fournel S, Genestier L, Dhedin N, Chaput C, Flacher M, Mutin
M, Panaye G, Revillard JP. Kinetics of plasma membrane and
mitochondrial alterations in cells undergoing apoptosis. Cytometry.
1995;21(3):275-83.

Zelko IN, Mariani TJ, Folz RJ. Superoxide dismutase multigene family: a
comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD
(SOD3) gene structures, evolution, and expression. Free Radic Biol Med.
2002;33(3):337-49.

Green J, Rolfe MD, Smith LJ. Transcriptional regulation of bacterial virulence
gene expression by molecular oxygen and nitric oxide. Virulence.
2014;5(8):794-809.

Mendez-Samperio P, Perez A, Alba L. Reactive oxygen species-activated
p38/ERK 1/2 MAPK signaling pathway in the Mycobacterium bovis bacillus
Calmette Guerin (BCG)-induced CCL2 secretion in human monocytic cell
line THP-1. Arch Med Res. 2010;41(8):579-85.

Liu X, Driskell RR, Engelhardt JF. Stem cells in the lung. Methods Enzymol.
2006;419:285-321.

Xu X, LiuT, Zhang A, Huo X, Luo Q, Chen Z, Yu L, Li Q, Liu L, Lun ZR, et al.
Reactive oxygen species-triggered trophoblast apoptosis is initiated by
endoplasmic reticulum stress via activation of caspase-12, CHOP, and the
INK pathway in Toxoplasma gondii infection in mice. Infect Immun.
2012;80(6):2121-32.

Kumari A, Kakkar P. Lupeol prevents acetaminophen-induced in vivo
hepatotoxicity by altering the Bax/Bcl-2 and oxidative stress-mediated
mitochondrial signaling cascade. Life Sci. 2012,90(15-16):561-70.

Laulier C, Lopez BS. The secret life of Bcl-2: apoptosis-independent
inhibition of DNA repair by Bcl-2 family members. Mutat Res.
2012;751(2):247-57.

Zuo Y, Xiang B, Yang J, Sun X, Wang Y, Cang H, Yi J. Oxidative modification
of caspase-9 facilitates its activation via disulfide-mediated interaction with
Apaf-1. Cell Res. 2009;19(4):449-57.

Ferrarini MG, Siqueira FM, Mucha SG, Palama TL, Jobard E, Elena-Herrmann
B, Vasconcelos AT R, Tardy F, Schrank IS, Zaha A, et al. Insights on the
virulence of swine respiratory tract mycoplasmas through genome-scale
metabolic modeling. BMC Genomics. 2016;17(1):353.

Yang F, Tang C, Wang Y, Zhang H, Yue H. Genome sequence of
Mycoplasma ovipneumoniae strain SCO1. J Bacteriol. 2011;193(18):5018.
Rudel T, Kepp O, Kozjak-Pavlovic V. Interactions between bacterial
pathogens and mitochondrial cell death pathways. Nat Rev Microbiol.
2010;8(10):693-705.

Jones GE, Foggie A, Mould DL, Livitt S. The comparison and characterisation
of glycolytic mycoplasmas isolated from the respiratory tract of sheep. J
Med Microbiol. 1976,9(1):39-52.



Li et al. BMC Microbiology (2016) 16:222

59.

60.

61.

62.

Purcell RH, Taylor-Robinson D, Wong D, Chanock RM. Color test for the
measurement of antibody to T-strain mycoplasmas. J Bacteriol.
1966;92(1):6-12.

Stemke GW, Robertson JA. Comparison of two methods for enumeration of
mycoplasmas. J Clin Microbiol. 1982;16(5):959-61.

Shen Q, Li C, Feng Q, Sun Y, Ning Y, Zhu L, Wang F. Accurate titration of
mycoplasma culture measured by 50% color change unit assay. Wei Sheng
Wu Xue Bao. 2013;53(12):1347-52.

Winterbourn CC, Buss IH. Protein carbonyl measurement by enzyme-linked
immunosorbent assay. Methods Enzymol. 1999;300:106-11.

Page 13 of 13

Submit your next manuscript to BioMed Central
and we will help you at every step:

* We accept pre-submission inquiries

e Our selector tool helps you to find the most relevant journal

* We provide round the clock customer support

e Convenient online submission

e Thorough peer review

e Inclusion in PubMed and all major indexing services

e Maximum visibility for your research

Submit your manuscript at

www.biomedcentral.com/submit () BiolMed Central




	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Results
	The cell death and mitochondrial dysfunction of sheep airway epithelial cells induced by M. ovipneumoniae infection
	Effect of M. ovipneumoniae infection on the production of MDA and SOD
	The effect of M. ovipneumoniae infection on the production of CAT and GSS
	RAS/MEK/ERK is involved in sheep airway epithelial cells in response to M. ovipneumoniae infection
	Sheep airway epithelial cell apoptosis induced by M. ovipneumoniae infection

	Discussion
	Conclusions
	Methods
	Propagation of Mycoplasma Ovipneumoniae
	In vitro ALI culture of sheep bronchial epithelium and infection
	LDH assay
	Mitochondrial membrane potential (MMP) assay
	Measurement of MDA and SOD
	Measurement of CAT
	ROS assay
	Immunoblotting analysis
	Statistical analysis

	Additional file
	show [aa]
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	Author details
	References

