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Hao-Xun Chang1, Craig R. Yendrek2, Gustavo Caetano-Anolles1 and Glen L. Hartman1,3,4*

Abstract

Background: Plant cell wall degrading enzymes (PCWDEs) are a subset of carbohydrate-active enzymes (CAZy)
produced by plant pathogens to degrade plant cell walls. To counteract PCWDEs, plants release PCWDEs inhibitor
proteins (PIPs) to reduce their impact. Several transgenic plants expressing exogenous PIPs that interact with fungal
glycoside hydrolase (GH)11-type xylanases or GH28-type polygalacturonase (PG) have been shown to enhance
disease resistance. However, many plant pathogenic Fusarium species were reported to escape PIPs inhibition.
Fusarium virguliforme is a soilborne pathogen that causes soybean sudden death syndrome (SDS). Although the
genome of F. virguliforme was sequenced, there were limited studies focused on the PCWDEs of F. virguliforme. Our
goal was to understand the genomic CAZy structure of F. viguliforme, and determine if exogenous PIPs could be
theoretically used in soybean to enhance resistance against F. virguliforme.

Results: F. virguliforme produces diverse CAZy to degrade cellulose and pectin, similar to other necrotorphic and
hemibiotrophic plant pathogenic fungi. However, some common CAZy of plant pathogenic fungi that catalyze
hemicellulose, such as GH29, GH30, GH44, GH54, GH62, and GH67, were deficient in F. virguliforme. While the
absence of these CAZy families might be complemented by other hemicellulases, F. virguliforme contained unique
families including GH131, polysaccharide lyase (PL) 9, PL20, and PL22 that were not reported in other plant
pathogenic fungi or oomycetes. Sequence analysis revealed two GH11 xylanases of F. virguliforme, FvXyn11A and
FvXyn11B, have conserved residues that allow xylanase inhibitor protein I (XIP-I) binding. Structural modeling
suggested that FvXyn11A and FvXyn11B could be blocked by XIP-I that serves as good candidate for developing
transgenic soybeans. In contrast, one GH28 PG, FvPG2, contains an amino acid substitution that is potentially
incompatible with the bean polygalacturonase-inhibitor protein II (PvPGIP2).

Conclusions: Identification and annotation of CAZy provided advanced understanding of genomic composition of
PCWDEs in F. virguliforme. Sequence and structural analyses of FvXyn11A and FvXyn11B suggested both xylanases
were conserved in residues that allow XIP-I inhibition, and expression of both xylanases were detected during
soybean roots infection. We postulate that a transgenic soybean expressing wheat XIP-I may be useful for
developing root rot resistance to F. virguliforme.
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Background
Inactivation of pathogen plant cell wall degrading
enzymes (PCWDEs) is one of the strategies that plants
employ to prevent infection. Several plant-derived extra-
cellular PCWDEs inhibitor proteins (PIPs) were reported
to not only reduce PCWDEs activities but also trigger
defense response upon recognition of PCWDEs [1–3].
The importance of PIPs in plant defense has been dem-
onstrated in transgenic plants expressing exogenous PIPs
that show enhanced biotic resistance. For example,
wheat xylanase inhibitors, such as xylanase inhibitor
protein I (XIP-I) and Triticum aestivum xylanase inhibi-
tor III (TAXI-III), have been shown to inhibit fungal
GH11 xylanases [3–5]. Similarly, transgenic wheat with
TAXI-III increased resistance to necrosis and head blight
caused by Fusarium graminearum [6–8]. Another well-
studied example is the polygalacturonase (PG) inhibitor
proteins (PGIP), a leucine-rich repeat protein of plants
that interact with fungal GH28 PG [2, 9]. Several trans-
genic plants expressing exogenous PGIPs have been
shown to increase resistance against a broad spectrum
of pathogens [10–16]. The mechanism of enhanced re-
sistance in PGIP-transgenic plants has been recently
demonstrated. In vivo expression of chimeric PGIP-PG
in Arabidopsis showed that PGIP-PG interaction in-
duced the production of oligogalacturonides, which
serves as a damage-associated molecular mechanism to
stimulate resistance [17].
Soybean sudden death syndrome (SDS), which is caused

by a soilborne fungus F. virguliforme, is responsible for an-
nual losses around US$190 million [18]. Breeding for SDS
resistance is difficult because the interaction between F.
virguliforme and soybean is quantitative [19]. Instead, it
has been suggested that transgenic approaches may be
suitable to manage SDS, and transgenic soybeans express-
ing exogenous toxin-specific antibody has been shown to
reduce SDS foliar symptoms [18, 20]. However, symptoms
caused by F. virguliforme include not only foliar symptoms
but also root rot and vascular discoloration [18]. Soybeans
that exhibit partial root resistance have been shown to
have up-regulated genes involved in plant cell wall en-
hancement upon root infection by F. virguliforme [21].
Differences in root susceptibility of soybean genotypes
also showed different expression patterns of genes in-
volved in plant cell wall synthesis [22]. These studies indi-
cated that plant cell wall modification maybe involved in
resistance against F. virguliforme, which highlights the
possibility of using transgenic soybeans that express ex-
ogenous PIPs to prevent and/or slow fungal colonization
of soybean roots. Therefore, an in silico study would be
useful before embarking in a time-consuming transgenic
project, as it would be important to know if F. virguliforme
secrets compatible PCWDEs to the transgenic exogenous
PIPs during infection.

