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Abstract

Background: Streptococcus agalactiae (GBS) is a common pathogen to infect newborn, woman, the elderly, and
immuno-compromised human and fish. 37 fish isolates and 554 human isolates of the GBS in 2007-2012 were
investigated in serotypes, antibiotic susceptibility, genetic difference and pathogenicity to tilapia.

Results: PCR serotyping determined serotype la for all fish GBS isolates and only in 3.2 % (3-4.2 %) human isolates.
For fish isolates, all consisted a plasmid less than 6 kb and belonged to ST7 type, which includes mainly pulsotypes
| and la, with a difference in a deletion at the largest DNA fragment. These fish isolates were susceptible to all
antimicrobials tested in 2007 and increased in non-susceptibility to penicillin, and resistance to clindamycin and
ceftriaxone in 2011. Differing in pulsotype and lacking plasmid from fish isolates, human serotype la isolates were
separated into eight pulsotypes lI-IX. Main clone ST23 included pulsotypes Il and lla (50 %) and ST483 consisted of
pulsotype lll. Human serotype la isolates were all susceptible to ceftriaxone and penicillin and few were resistant to
erythromycin, azithromycin, clindamycin, levofloxacin and moxifloxacine with the resistant rate of 20 % or less.
Using tilapia to analyze the pathogenesis, fish isolates could cause more severe symptoms, including hemorrhage
of the pectoral fin, hemorrhage of the gill, and viscous black and common scites, and mortality (>95 % for pulsotype 1)
than the human isolates (<30 %); however, the fish pulostype la isolate 912 with deletion caused less symptoms and

the lowest mortality (<50 %) than pulsotype | isolates.

Conclusion: Genetic, pathogenic, and antimicrobial differences demonstrate diverse origin of human and fish serotype
la isolates. The pulsotype la of fish serotype la isolates may be used as vaccine strains to prevent the GBS infection

in fish.
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Background

Streptococcus are pathogenic to cause streptococcal dis-
ease for humans and animals. Among Streptococcus spp.,
Gram-positive Streptococcus agalactiae (group B strepto-
coccus; GBS) is a normal human gastrointestinal and
genitourinary flora. Therefore, GBS infect more com-
monly the vaginas of women, especially more prevalent
in the pregnant woman than those of non-pregnant
woman [1] and causes early-onset or late-onset sepsis
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and meningitis in newborns. In fish, the major patho-
genic species that cause streptococcosis are S. agalactiae
(GBS), S. dysgalactiae, S. iniaee and Lactococcus gar-
vieae, which also infect human. Multiplex PCR has been
developed to differentiate these species and to identify
serotypes [2], especially the GBS serotypes [3, 4].
Streptococcosis is an important disease in fish. After
infection, fishes may suffer meningitis and septicemia in
common [5]; however, other syndromes may be associ-
ated with fish species [6]. Streptococcal infection has
been reported in rainbow trout in 1957 [7] and later on
in various fishes, including O. aura x O. nilotica hybrid
fish [8], Mugil cephalus L. 9], Anguilla japonica, Seriola
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quinqueradiata [10], Paralichthys olivaceus [11], Icta-
lurus punctatus [12], hybrid-striped bass (Morone chry-
sops x Morone saxatilis) [13], Sebastes schlegeli [6],
Seriola dumerili and S. lalandi [14]. Using antibiotics to
treat streptococcal infection in fish, resistance rate to
erythromycin, clarithromycin, and azithromycin was less
than 15 % for fish isolates [15]. Recently, human GBS
has gradually become resistant to clindamycin and
erythromycin and differed in resistance rate among
countries and sources [16, 17].

