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Abstract

Background: Probiotics have shown favourable properties in maintaining oral health. By interacting with oral microbial
communities, these species could contribute to healthier microbial equilibrium. This study aimed to investigate in vitro
the ability of probiotic Lactobacillus rhamnosus GG (L.GG) to integrate in oral biofilm and affect its species composition.
Five oral strains, Streptococcus mutans, Streptococcus sanguinis, Aggregatibacter actinomycetemcomitans, Fusobacterium
nucleatum and Candida albicans were involved. The group setup included 6 mono-species groups, 3 dual-species
groups (LGG + S. mutans/S. sanguinis/C. albicans), and 4 multi-species groups (4/5 species and 4/5 species + L.GG, 4
species were all the tested strains except S. mutans). Cell suspensions of six strains were pooled according to the group
setup. Biofilms were grown on saliva-coated hydroxyapatite (HA) discs at 37 °C in anaerobic conditions for 64.5 h. Biofilm
medium was added and refreshed at 0, 16.5, and 40.5 h. The pH of spent media was measured. Viable cells of the 165 h
and 64.5 h biofilms were counted. 64.5 h biofilms were stained and scanned with confocal laser scanning microscopy.

Results: Our results showed that LGG and S. mutans demonstrated stronger adhesion ability than the other strains to
saliva-coated HA discs. LGG, C. albicans, S. mutans and F. nucleatum, with poor ability to grow in mono-species biofilms
demonstrated better abilities of adhesion and reproduction in dual- and/or multi-species biofilms. LGG slightly
suppressed the growth of C. albicans in all groups, markedly weakened the growth of S. sanguinis and F. nucleatum in
4sp + L.GG group, and slightly reduced the adhesion of S. mutans in LGG+ S. mutans group.

Conclusions: To conclude, in this in vitro model L.GG successfully integrated in all oral biofilms, and reduced the counts

of S. sanguinis and C. albicans and lowered the biofilm-forming ability of F. nucleatum, but only slightly reduced the
adhesion of S. mutans. C. albicans significantly promoted the growth of LGG.
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Background

Probiotics, “live microorganisms that, when administered
in adequate amounts, confer a health benefit on the host”
[1], have shown favourable properties in maintaining oral
health. Short- and long-term intake of probiotics could
reduce the caries risk among children [2, 3], decrease gum
bleeding and reduce gingivitis [4—6], reduce the pocket
depth and positively affect the gain of clinical attachment
[7], and reduce the counts of Candida in the elderly [8, 9].
Collective studies suggest that these positive effects are
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results of the interactions between probiotics and the
micro-organisms harboured in individual’s oral cavity.
Micro-organisms inhabit the oral cavity in the form of
biofilms (dental plaque), which progressively develop in
4 hours after meals in the absence of oral hygiene [10].
A fully developed biofilm contains micro-organisms,
extracellular matrix and extracellular DNA [11]. Initial
colonizers, such as streptococci and actinomyces bind to
the salivary pellicle, which coats the enamel, subse-
quently grow together with secondary colonizers, and
gradually develop biofilm communities [12]. In these
mature biofilms communications of intra-species and
interspecies occur on nutrition metabolism, space
arrangement, and transfer of DNA [11, 13].
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Daily oral hygiene, including tooth brushing and
flossing, could remove most of the dental plaque, but
the residual plaque, however, is still unavoidable. In the
plaque, when certain harmful strains grow in greater
numbers, they may contribute and cause oral diseases,
such as tooth decay, periodontitis and candidiasis [14, 15].
Also poor daily oral hygiene may increase the chronic
inflammatory burden to the body [16]. According to accu-
mulating data from clinical trials, probiotics have shown
capacity to be an alternative strategy for the prevention
and treatment of bacterial/yeast diseases [17, 18]. In the
past decade, researchers have investigated the antagonistic
interactions between probiotics and pathogens in their
planktonic form in broth media and/or in colonies on
agars [19, 20]. Advanced biofilm models [21-24] have
been built up to test their activities when grown on glass
and saliva-coated hydroxyapatite (HA) surfaces. Despite
great efforts, our understanding of the underlying mecha-
nisms of probiotic behaviour is still inadequate, however.
As mixed-species biofilms are undoubtedly the dominant
form in nature and the oral cavity, there are pressing
needs to discover behaviours of bacteria and yeasts in a
more complex system. However, seldom studies investi-
gated the effects of probiotics on multiple species biofilms.
Pham et al. [25, 26] have studied the effects of Lactobacil-
lus rhamnosus GG and Lactobacillus salivarius W24 on
saliva-derived microcosmos. But no studies have reported
effects of probiotics on defined multi-species biofilms,
which allow us to follow the changes of each strain.
Therefore, in this in vitro study we tested the abilities of
six strains to form and build up biofilms on saliva-coated
HA discs in six mono-species groups, in three dual-species
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groups (L.GG + S. mutans/S. sanguinis/C. albicans), and in
four multi-species groups (4/5 species and 4/5 species +
L.GG, 4 species were all the tested oral strains except S.
mutans), respectively. We aimed to explore the ability of
probiotic Lactobacillus rhamnosus GG to integrate in
biofilms and influence its species composition in multiple
species biofilms.