Although the genome of F. virguliforme has been pub-
lished [23], genomic structure of PCWDEs remains
uncharacterized. In this study, we annotated PCWDEs
in the F. virguliforme genome, and further focused on
the orthologous GH11 xylanases and GH28 PGs of F.
virguliforme. The goal was to understand the genomic
PCWDEs structure of F. virguliforme and to evaluate if
orthologous GH11 xylanases and GH28 PGs of F.
virguliforme have potential to serve as targets for ex-
ogenous PIPs produced by transgenic soybeans.

Results and discussion
Identification of carbohydrate-active enzymes (CAZy) in
the genome of F. virguliforme
CAZy are proteins with polysaccharide-degrading en-
zymatic activities on polysaccharides [24, 25]. We identi-
fied 629 putative genes that encode CAZy in the
genome of F. virguliforme (Additional file 1: Table S1).
Of the six CAZy classes, carbohydrate esterases (CE),
glycoside hydrolases (GH), and polysaccharide lyases
(PL) are PCWDEs. There were 66, 292, and 28 genes be-
longing to the CE, GH, and PL classes, respectively
(Table 1). Three other classes with indirect roles on de-
grading carbohydrates are auxiliary activity (AA),
carbohydrate-binding module (CBM), and glycosyl-
transferase (GT). There were with 96, 31, and 116 genes
identified in the AA, CBM, and GT classes, respectively
(Table 2).

Identification of putative cellulose-degrading enzymes in
the genome of F. virguliforme
Cellulose is the most abundant component in plant cell
walls, which results from the polymerization of glucose
and the formation of a microfibril framework for other
components to join [24, 26, 27]. Most cellulose-degrading
enzymes are categorized within GH classes. GH1, GH3,
and GH5 are prevalent PCWDEs that catalyze not only
cellulose, but also hemicellulose and pectin (Table 1).
Plant pathogenic oomycetes, and hemibiotrophic as well
as necrotrophic fungi generally contain more GH1 de-
grading enzymes than biotrophic fungi. For example, the
genome of F. virguliforme encodes five GH1 genes while
most biotrophic fungi have none [28–30]. For enzymes in
the GH3 family, F. virguliforme, hemibiotrophic and
necrotrophic fungi, and Phytophthora species contain 8-
38 genes compared to relatively fewer for biotrophic
fungi and Pythium species (Fig. 1a). Endo- and exo-β-
1,4-glucanases in the GH5 family are cellulose-
degrading enzymes employed by both plant patho-
genic fungi and oomycetes, and F. virguliforme has 15
GH family genes. In addition, F. virguliforme has one
GH6 and three GH7 that not only have endo- and
exo-β-1,4-glucanase but also cellobiohydrolase activity.
GH12 encode cellulose/hemicellulose-degrading enzymes
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Table 1 Plant cell wall degrading enzymes (CE, GH and PL classes) of Fusarium virguliforme

CAZy family Substrate Annotation EC number Copy number

CE1 Hemicellulose (xylan) Acetyl xylan esterase 3.1.1.72 34

Feruloyl esterase 3.1.1.73

CE2 Hemicellulose (xylan) Acetyl xylan esterase 3.1.1.72 1

CE3 Hemicellulose (xylan) Acetyl xylan esterase 3.1.1.72 5

CE4 Hemicellulose (xylan) Acetyl xylan esterase 3.1.1.72 7

CE5 Hemicellulose (xylan) Acetyl xylan esterase 3.1.1.72 7

Cutin Cutinase 3.1.1.74

CE8 Pectin (homogalacturonan) Pectin methylesterase 3.1.1.11 2

CE9 Polysaccharides N-acetylglucosamine 6-phosphate 3.5.1.25 1

Deacetylase 3.5.1.80

CE12 Hemicellulose Acetyl pectin esterase 3.1.1.72 3

Pectin (homogalacturonan, rhamnogalacturonan I) Pectin acetylesterase 3.1.1.-

CE14 Polysaccharides N-acetylglucosaminylphosphatidy-linositol deacetylase 3.5.1.89 1