In GBS, pathogenicity to fish may be associated with
serotypes. For examples, serotypes serotype la is more
pathogenic than serotype III [18], serotype Ia and Ib
more prevalent in seafood [19], serotype Ib in Queens-
land grouper and serotype II in wild fish and stingrays in
Australia [20]. Genetic and plasmid variations may
change the host virulence and specificity. As diverse gen-
etic sources, plasmids have been found to carry genes for
drug resistance and virulence in various streptococcal spe-
cies [21-23]. Furthermore, GBS virulence to fish also de-
pends on environmental conditions, such as temperature
above 26 °C increases the GBS virulence to tilapia [24].
Recent study reported that an increase in temperature
from 28 to 35 °C cause near two-fold mortality in tilapia
and regulate the gene expression, such as up-regulation of
the proinflammatory genes for cyclooxygenase-2, II-1p
and TNF-a [25]. Recently, we reported the prevalence
change in serotypes and mutations in GyrA and ParC
causing fluoroquinolone resistance of GBS human isolates
[26, 27]. Genomic analysis of human and fish isolates sug-
gest transfer of GBS between human and fish [28].

To investigate the possible zoonotic infection of GBS,
serotypic, genomic and pathogenicity differences be-
tween human and fish GBS isolates collected from the
diseased fishes in aquaculture farms and patients from
nearby hospital.

Methods

Bacterial isolates and biochemical identification

Bacteria were isolated from diseased fishes, including
mullet (Mugil cephalus), tilapia (Oreochromis hybrids),
big-scale liza (Liza macrolepis), bass [Lates calcarifer
(giant seaperch), Bidyanus bidyanus (silver perch), Lateo-
labrax japonicus (Japanese seaperch), Morone saxatilis
(striped bass) and Scortum barcoo (Jade perch)] and other
species [Thunnus albacares (yellowfin), Acanthopagrus
schlegelii (blackhead seabream) and Epinephelus lanceola-
tus (brindle grouper)] in Lutsao, Dongshih, Yizhu, Budai
and Puzih of Chiayi county and Kouhu of Yulin county,
and Tainan County in 2007-2012. Bacterial species were
identified by Gram-staining, catalase testing, the Rapid ID
32 STREP system (Bio-Mérieux Inc, France), and PCR
amplification. 554 human isolates from 2007 to 2012 were
identified in Chiayi Chang Gung Memorial Hospital

Page 2 of 9

(CGMH) located at Puzih of Chiayi County near the cen-
ter of the fish farms. This study was approved by the
research ethics committee of CGMH (97-0077B and 99-
3958B). The protocols for fish experiment were performed
according to the guidelines of the Animal Use Protocol
and the Institutional Animal Care and Use Committee
(Protocol 97017) of the National Chiayi University.

PCR identification of bacterial species and serotypes of GBS
Single colony was taken into Brian Heart Infusion (BHI)
broth and total DNA was purified from overnight bac-
terial cultures using the Genomic DNA purification kit
(Quality Systems Inc., Taiwan). Primers for bacterial
identification are listed in Additional file 1: Table S1 and
were designed by the combination and modification of
previous primers [29]. The 25-ul PCR reaction mixture
contained 1X PCR buffer, 0.2 mM dNTPs, 1.5 mM
MgCl,, 0.2 uM primers, and 0.5 U Taq DNA polymer-
ase. The PCR conditions were as follows: predenatura-
tion at 94 °C for 2 min; 25 cycles of denaturation at 94 °
C for 30 s, annealing at 55 °C for 45 s, and extension at
72 °C for 45 s; and a final extension at 72 °C for 5 min.
Serotyping of the GBS isolates was performed according
to methods described previously [4]. PCR products were
separated by 0.5 % TBE and 1.5 % agarose at 50 V for
1.5 h. After staining with ethidium bromide, gel images
were taken under ultraviolent light illumination.

Antimicrobial susceptibility

Antibiotics that are commonly used in treatment of fish
and human infection included amoxicillin, azithromycin,
ceftriaxone, clindamycin, doxycycline, erythromycin, florfe-
nicol, levofloxacin, moxifloxacin, oxytetracycline, and tetra-
cycline. After adjusting the bacterial concentration to a 0.5
McFarland standard, the susceptibilities to these antibiotics
were determined by the disc method (BD BBL™ Sensi-
Disc™; BD Diagnostics, Franklin Lakes, NJ, USA) and the
guideline of CLSI standard [30]. Susceptibility to penicillin
was measured by the disc method (BD BBL™ Sensi-
Disc™; BD Diagnostics, Franklin Lakes, NJ, USA) and the
Etest’ (BioMérieux, Marcy-1'Etoile, France). Streptococcus
pneumonia ATCC49619 was used as the reference strain.