Results

Growth

The growth abilities of the six strains in 13 groups are
presented in Figs. 1 and 2. L.GG, C. albicans, S. mutans,
and S. sanguinis were able to build up biofilms in mono-
species culture after three days cultivation, but A. actino-
mycetemcomitans and F. nucleatum were not. They were
detected only at 16.5 hours. The total numbers of viable
cells in dual- and multi- species groups were generally
higher than in mono-species groups. The greatest cell
numbers from 64.5-hour-old biofilms appeared in
groups 5sp and 5sp+L.GG (4.6 +2.4x10° and 4.5+
2.3 x 10® CFU/disc), and the cell numbers were signifi-
cantly higher (P<0.05) than in all other groups (L.GG
32+18x10°, Ca 6.6+28x10* , Ss 1.0+0.6x 10%
LGG+Ca 26+16x10), LGG+Sm 1.4+04x10°%
L.GG +Ss 6.5+2.0x10° 4sp 3.1 +1.3 x107, 4sp + L.GG
1.9+ 0.7 x 10° CFU/disc), except group Sm (2.1 + 1.4 x
10° CFU/disc).

Increase ratios of total viable cells in groups of 5sp
and 5sp + L.GG were 65.0 £ 33.9 and 61.3 + 31.3, which
were higher (not significantly, NS) than in the other
groups. The ratio was 12.1£5.0 in group 4sp, while it
decreased to 3.2+ 1.1 in the presence of L.GG. This
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Fig. 1 Total number of viable cells (TNVC) from biofilms and the increase ratios in self-development stage. TNVC of Sm group at 16.5 h was
significantly higher (P < 0.05) than TNVC of the rest of the groups at 16.5 h, and marked as *. TNVC of 5sp and 5sp + L.GG at 64.5 h were significantly
higher (P < 0.05) than TNVC of the rest of the groups (except Sm group) at 64.5 h, and marked as *". Data represent the means + SDs
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Fig. 2 Viable cells, increase ratio, and adhesion ratio of each strain in all the groups. a Viable cells of each strain in each group from 16.5 h and
64.5 h biofilms; b viable cells increase ratio of each strain in each group in self-development stage; ¢ cell adhesion ratio of each strain to saliva-coated
HA discs in adhesion stage. Data represent the means + SDs. *P < 0.05, **P < 0.01, ***P < 0.001

increase ratio was lower (NS) than 1.0 in the groups
L.GG (0.067 £0.038), Ss (0.153 +0.092) and L.GG + Ss
(0.216 + 0.064), respectively.

L.GG grew best in the presence of C. albicans, and the
corresponding increase ratio for L.GG was 9.5+5.8,
which was significantly higher (P <0.05) than increase
ratio in the other groups, except in group 4sp + L.GG
(5.7 £2.2).

C. albicans grew similarly in all groups. The highest
increase ratio of viable C. albicans cells was detected in
group 5sp (16.1 +7.2), and the ratio slightly decreased to
11.7 £ 7.0 when C. albicans was co-cultured with L.GG.
This decrease of C. albicans increase ratio also appeared
in other pair groups, when L.GG was involved in the
culture, namely groups Ca (3.20 + 1.33) and Ca + L.GG
(1.05+0.41), groups 4sp (7.11+£3.28) and 4sp + L.GG
(4.63 + 2.83). Percentage of the cell number of C. alb-
cians in L.GG + Ca at time point of 64.5 h was decreased
compared with the percentage at 16.5 h (see Fig. 3).

S. mutans grew well in each group, and the viable cell
numbers from all 64.5 h-old biofilms reached the
same level of 10° CFU/disc. A slight decrease in
numbers of S. mutans viable cells from 16.5 h-old

biofilm was found in L.GG + Sm biofilm (3.2 + 1.0 x
10° CFU/disc), compared with its numbers in mono
culture (2.2 +1.3x10” CFU/disc). The increase ratio
of S. mutans in the 5 species biofilm was significantly
higher (P <0.05) than S. mutans alone.