CE16 Polysaccharides Acetylesterase 3.1.1.6 5

GH1 Cellulose β-glucosidase 3.2.1.21 5

Hemicellulose (xylan, xyloglucan) β-xylosidase 3.2.1.37

Pectin (rhamnogalacturonan I) β-galactosidase 3.2.1.23

GH2 Hemicellulose (xylan, xyloglucan, galactomannan) β-mannosidase 3.2.1.25 8

Pectin (rhamnogalacturonan I) β-glucuronidase 3.2.1.31

GH3 Cellulose β-glucosidase 3.2.1.21 22

Hemicellulose β-xylosidase 3.2.1.37

(xylan, xyloglucan) 3.2.1.74

Pectin exo-β-1,4-glucanase

GH5 Cellulose endo-β-1,4-glucanase 3.2.1.4 15

Hemicellulose (galactomannan) endo-β-1,4-xylanase 3.2.1.8

Pectin (rhamnogalacturonan I) exo-β-1,4-glucanase 3.2.1.74

GH6 Cellulose endo-β-1,4-glucanase 3.2.1.4 1

cellobiohydrolase 3.2.1.91

GH7 Cellulose endo-β-1,4-glucanase 3.2.1.4 3

Cellobiohydrolase 3.2.1.176

GH10 Hemicellulose (xylan) endo-β-1,4-xylanase 3.2.1.8 3

GH11 Hemicellulose (xylan) endo-β-1,4-xylanase 3.2.1.8 3

GH12 Cellulose endo-β-1,4-glucanase 3.2.1.4 6

Hemicellulose (xyloglucan) Xyloglucanase 3.2.1.151

GH13 Polysaccharides α-amylase 3.2.1.1 7

GH15 Polysaccharides Glucoamylase 3.2.1.3 3

GH16 Hemicellulose Xyloglucanase 3.2.1.151 19

GH17 Polysaccharides endo-1,3-β-glucosidase 3.2.1.39 5

GH18 Polysaccharides Chitinase 3.2.1.14 22

endo-β-N-acetylglucosaminidase 3.2.1.96

GH20 Polysaccharides β-hexosaminidase 3.2.1.52 1

GH23 Polysaccharides Chitinase 3.2.1.14 2

Lysozyme type G 3.2.1.17

GH24 Polysaccharides Lysozyme 3.2.1.17 2
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Table 1 Plant cell wall degrading enzymes (CE, GH and PL classes) of Fusarium virguliforme (Continued)

GH27 Hemicellulose (xylan, xyloglucan, galactomannan) α-galactosidase 3.2.1.22 1

α-N-acetylgalactosaminidase 3.2.1.49

GH28 Pectin (homogalacturonan, rhamnogalacturonan I) Polygalacturonase 3.2.1.15 8