Genetic analysis of fish and human GBS serotype la isolates
The plasmid number was determined by the method of
Kado and Liu [31] with a minor modification of the lysis
buffer to 0.2 N NaOH and 1.5 % SDS and plasmid size
was estimated using 6.6- and 50-kb plasmids of S. Cho-
leraesuis strain OU7085. An 600-bp Sau3A plasmid
DNA fragment from fish isolate 886 was cloned and se-
quenced. The genotype of each isolate was determined
by PFGE analysis. Briefly, overnight bacteria were first
embedded in 0.8 % agarose. The plugs were treated with
lysozyme and then 1 mg/ml proteinase K at 50 °C. After
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washing with TE buffer, the plugs were digested with the
restriction endonuclease Smal. The macro-DNA frag-
ments were separated by CHEF DRIII (BioRad, Taiwan)
using a switching time of 4 s/70 s, 120°, and 6 V for 18 h
for the first step and then a switching time of 4 s/70 s,
120°, and 4 V for 6 h. Strains with a banding pattern
difference of more than three bands were designated dif-
ferent genotypes, and strains with at least one band dif-
ference were designated different subgenotypes [32].
MLST analysis of fish isolates were performed according
to the methods described earlier [33] and sequence types
(ST) were determined by the S. agalactiae MLST data-
base (http://pubmlst.org/sagalactiae/).

The virulence of human and fish GBS isolates to tilapia
Seven fish isolates (886, 900, 912, 948, 953-1, 954,
and 1004) and seven human isolates (G91, G108,
G110, and G116 of serotype Ia as well as G1, G78,
and G102 of serotype III) were used to investigate the
differences in pathogenicity to tilapia between these
human and fish isolates. Six tilapia fishes with the size
of 7-9 cm were randomly grouped. Each fish was in-
traperitoneally injected with approximately 1 x 10% cfu
bacteria, and a PBS injection was used as a control.
The death number of each group was recorded for
two weeks. In experiment I, we investigated the mor-
tality rate and symptoms of human and fish isolates
each group were recorded. In experiment II, we only
determined the mortality for the isolates atl4 days
after inoculation.

Results and discussion
Broad-host-range GBS can infect humans, fish and other
animals [34-36]. In Taiwan, Yulin and Chiayi counties
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are the major aquatic culture regions with bass, mullet
and tilapia as the primary fish, in which L. garvieae and
GBS are main pathogens. In this study, we analyzed gen-
etic and pathogenic differences of the GBS isolates from
a hospital and nearby cultured fish farms to investigate
the possible zoonotic transmission of GBS between fish
and human.

Serotype distribution of S. agalactiae fish and human
isolates

All 37 S. agalactiae isolates were mainly isolated in 2011
and belonged to serotype Ia identified by Multiplex PCR
(Fig. 1 and Table 1). These isolates were isolated from
various important cultured fishes, mainly from tilapia
(40.5 %), followed by bass (37.8 %), big scale liza (5.4 %),
mullet (8.1 %), and other species (8.1 %) (Table 2).
Among 554 human GBS isolates, these were only 20
serotype Ia isolates (3.6 %) with the prevalence of 3.8 %
(7/185) in 2007, 3.0 % (5/169) in 2008, 3.7 % (3/81) in
2011 and 4.2 % (5/119) in 2012 (Table 1). Serotype Ia
isolates were collected mainly from urine (65 %, 13/20),
followed by vagina and genital tract swab, and prefer to
infecting female than male (13 vs. 7) (Table 3), suggest-
ing that serotype Ia isolates were not the major serotype
to infect human and less invasive. Next, we investigated
the genetic relatedness and clonal dissemination of these
serotype Ia isolates.