S. sanguinis grew better in multi-species groups com-
pared to its growth in mono-species biofilm. The best
growth was seen in 4sp group, but it was supressed
by L.GG. In 4sp group, the number of viable cells
from 64.5 h-old biofilm was 3.1 +1.3x 10’ CFU/disc
and the increase ratio was 12.10 £4.99. But these
values were significantly (P < 0.05) decreased to 0.7 +
0.5x10” and 1.90+1.30 when L.GG was inoculated
to the 4 species biofilm. Percentage of cell numbers
of S. sanguinis in 4sp + L.GG at 64.5 h (38 %) was
smaller than the percentage at 16.5 h (65 %) (Fig. 3).
And numbers of viable S. sanguinis cell from 64.5 h-
old biofilms were lower than 1.2x10” and the in-
crease ratios were lower than 4.0 in all the other
groups.

A. actinomycetemcomitans and F. nucleatum were part
of the cell suspensions inoculated to the multi-species
biofilm system at O h, but their numbers were
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Fig. 3 Viable cell number (%) of the cultured strains. The cultured strains were L.GG, C. albcians (Ca), S. mutans (Sm), and S. sanguinis (Ss), in dual- and
multi-species groups at 165 h and 64.5 h biofilms

undetectable by the method used in this study and and returned to 6.72 +0.05 at 40.5 h and 6.84+0.05 at
thus not compared with the other strains in Figs. 1, 64.5 h. Groups Ca and Ss showed similar behaviour, but
2, and 3. No viable cells were detected from the the pH decrease at 16.5 h was lower than 0.17. Values
negative control biofilms, which were cultured with from groups Aa and Fn were stable in all the three time

physiological saline on saliva-coated HA discs. points (6.92).
Multi-groups generally showed greater reductions of
Adhesion ratio pH values than mono groups, except group Sm. The pH

The highest adhesion ratio of L.GG appeared in values in the multi-species groups varied from 5.9 to 6.1
group 4sp +L.GG (0.234 + 0.043) and lowest in group at 16.5 h. At 40.5 and 64.5 h, pH values decreased to
5sp + L.GG (0.070 + 0.033). The adhesion ratios of C. ~5.3 in 5sp and 5sp + L.GG, which were significantly
albicans were slightly higher in the presence of L.GG, lower (P<0.05) than the values in 4sp and 4sp + L.GG
namely 0.017 £0.014 (L.GG+ Ca) and 0.005+0.002 (5.7-5.9).

(Ca), 0.010+0.007 (4sp+L.GG) and 0.003 +0.003

(4sp), and 0.015%0.020 (5sp +L.GG) and 0.006 + 7.0- -
0.003 (5sp), respectively. For S. mutans, this ratio, g i & 52: 18:22
when co-cultured with L.GG (0.07 £ 0.02), was only one ] [ Jat64.5h

I
o
1

third of the value in mono culture biofilm (0.25 + 0.15). In
group 4sp + L.GG the adhesion ration of S. sanguinis was
0.428 + 0.077 and significantly higher (P < 0.05) than that
in mono- and dual- species biofilm, 0.001 +0.001 and
0.160 + 0.008, respectively.

pH values of spent media
o o
(6] o
1 1

pH values of spent media

To describe the environments where biofilms grew in,
pH values of each spent media was measured and shown 5.0
in Fig. 4. The pH values in groups Sm and L.GG + Sm
varied from 5.1 to 5.2, which were significantly lower
(P<0.001) than in the rest of the 11 groups, respectively
at 16.5 h, 40.5 h and 64.5 h time points. The pH values of Fig. 4 pH values of spent media in each group at 16.5 h, 40.5 h and

. 64.5 h. Data represent the means + SDs
L.GG in a mono culture decreased to 6.03 + 0.09 at 16.5 h, P )

L.GG
Ca
Sm
Ss
Aa
Fn
4sp
5sp

L.GG+Ca
L.GG+Sm
L.GG+Ss
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5sp+L.GG
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Three dual-species groups (L.GG + Ca/Sm/Ss) showed
different changes of pH values. The pH values were the
lowest in L.GG + Sm (5.11-5.12). In the L.GG + Ca group
the value was 6.46 £ 0.03 at 16.5 h, 6.48 + 0.15 at 40.5 h,
and decreased to 6.28 + 0.19 at 64.5 h. The pH values in
L.GG +Ss were 6.39+0.04 at 16.5 h, 6.77 £0.03 and
6.85 + 0.04 at all the three time points.