GH31 Hemicellulose (xyloglucan) α-xylosidase 3.2.1.177 9

GH32 Sucrose Invertase 3.2.1.26 4

GH33 Oligosaccharides exo-α-sialidase 3.2.1.18 1

GH35 Hemicellulose (xylan, xyloglucan, galactomannan) β-galactosidase 3.2.1.23 4

Pectin (rhamnogalacturonan I) exo-β-1,4-galactanase 3.2.1.-

GH36 Hemicellulose (xylan, xyloglucan, galactomannan) α-galactosidase 3.2.1.22 2

α-N-acetylgalactosaminidase 3.2.1.49

GH37 Trehalose α,α-trehalase 3.2.1.28 2

GH38 Oligosaccharides α-mannosidase 3.2.1.24 1

GH43 Hemicellulose (xylan) β-xylosidase 3.2.1.37 26

Pectin (rhamnogalacturonan I) α-L-arabinofuranosidase 3.2.1.55

GH45 Cellulose endo-β-1,4-glucanase 3.2.1.4 2

GH47 Oligosaccharides α-mannosidase 3.2.1.113 10

GH51 Cellulose endo-β-1,4-glucanase 3.2.1.4 2

Hemicellulose (xylan,xyloglucan) β-xylosidase 3.2.1.37

GH53 Pectin (rhamnogalacturonan I) endo-β-1,4-galactanase 3.2.1.89 1

GH55 Polysaccharides endo-1,3-β-glucosidase 3.2.1.39 6

GH63 Oligosaccharides α-glucosidase 3.2.1.106 1

GH64 Polysaccharides endo-1,3-β-glucosidase 3.2.1.39 2

GH71 Polysaccharides α-1,3-glucanase 3.2.1.59 3

GH72 Polysaccharides β-1,3-glucanosyltransglycosylase 2.4.1.- 3

GH74 Cellulose endo-β-1,4-glucanase 3.2.1.4 2

Hemicellulose (xyloglucan) Xyloglucanase 3.2.1.151

GH75 Polysaccharides Chitosanase 3.2.1.132 2

GH76 Oligosaccharides α-1,6-mannanase 3.2.1.101 8

GH78 Pectin α-L-rhamnosidase 3.2.1.40 6

GH79 Pectin (rhamnogalacturonan I) β-glucuronidase 3.2.1.31 1

GH81 Polysaccharides endo-1,3-β-glucosidase 3.2.1.39 1

GH88 Polysaccharides β-glucuronyl hydrolase 3.2.1.- 4

GH93 Pectin (rhamnogalacturonan I) exo-α-L-1,5-arabinanase 3.2.1.- 3

GH95 Hemicellulose (xyloglucan) α-1,2-L-fucosidase 3.2.1.63 2

GH99 Oligosaccharides endo-α-1,2-mannosidase 3.2.1.130 1

GH105 Pectin rhamnogalacturonyl hydrolase 3.2.1.172 4

GH109 Polysaccharides α-N-acetylgalactosaminidase 3.2.1.49 26

GH114 Polysaccharides endo-α-1,4-polygalactosaminidase 3.2.1.109 4

GH115 Hemicellulose (xylan) Xylan α-1,2-glucuronidase 3.2.1.131 1

GH125 Oligosaccharides exo-α-1,6-mannosidase 3.2.1.- 3

GH127 Oligosaccharides β-L-arabinofuranosidase 3.2.1.185 4

GH128 Polysaccharides endo-1,3-β-glucosidase 3.2.1.39 2

GH131 Cellulose exo-β-1,3/1,4/1,6-glucanase 3.2.1.- 1

Hemicellulose

GH132 Polysaccharides Activity on β-1,3glucan – 2
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similar to GH3, which is common in F. virguliforme, plant
pathogenic fungi and Phytophthora species but not in
Pythium species. GH30 is dominant in oomycetes but not
in plant pathogenic fungi, and none was found in F.
virguliforme (Fig. 1a). On the other hand, GH45 and GH51
are fungi-specific degrading enzymes that have not been
found in oomycetes [28, 30]. GH131 CAZy that encodes
exo-β-1,3/1,6- and endo-1,4-glucanase was only found in F.
virguliforme. In addition to GH families, some AA families,
such as AA8 and AA9, have been reported to accelerate
cellulose degradation. Instead of catalyzing carbohydrates,
enzymes in the AA9 family (previously known as GH61)
have copper-dependent lytic polysaccharide monooxygen-
ase activity to assist degradation of lignocellulose [25, 31]. It
has been suggested that plant pathogenic fungi have more
AA9 genes than oomycetes [28–30], and 12 AA9 genes
were found in F. virguliforme (Table 2).

Identification of putative hemicellulose-degrading
enzymes in the genome of F. virguliforme
Hemicellulose is composed of polymers such as xyloglucan,
xylan and galactomannan, cross-links the cellulose microfi-
brils and provides strength to plant cell walls [24, 26, 27].
In addition to GH1, GH3, GH5, GH12, GH51, and GH131
that have both cellulose- and hemicellulose-degrading
activities, GH2, GH10, and GH11 are important
hemicellulose-degrading enzymes for plant pathogenic
fungi including F. virguliforme (Table 1). However,
these families are generally deficient in oomycetes, ex-
cept GH10, which exists in Phytophthora species
(Fig. 1b). GH29, GH30, GH44, GH54, GH62, and GH67
families are absent in the genome of F. virguliforme. A
closely related species, Nectria haematococca (anamorph
Fusaium solani), has no CAZy in the GH29 and GH30
either. Instead, F. oxysporum and F. verticillioides have at
least two enzymes for each GH29 and GH30 [30]. Never-
theless, F. virguliforme contains two GH95 α-fucosidases
that may have similar enzymatic activities to GH29 and
GH30, which remove xyloses from xyloglucan [24]. F.
virguliforme has no GH54 and GH62 that encode α-L-
arabinofuranosidases, but N. haematococca, F. oxysporum,
and F. verticillioides have at least one GH54 and one
GH62 enzyme [30]. The function of GH54 and GH62 may

be redundant to GH3, GH10, GH43, and GH51 [24],
which could be found in the F. virguliforme genome
(Table 2). Among these four families, GH43 is one of the
largest CAZy that catalyzes both hemicellulose and pectin,
and F. virguliforme has 26 genes. In addition, F. virguli-
forme has no GH44 or GH67 that are deficient in most
plant pathogens. The loss of GH44 and GH67 may be
complemented by GH74 and GH36, respectively, because
both GH44 and GH 74 encode xyloglucanases while
GH67 and GH36 both encode α-galactosidases (Table 2).
Another group of CAZy active on hemicellulose is the CE
class. CE1 is the most dominant hemicellulose-degrading
family in plant pathogens, and in the case of F.
virguliforme, 32 genes were found. CE families such as
CE2, CE3, CE4, CE5, and CE12, were all identified in the
genome of F. virguliforme as reported in other plant path-
ogens [28–30].