Genotyping and MLST analysis of GBS human isolates

Phylogenetic relations between serotype Ia human and
fish isolates were investigated by three methods: PFGE,
plasmid and MLST analysis. PFGE analysis of Smal-
digested macro-fragments determined that all fish iso-
lates belonged to pulsotypes I (81.1 %), Ia (13.5 %), and

(AVM N 1
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Fig. 1 Gel electrophoresis of multiplex PCR products for serotyping (a) and plasmids (b). A. M: 100 bp size marker, N: negative control, Line 1 to 7
are seven fish isolates 886, 900, 912, 948, 953-1, 954, and 1004. Amplicon sizes of serotype la are 1826 and 521 bp. B. M: 6.6 and 50 kb plasmids
of Salmonella Choleraesuis isolate 7085. Lanes 1 to 7 are fish isolates 886, 948, 1004, 900, 912, 954, and 953-1. lane 8-11 are human isolates G9T,
G108, G110, and G115
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Table 1 Prevalence of human and fish Streptococcus agalactia serotype la isolates and their pulsotypes in four years
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Year 2007 2008 2011 2012 Total
Total fish isolates 7 23 7 37
Serotype la [N (%)] 7 (100) 23 (100) 7 (100) 37 (100)
Pulsotypes [N (%)]

| 6 (85.7) 19 (82.6) 5(714) 30 (81.1)

la 1(143) 4(174) 0(0) 5(135)

ND 0(0) 0(0) 2 (286) 2 (54)
Total human isolates 185 169 81 119 554
Serotype la [N (%)] 7(38) 530 337 542 20 (3.2)
Pulsotypes [N (%)]

Il 2 (286) 2 (40) 1(333) 2 (40) 7 (35)

lla 2 (286) 2 (40) 1(333) 5(25)

Ilb 1(14.3) 1(5

M1l 1(143) 1.5)

v 1(143) 105

Vv 1(20) 10

Y 1(333) 1(5)

Vil 1 (20) 1(5

Vil 1(20) 105

X 1(20) 105

non-typable (5.4 %) and size difference between pulso-
type I and Ia was observed in the largest DNA fragment,
possibly a 200-kb difference (Fig. 2, Table 2). None of
fish pulsotypes was identified in 20 human isolates,
which were separated into nine pulsotypes II-IX with
two major clones: pulsotypes II (5 isolates) and Ila (5
isolates) (Table 3). These results demonstrate clonal dis-
semination in fish and human isolates, which differed
genetically. All fish isolates contained a plasmid smaller
than 6 kb, which was not observed in human isolates

Table 2 Characterization of Streptococcus agalactiae fish isolates

tested (Fig. 1, Table 4). Sequence analysis of a plasmid
fragment identified a gene encoding plasmid recombin-
ation enzyme found in GBS (accession number YP_
001586274 and EFV96312) and on 4.1-kb plasmid
PER13 of Streptococcus thermophilus.

MLST analysis of the major pulsotypes of fish and hu-
man serotype la isolates identified that ST types dif-
fered between fish and human isolates: ST7 for all fish
isolates, ST23 for human pulsotypes II and Ila and
ST483 for pulsotype III (Table 3). ST7 is major

Fish species Place 2007 2011 2012 Number of each genotype Number of resistant isolates
| la ND Penicillin Ceftriazone Clindamycin
Mullet Chiayi 1 1 1/0/0° 0/0/1 0/0/0
Tainan 1 0/1/0 0/1/0
Tilapia Chiayi 2 8 3 2/7/3 0/1/0 0/4/0
Yunlin 2 2/0/0
Big scale liza Chiayi 1 1 0/1/0 0/0/1 0/0/1 0/0/1
Bass Chiayi 1 9 0/7/0 1/2/0 0/3/0 0/1/0
Yunlin 3 1 0/2/1 0/1/0
Other species Chiayi 1 1 1/0/1
Yunlin 1 0/1/0
Total 7 23 7 6/19/5 1/4/0 0/0/2 0/8/1 0/1/0 0/0/1