Identification of putative pectin-degrading enzymes in
the genome of F. virguliforme
Pectin, a polymer of mainly D-galacturonic acids, is the
most divergent part of plant cell walls because of the dif-
ferent modifications on the side chains. Based on these
modifications, pectin is categorized into subgroups like
homogalacturonan and rhamnogalacturonan. Pectin
forms a matrix between microfibrils to control the por-
osity and cohesion [24, 26, 27, 32, 33]. Besides the uni-
versal plant cell wall degrading families (GH1, GH3, and
GH5) and the most well studied GH28 PGs, GH53 and
GH78 are common in most hemibitrophic and necro-
trophic fungi as well as Phytophthora species while
GH105 is more abundant in plant pathogenic fungi than
oomycetes (Fig. 1c). Except for the lack in GH30 and
GH54 that have been discussed in the hemicellulose sec-
tion, F. virguliforme has all the GH families that catalyze
pectin. Some CAZy in the CE class, such as CE8 and
CE12, allow degradation of pectin by removing methyl
and acetyl groups from galacturonic acids, respectively.
Both families are common in all plant pathogens includ-
ing F. virguliforme but not Pythium species [29]. The PL
class specializes in pectin degradation. PL1 and PL3 are
the most dominant and common pectin lyases of plant
pathogens. Similar to hemibitrophic and necrotrophic

Table 1 Plant cell wall degrading enzymes (CE, GH and PL classes) of Fusarium virguliforme (Continued)

PL1 Pectin (homogalacturonan) Pectate lyase 4.2.2.2 11

PL3 Pectin Pectate lyase 4.2.2.2 10

PL4 Pectin (rhamnogalacturonan I) Rhamnogalacturonan lyase 4.2.2.- 4

PL9 Pectin Pectate lyase 4.2.2.2 1

Exopolygalacturonate lyase 4.2.2.9

PL20 Pectin endo-β-1,4-glucuronan lyase 4.2.2.14 1

PL22 Pectin Oligogalacturonate lyase 4.2.2.6 1
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fungi and oomycetes, F. virguliforme has eleven PL1 and
ten PL3 that are more abundant than bitrophic fungi
[28–30]. In addition, PL4, PL9, PL20, and PL22 families
were identified in the F. virguliforme genome (Fig. 1c).
While PL4 is commonly distributed in plant pathogens,
PL9, PL20, and PL22 were found only in F. virguliforme
and N. haematococca [30].

Evaluation of xylanases and PGs of F. virguliforme as PIPs
targets
GH11 xylanases and GH28 PGs have been successfully
used as targets for transgenic plants expressing exogen-
ous PIPs. However, GH11 xylanases and GH28 PGs of
some Fusarium species can escape PIPs inhibition by
amino acid substitution [34, 35]. Two GH11 xylanases,
XylA (FGSG_10999) and XylB (FGSG_03624) of F.
graminearum, have amino acid substitutions at the
thumb region that allowed them to escape XIP-I binding
(Fig. 2a) [4]. On the other hand, site-directed mutagen-
esis of lysine to glutamine of position 97 increased affin-
ity of F. verticillioides PG to PvPGIP2 [35]; more
importantly, a single substitution at the 261 position of
F. phyllophilum PG (FpPG) from alanine to threonine
significantly reduced FpPG affinity to PvPGIP2 [36].
Amino acid substitutions in these studies supported the
variable response of PGIPs to PGs of different Fusarium
species [36, 37].
Two orthologous GH11 xylanases (FvXyn11A and

FvXyn11B) and two orthologous PGs (FvPG1 and
FvPG2) were identified for F. virguliforme (Table 3).

Table 2 AA, CBM and GT classes of Fusarium virguliforme

CAZy
family

Annotation Copy
number

AA1 Multicopper oxidases 4

AA2 Lignin peroxidase 4

AA3 glucose-methanol-choline (GMC) oxidoreductases 25

AA4 vanillyl-alcohol oxidase 5

AA5 radical-copper oxidases 2

AA6 1,4-benzoquinone reductases 2

AA7 Glucooligosaccharide oxidase 40

AA8 Iron reductase 2

AA9 copper-dependent lytic polysaccharide
monooxygenases

12

CBM1 cellulose-binding 2

CBM4 cellulose-binding 1

CBM6 cellulose-binding 1

CBM13 cellulose-binding 2

CBM18 chitin-binding 2

CBM19 chitin-binding 2

CBM20 starch-binding 1

CBM21 starch-binding 2

CBM22 xylan-binding 4

CBM35 xylan-binding 1

CBM50 Peptidoglycan-binding (LysM domain) 5

CBM61 β-1,4-galactan-binding 4

CBM63 cellulose-binding 2

CBM67 L-rhamnose-binding 3

GT1 UDP-glucuronosyl-transferase 15

GT2 cellulose/chitin synthase 18

GT3 Glycogen synthase 1

GT4 Sucrose synthase 6

GT8 Lipopolysaccharide glucosyl-transferase 8

GT15 α-1,2-mannosyl-transferase 5

GT17 β-1,4-N-acetyl-glucosaminyl-transferase 1

GT20 α,α-trehalose-phosphate synthase 3

GT21 Ceramide β-glucosyl-transferase 3

GT22 Man6GlcNAc2-PP-Dol α-1,2-mannosyl-transferase 4

GT24 Glycoprotein α-glucosyl-transferase 1

GT26 β-N-acetyl-mannosaminuronyl-transferase 2

GT28 Digalactosyl-diacyl-glycerol- synthase 1

GT31 fucose-specific β-1,3-N-acetylglucosaminyl-
transferase

2

GT32 α-1,6-mannosyl-transferase 7

GT33 chitobiosyl-diphosphodolichol β-mannosyl-
transferase

1

GT34 α-1,2-galactosyl-transferase 3

GT35 Starch phosphorylase 1

Table 2 AA, CBM and GT classes of Fusarium virguliforme
(Continued)

GT39 Protein α-mannosylt-ransferase 3

GT48 1,3-β-glucan synthase 2

GT50 α-1,4-mannosyl-transferase 2

GT54 α-1,3-D-mannoside β-1,4-N-acetyl-glucosaminyl-
transferase

1

GT57 α-1,3-glucosyl-transferase 2

GT58 Man5GlcNAc2-PP-Dol α-1,3-mannosyl-transferase 1

GT59 Glc2Man9GlcNAc2-PP-Dol α-1,2-glucosyl-
transferase

1

GT62 α-1,2-mannosyl-transferase 3

GT64 Heparan α-N-acetyl-hexosaminyl-transferase 2

GT66 dolichyl-diphospho-oligosaccharide-protein
glycotransferase

1

GT69 α-1,3-mannosyl-transferase 5

GT71 α-mannosyl-transferase 3

GT76 α-1,6-mannosyl-transferase 1

GT77 α-xylosyltransferase 1

GT90 glucuronoxylomannan/galactoxylomannan β-1,2-
xylosyl-transferase

5
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Sequence analysis revealed that neither FvXyn11A nor
FvXyn11B carry amino acid substitutions at the thumb
region corresponding to XylA or XylB of F. grami-
nearum (Fig. 2a). Protein-protein docking analysis was
applied to further test the interaction between XIP-I and
FvXyn11A as well as FvXyn11B. The results supported
XIP-I forming inhibiting conformations with FvXyn11A
and FvXyn11B in the same orientation to Penicillium
funiculosum XYNC (Fig. 2b) [5]. In the case of FvPG1
and FvPG2, sequence alignment was uncertain at residue
97 because of the neighboring gaps (Fig. 3). However,
because FvPG1 has an alanine at position 261 that is
identical to Colletotrichum lupine PG (CluPG1) and As-
pergillus niger PG (AnPGII), we speculated that the af-
finity strength of FvPG1 to PvPGIP2 would be similar to
CluPG1 and AnPG II [2, 36]. The replacement of the
nonpolar alanine to the polar threonine dramatically re-
duces FpPG affinity to PvPGIP2 [36], so we speculated

FvPG2 would be less inhibited by PvPGIP2 because the
corresponding position of FvPG2 is a larger, positively
charged lysine.
FvXyn11A, FvXyn11B, FvPG1, and FvPG2 contained

putative secretory peptides without trans-membrane do-
mains. Moreover, their expressions were detectable dur-
ing infection. Using an in vitro RNA-Seq dataset [38],
we noticed FvXyn11B and FvPG2 were less active com-
pared to FvXyn11A and FvPG1 in the in vitro condition
(Fig. 4a). However, the expression of FvXyn11B and
FvPG2 were significantly enhanced during root infection
(Fig. 4b). It has been reported that PCWDEs of some
Fusarium species displayed different expression patterns
in different conditions. For example, two PGs of F. oxy-
sporum, pg1 and pgx6, expressed actively during root
infection, and the double knockout mutants of pg1
and pgx6 compromised virulence [39]. In addition, differ-
ential expression of GH11 xylanases was also reported
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Fig. 1 Comparison analysis for PCWDEs of Fusarium virguliforme that putatively target on different polysaccharides. Blue color indicates
carbohydrate esterases (CE); red color indicates glycoside hydrolases (GH); and green color indicates polysaccharide lyases (PL). a CAZy with
cellulase activity. GH1, GH3, and GH5 are universal PCWDEs that catalyze celluloses, hemicelluloses, and pectin. GH30 is common distributed in
plant pathogenic fungi and abundant in oomycetes, but it was not found in the genome of F. virguliforme. Instead, GH131 was found only in the
genome of F. virguliforme. b CAZy with hemicellulase activity. GH29, GH30, GH44, GH54, GH62, and GH67 are absent in the genome of F.
virguliforme, but other functional redundant CAZy may complement the loss of these families. c CAZy with pectinase activity. F. virguliforme have
most pectinases and unique PL9, PL20, and PL22 that only existed in F. virguliforme and close-related species Nectaria haematococca. In general,
the genomic PCWDEs structure of F. virguliforme is similar to necrotrophic and hemibiotrophic pathogenic fungi
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a