@1/0/0 means one isolates in 2007, and 0 in 2011 and 2012
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Table 3 Characteristics of 20 Streptococcus agalactiae la human isolates

Strain Year Sex Source® Pulsotype Resistance to®
Erythromycin Azithromycin Clindamycin Levofloxacin Moxifloxacin

G15 2007 M B I - - - + +
Go1 2007 F u lla - - - - -
G108 2007 M u lla - - - _ -
G110 2007 F U 1l + + + - -
G116 2007 M u Il - - - - -
G127 2007 M u v - - - - -
G176 2007 M U b - - - , ,
G233 2008 F u Il - - - + +
G268 2008 M U % - - - _ -
G335 2008 F U lla - - - - ,
G340 2008 F u lla - - - - -
G349 2008 M U \Y - - - B -
G645 2011 F OTH I - - - - _
G649 2011 F OTH \Y + + + - -
G656 2011 F GTS lla - - - _ -
G684 2012 F GTS X - - - - _
G741 2012 F u Il - - - - -
G764 2012 F U I - - - - -
G772 2012 F VA Vil + + + - -
G800 2012 F VA VIl - - + - _
Total resistant number [n (%)] 3 (15) 3(15) 4 (20) 2 (10) 2 (10)

?B blood, U urine, GTS genital tract swab, VA vagina, OTH others
b4 resistance, —: susceptible

pathogen to cause disease in tilapia in Asia and has Antibiotic susceptibility of human and fish serotype la
been reported in isolates from tilapia and human [37]. isolates

Genetic differences in ST type, pulsotype and plasmid  Multidrug resistant isolates have emerged due to the in-
imply that human and fish isolates may vary in patho- tensive culture of fishes and antimicrobial misuse to
genicity to tilapia. control bacterial infection. The antimicrobial resistance

12 34 56 7 M28 9 10 11 12 13 14 15 M

Fig. 2 Pulsed-field gel electrophoresis of Smal-digested macro-framents of S. agalactiae isolates. M: A-DNA marker. Line 1-7 are fish isolates 886,
900, 912, 943, 954, 953-1, and 1004. Line 8-15 are human isolates G91, G108, G110, and G116 of serotype la, G1 of serotype Ill, G12 of serotype V,
G13 of serotype VI, and G14 of serotype Ib

.
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Table 4 Characterization of human and fish isolates for fish cytotoxitity test
Source Strain Serotype MLST? Pulsotype Plasmid Resistance® to
Erythromycin Azithromycin Clindamycin

Fish 886 la ST7 | + - - -

900 ST7 I + - - -

912 ST7 la + - - -

948 ST7 | + - - -

953-1 ST7 I + - - -

954 ST7 I + - - -

1004 ST7 | + - - -
Human Go1 la ST23 I - - - -

G108 ST23 I - - - -

G110 ST483 MMl - + + +

G116 ST23 lla - - - -

GI1 Il ND Ib - - -

G78 ND v - + + +

G102 ND V - + +

@ND: Non-determined. All isolates were collected in 2007
b4 resistance, —: susceptible

patterns of Streptococcus spp. differed among mammals,
reptiles, amphibians and aquatic animals [15]. The anti-
microbial resistance of Streptococcus isolates ranged
from greater than 85 % resistance to spiramycin, enro-
floxacin, and clarithromycin to less than 60 % resistance
to erythromycin, azithromycin and amoxicillin. In this
study, all fish isolates were susceptible to amoxicillin,
doxycycline, oxytetracycline, florfenicol, levofloxacin,
and moxifloxacin. Previously, it was reported that the
disk diffusion methods using penicillin G disks could
not determine penicillin resistant GBS isolates [38]. In-
deed, MIC (mg/L) for penicillin tested against 34.8 % (8/
23) isolates with penicillin resistance determined by disk
method ranged from 0.16 to 0.23, 0.47, and 0.64 in 2011
compared to 0.25 mg/L of S. pneumonia ATCC49619 and
only one isolate was resistance to ceftriaxone, clindamy-
cin, and erythromycin. An increase of resistance to
erythromycin of macrolide, clindamycin of lincosamide,
and ceftriaxone and non-susceptible to penicillin that are
commonly used in human may be needed to concern.