b c d

Fig. 2 In silico analysis of GH11 xylanases of Fusarium virguliforme. a F. graminearum contains amino acid substitutions that allow GH11 xylanases to escape
XIP-I inhibition, including a substitution of threonine (T) to valine (V) for XylA (yellow blocks); and substitutions of asparagine (N) to cysteine (C), an insert of
aspartic acid (D), and a substitution of T to C for XylB (yellow blocks). However, FvXyn11A and FvXyn11B are conserved in this region. The red block circles a
string of 30 amino acids reported to induce necrosis [63]. The purple block and blue block indicate previously reported conserved residues. The name of
necrosis-inducing xylanases were bold [8, 63, 64]. b Salmon color represents XIP-I. Golden color represents conserved thumb region of each xylanase. Control
model of XIP-I inhibits Penicillium funiculosum GH11 xylanase XYNC. XIP-I perfectly fills into the catalyzing groove between two essential catalyzing residues
glutamic acid (E) at position 85 (E85) and E176 that mimics substrates of XYNC. c The interaction between FvXyn11A and XIP-I, where the corresponding
residues E114 and E205 were shown. d The interaction between FvXyn11B and XIP-I, where the corresponding residues E98 and E189 were shown

Table 3 Orthologous GH11 xylanases and GH28 polygalacturonases of Fusarium virguliforme

Gene Namea Gene IDa E valuea qRT-PCR Primer Sequencea Amplicona Tm (°C)b a AEc a R2a

GH11 xylanase

FvXyn11A g5088 1.0 × 10-77 F- CTGTCATCACTACCCGAAGAC 104 bp 61.4 0.648 0.99

R- CTGGGCTCGTTTGACTACAT 61.7

FvXyn11B g7311 6.0 × 10-73 F- TCAACGCCTGGAAGAATGTC 100 bp 62.2 0.702 1.00

R- ACAGTCATGGTGGCAGAAC 61.9

GH28 polygalacturonase

FvPG1 g9942 5.0 × 10-58 F- AAACGGCGGCAAGAAGAA 91 bp 62.3 0.802 0.98

R- GACGGGCGTGTTCTTGATATAG 62.3

FvPG2 g13315 1.0 × 10-68 F- CCACTCTCTCAAGAACTCCAAC 110 bp 61.9 0.888 0.97

R- CGAGATGAACATCGTAGACACC 61.9

Reference gene

FvEF1A g4748 0.0 F- GGGTAAGGAGGAGAAGACTCA 98 bp 62.0 0.748 1.00

R- CACCGCACTGGTAGATCAAG 62.0
aE value for F. virgulifrome gene to query: P.funiculosum GH11 xylanase XYNC (Q9HFH0), F. phyllophilum FpPG (AAA74586.1), and F. graminearum EF1A (FGSG_08811.3) by BLASTN
bTm of each primer was calculated by IDT Oligo Analyzer 3.1 with settings: 50 mM Na+, 3 mM Mg2+, 1 mM dNTP, and 200nM oligo
cAmplification efficiency
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that XylB had higher expression than XylA at 5 day-post-
inoculation [40].

Conclusion
In this study, we advanced the understanding of CAZy and
PCWDEs in the genome of F. virguliforme and in silico ana-
lysis supported the possibility of developing transgenic soy-
beans with exogenous PIPs to enhance SDS resistance. As a
soybean pathogen, F. virguliforme may have undergone se-
lection pressure to PGIPs produced by soybean. Our ana-
lysis revealed a putative PvPGIP2-escaping FvPG2 had
higher expression during root infection than in the in vitro
condition. This indicated that the use of transgenic
PVPGIP2 might not be a preferable option. Instead, F. virgu-
liforme should rarely encounter XIP-I because xylanase in-
hibitor proteins are more dominant in graminaceous plants
such as wheat. Xylanases play important roles in fungal viru-
lence. The endo-β-1,4-xylanase Xyn11A was shown to

required for virulence in Botrytis cinerea [41] and
xylanases knock-down mutants of Magnaporthe ory-
zae also caused less lesions compared to wild type M.
oryzae [42]. Our results revealed FvXyn11A and
FvXyn11B lack amino acid substitutions that would
avoid XIP-I inhibition. Because XIP-I has been
reported to inhibit both GH10 and GH11 xylanases
[3–5], we consider XIP-I a better candidate since
multiple targets of XIP-I may extend the persistence
of the transgenic soybeans. In addition to inhibition
of GH11 xylanase, XIP-I was reported to reduce cell
death induced by necrosis-inducing xylanases, such as
XylA and XylB of F. graminearum [8], and an ortho-
logous XIP-I from coffee has been shown to inhibit
the germination of soybean rust urediniospores [43].
Developing a transgenic soybean that expresses an ex-
ogenous XIP-I might not only reduce soybean rust in-
fection but also enhance resistance against SDS.

Fig. 3 Sequence alignment of GH28 polygalacturonase of Fusarium virguliforme with other fungi. The green blocks circle polymorphic residues [37];
the purple blocks indicate essential residues for binding substrates [65]; the orange blocks circle indispensible residues for catalyzing substrates [66];
and the red blocks circle residues (position 97 in top panel and 261 in bottom panel) that were reported to affect PvPGIP2 inhibition [35, 36]
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Methods
Identification of CAZy in the F. virguliforme genome
The Fusarium virguliforme genome sequence (accession
AEYB01000000) was downloaded from NCBI and is
available at http://fvgbrowse.agron.iastate.edu [23]. Au-
gustus was used to predict putative proteins in the gen-
ome and transcriptome with F. graminearum as a model
organism using default parameters except for the
minexonintronprob (=0.1) and minmeanexonintronprob
(=0.4) [44]. CAZy domains were identified in genomes
with dbCAN and a cutoff of E value of 10-3 [45]. When
a gene contained a CBM with other CAZy classes, the gene
was classified in the later classes. When redundancies were
detected, classification was determined based on the lowest
E value (Additional file 1: Table S1). Protein annotation
was based on the CAZy database [25, 46]. The genomic

CAZy structure of F. virguliforme was compared to other
plant pathogenic fungi and oomycetes [28–30].

In silico analyses of GH11 xylanases and GH28 PGs of F.
virguliforme
Sequences of P. funiculosum GH11 xylanase XYNC [5]
and F. phyllophilum GH28 FpPG [36] were used as
queries to identify orthologous genes in F. virguliforme.
Putative orthologous GH11 xylanases and GH28 PGs
were determined at E value 10-50. MUSCLE in MEGA6
was used for protein sequence alignment [47]. SignalP
4.1 was used to detect secretory signal peptide [48].
SWISS-MODEL and QMEAN [49–52] were used to
generate and evaluate a homology model for FvXyn11A
(QMEAN6: 0.675) and FvXyn11B (QMEAN6: 0.708)
based on Chaetomium thermophilum GH11 xylanase
model 1h1a [53]. The protein-protein docking was
performed by ZDOCK [54, 55]. The residue, E85 of P.
funiculosum XYNC, E114 of FvXyn11A, and E98 of
FvXyn11B, was set as indispensable interacting residuals
with R179 of XIP-I and the modeling result was com-
pare to interaction model 1te1 [5].

Expression analysis of GH11 xylanases and GH28 PGs in
vitro and in planta
In vitro RNA-Seq transcriptome was downloaded from
DDBJ/EMBL/GenBank accession GBJV00000000 and
analyzed as previously described [38]. HTSeq (version
0.6.1) were applied to quantify mapped reads for each
transcript [56]. Transcripts with less than 60 reads
across six libraries were filtered out in R (version 3.0.1)
[57]. A false discovery rate of 0.05 was used as signifi-
cant cutoff in edgeR analysis (version 3.6.4) [57–60].
Quantitative reverse-transcription polymerase chain re-
action (qRT-PCR) was used to measure gene expression
during root infection. Soybean seeds were germinated
for 5 days at 25 °C. Each radicle was inoculated with
15 μl of 1× 106 macroconidia per ml of F. virguliforme,
and then incubated without light at 25 °C for 5 days be-
fore extracting total RNA by using TRIzol. Random
primers were used to synthesize cDNA. Amplification
efficiency of primers for qRT-PCR was determined based
on four replicates and each replicate contained three
concentration gradients (Table 3). Platinum® SYBR®
Green qPCR SuperMix-UDG kit (Life Technologies) and
Agilent Mx3005P qPCR System (Agilent Technologies)
were used for qRT-PCR experiments. –ΔΔCt method
was used to evaluate the expression of each gene
[61] and gene expression was normalized to the
translation elongation factor 1A of F. virguliforme
(FvEF1A) [38, 62]. In planta gene expression analysis
was repeated three times with three biological repli-
cates for each. Statistics were conducted in R. Box-
Cox power transformation was applied on raw data

0 

5 

10 

15 

20 

25 

30 

35 

FvXyn11A FvXyn11B FvPG1 FvPG2 

C
ou

nt
s 

pe
r 

m
ill

io
n 

(c
pm

) 

In vitro RNA-Seq Expression a 

* * 

0.0 

0.5 

1.0 

1.5 

2.0 

2.5 

3.0 

3.5 

4.0 

FvXyn11A FvXyn11B FvPG1 FvPG2 

lo
g1

0(
-

C
t)

 

In planta qRT-PCR Expression b 

a 

b 

c c 

Fig. 4 Expression comparison of FvXyn11B and FvPG2 in vitro and
in planta. RNA of both conditions was extracted after 5 days post
inoculation, from soybean dextrose broth and from soybean roots,
respectively. a In vitro expression was indicated by counts per
million (cpm) from a RNA-Seq data [38]. Asterisk indicated genes
with raw counts below 1 cpm. b In planta expression indicated by
log10(–ΔΔCt). Unlike in vitro condition, the expression of FvXyn11B
increased and was significantly higher the FvXyn11A. The expression
of FvPG2 was also increased to a level similar to FvPG1
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to fulfill the normal distribution of residuals.
ANOVA and TukeyHSD were used to determine sig-
nificance at p < 0.05.

Additional file

Additional file 1: Table S1. CAZy of Fusarium virguliforme. (XLSX 480 kb)
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