In compared to other serotypes, serotype Ia isolates
were less resistance to antimicrobials tested and emerged
resistance to levofloxacin and moxifloxacin [26]. The hu-
man GBS Ia isolates were sensitive to penicillin and ceftri-
axone while human isolates were higher in resistance to
azithromycin, clindamycin, and erythromycin than fish
isolates (Tables 2 and 4). Simultaneous mutations in
the quinolone resistance-determining regions of gyrA
and parC were observed in two levofloxacin and moxi-
floxacin resistant isolates [27], which may be same
clone from different patients with identical genotypes
and antibiogram.

Pathogenicity analysis of S. agalactiae to tilapia

In tilapia, GBS infection frequently causes meningo-
encephalitis with high mortality [39]. Such infection oc-
curs while tilapia is over 20 g in weight and grows in the
condition of broodstock on-growing and market fish
[40]. Pathogenicity analysis to tilapia was performed
using 14 fish and human isolates, which characteristics
are listed in Table 4. Briefly, all seven fish isolates of pul-
sotypes I and Ia were almost identical genetically and
sensitive to azithromycin, erythromycin, and clindamy-
cin while seven human serotypes Ia and III differed in
ST types, pulsotypes, and resistance to azithromycin,
erythromycin, and clindamycin.

The symptom appearance in fish is strain- and serotype-
dependent. It has been reported that GBS serotype Ia
isolates are more pathogenic to tilapia than serotype III
isolates [18]. After infecting by GBS fish isolates, tilapia
showed three primary symptoms that were viscous black
and common ascites (25-91.7 %) being the most preva-
lent, hemorrhage of the gill (8.3-58.3 %) and hemorrhage
of the pectoral fin (8.3-50 %) (Table 5). Considering
symptom prevalence in tilapia for fish isolates, pulso-
type I isolate 900 was the most virulent, and pulsotype
Ia isolate 912 was the least virulent. In human isolates,
viscous black and common ascites, hemorrhage of the
gill and hemorrhage of the pectoral fin were occasionally
observed, for examples, only viscous black and common
ascites in one fish infected by serotype Ia isolates G91,
G108, and G110 and hemorrhage of the gill and
hemorrhage of the pectoral fin infected by serotype G1.

Early reports demonstrated that fish and human iso-
lates caused fish mortality differently. In contrast to the
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Table 5 Death and symptom number of tilapia response to seven serotype la fish isolates and seven serotype la and Il human

isolates
Bacterial Serotype Strain  Repeat® Symptom Mortality
Source Hemorrhage of ~ Hemorrhage Viscous black and ~ I? P
pectoral fin of gill common ascites
No. Mean No. Mean No. Mean (%) No. Mean Bacterial dose  Mean (%)
No. % No. % No. % (1x10° cfu)
Fish isolates Control 1 0/6 0/6 O 0/6 0/6 O 06 0/6 0 0/6 0/6 O 0 16.7+0
2 0/6 0/6 0/6 0/6
la 886 1 0/6 05/6 83 2/6 25/6 417 5/6 4/6 667 6/6 6/6 100 3.1-38 100+0
2 1/6 3/6 3/6 6/6
900 1 2/6 3/6 50 3/6 35/6 583 5/6 55/6 917 6/6 6/6 100 25-26 100+0
2 4/6 4/6 6/6 6/6
912 1 0/6 05/6 83 0/6 05/6 83 2/6 156 25 5/6 35/6 583 21-31 542+250
2 1/6 1/6 1/6 2/6
948 1 3/6 25/6 417 3/6 25/6 417 4/6 4/6 66.7 6/6 55/6 917 3.1-38 91.7+£16.7
2 2/6 2/6 4/6 5/6
953-1 1 06 1/6 167 2/6 15/6 25 2/6 15/6 25 6/6 6/6 100 25-26 100+0
2 2/6 1/6 1/6 6/6
954 1 0/6 1/6 167 3/6 3/6 50 6/6 456 75 6/6 5/6 833 21-31 5424250
2 2/6 3/6 3/6 4/6
1004 1 /6 05/6 83 1/6 1/6 167 5/6 4/6 0 6/6 5/6 833 21-34 958+83
2 0/6 1/6 3/6 0 4/6
Human Isolate  Control 1 0/6 0/6 0 06 0/6 0 0/6 0/6 0 176 1/6 16.7 0 16.7£0
2 0/6 0/6 0/6 1/6
la G911 0/6 0/6 O 0/6 0/6 O /6 05/6 83 1/6 05/6 83 23-29 83+962
2 0/6 0/6 0/6 0/6
G108 1 0/6 0/6 O 0/6 0/6 O /6 05/6 83 0/6 05/6 83 18-22 16.7+136
2 0/6 0/6 0/6 1/6
G110 1 06 06 0 06 0/6 0 0/6 05/6 83 176 1/6 167 21-30 83+834
2 0/6 0/6 1/6 1/6
Il G116 1 0/6 0/6 O 0/6 0/6 O 06 0/6 0 2/6 1/6 167 19-26 2924210
2 0/6 0/6 0/6 0/6
G1 1 1/6 05/6 83 1/6 05/6 83 0/6 0/6 0 1/6 05/6 167 13-20 16.7+136
2 0/6 0/6 0/6 0
G78 1 06 06 0 06 0/6 0 0/6 0/6 0 0 06 167 14-19 125+160
2 0/6 0/6 0/6 1
G102 1 0 06 O 0/6 0/6 O 06 0/6 0 0 056 167 1.3-21 125+16.0
2 0 0/6 0/6 0

26 fish were used in each repeat
bSix fish were used for each isolate and each data were average of four repeats

contention that human isolates are more lethal than fish
isolates (LDso = 10° CFU/per fish for human isolates vs.
LDgo = 6.1 x 107 ~ 1.94 x 10® cfu/per fish for fish isolates)
[41], fish isolates were more lethal to tilapia than cattle
or human isolates at low LDs, [24, 37]. With a bacterial
dose of 2.1~3.8x10°% cfu for fish isolates and 1.3 ~
3.0x 10° cfu for human isolates in this study, the

mortality rate of tilapia was, on average, below 50 % for
fish isolate 912 and over 95 % for the remaining fish iso-
lates in contrast to less than 30 % for all human isolates
(Table 5), demonstrating that fish isolates were more
virulent to tilapia than human isolates. GBS can infect
diverse fish species and cause economic loss in fish
farming. Therefore, vaccine is needed to prevent GBS
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infection. Recently, a vaccine strain with a truncated sur-
face immunogenic protein (tSip) has been constructed
against GBS infection [42]. In this study, the fish pulso-
type Ia isolate 912 can be a vaccine candidate for tilapia
due to low mortality.

The differences in symptom and mortality rate be-
tween human and fish isolates are possibly due to
growth temperature and genetic differences. Recently,
genome analysis of GBS determined more than 15 pos-
sible virulence genes homologous to genes pathogenic to
human [43]. As virulence factor, p-hemolysin of GBS
serotype Ia isolate is involved in the survival in the hu-
man macrophage THP-1 cell and enhance the tumor ne-
crosis factor-a release [44]. Furthermore, host factors
may also play important role in the defense of pathogen
infection. In tilapia, hepcidin (TH) 1-5 can increase re-
sistance to bacteria pathogens through modulation of re-
lated cytokines [45] and an increase of T-cell receptor
expression of tilapia plays a role in response to GBS in-
fection [46].

Conclusions

GBS isolates were the pathogens to bass, mullet, and til-
apia and increased the resistance to antimicrobials used
in human. ST types, pulsotypes and pathogenesis of GBS
serotype Ia isolates differed between human and fish iso-
lates, implying impossible transmission between human
and fish in this study. The genes on the deletion frag-
ment and plasmid of serotype Ia fish isolates may be re-
sponsible for the GBS virulence to tilapia.

Additional files
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