CLSM images

From the CLSM images shown in Fig. 5a and 5b, the cell
morphology of each strain in mono-species biofilms was
able to be observed. In all dual-species groups, L.GG
established well, which increased the difficulty to distin-
guish the cells of C. albicans, S. mutans, and S. sanguinis
in the biofilms. The biofilms of 4sp group were mostly
covered by F. nucleatum, and some of the cells were
clearly seen in clusters, but F. nucleatum was sparsely
attached to saliva-coated HA discs in the 4sp + L.GG
group. In the biofilms images of 5sp and 5sp + L.GG, the
cells grew in clusters and made it difficult to see the dif-
ferences between the two groups. No cells were scanned
in the negative control biofilms.

Discussion

This in vitro study aimed to test if L.GG could establish
in oral biofilms and intervene with their compositions.
We built 64.5 h mono-, dual-, and multi-species bio-
films. Our results show that L.GG was able to retain and
proliferate in in vitro oral biofilms, and showed various
effects on the growth of the 5 strains investigated in the
biofilm models.

The ability to attach and develop biofilms in mono-
culture was highly strain dependent. L.GG and .
mutans demonstrated stronger ability than the other
strains (namely S. sanguinis, C. albicans, A. actinomyce-
temcomitans, and F. nucleatum) to adhere to saliva-
coated HA discs in the model. L.GG, a well-studied
strain, has been shown to be able to colonise the oral
cavity for at least two weeks after discontinuation of
consumption of the yoghurt [27]. And it has displayed
good in vitro adherence not only to epithelial cells and
mucus but also to abiotic surfaces [28], which agrees
with our result. But Lebeer et al. also have pointed out
that in vitro biofilm formation by L.GG was strongly
modulated by culture medium factors. The explanation
of the reduced viable counts of L.GG from 64.5 h bio-
film in our study is unclear. S. mutans showed the stron-
gest adhesion ability, whereas S. sanguinis was sparsely
bound to saliva-coated HA discs, and showed decreased
counts of viable cells after the self-development stage.
Streptococcal species have been reported being one of
the many etiological factors of dental caries, and have
been considered as pioneer colonizers settled down to
salivary proteins and glycoproteins adsorbed on tooth
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enamel [29]. S. mutans has a greater ability to form
biofilm than the isolates of other Streptococcus species
colonising the human oral cavity [30], which agrees with
our result.

C. albicans showed good potential to build up the bio-
films in mono culture, as the viable cells from biofilms
grew twice more during the latter 48 h cultivation, al-
though the numbers were much lower compared to the
other strains at each time point. The original inoculum
of C. albicans was ten times lower than the other strains
under the same optical density at wave length of 490 nm
(ODygp), but its cell size was two times bigger than that
of the other strains. In addition, different shapes of C.
albicans were observed from CLSM images. C. albicans,
causing oral candidiasis, has been reported a poly-
morphic organism that can grow as yeast, pseudohyphae,
and hyphae; and Candida pathogenesis can be estab-
lished by virtue of Candida growth and yeast-to-hyphae
morphogenesis [31].

Viable cells of A. actinomycetemcomitans and F. nucle-
atum from the mono 64.5 h biofilms did not grow out
on BHI agar, but they were clearly seen in CLSM images
of 64.5 h biofilms. The reason might be that they were
in logarithmic decline phase in 64.5 h biofilms, so that
they were able to be seen in CLSM images but not de-
tectable on agar plates. Both strains have been related to
periodontitis [32, 33] and reported as late colonisers
[34], binding to receptors of pioneer colonisers. Our re-
sults confirmed the ability of A. actinomycetemcomitans
and F. nucleatum to connect to saliva pellicle without
the help of early colonisers, although the adhesion was
weak. Karched and coworkers [35] also have proved that
the aid of the first colonizers was not a necessary factor
for A. actinomycetemcomitans and F. nucleatum to form
biofilms in laboratory conditions.

To date only a limited number of studies have ad-
dressed mixed-species biofilms. Results from the current
study proved that strains, namely L.GG, C. albicans, S.
sanguinis and F. nucleatum, with poor growth ability in
mono-species biofilms demonstrated better abilities of
adhesion and reproduction in dual- and/or multi-species
biofilms. Similar results have been reported in dual stud-
ies, S. gordonii and S. mutans have shown increased bio-
film formation of C. albicans [36, 37]. Varposhti et al.
[38] have investigated biofilms of six respiratory tract
pathogenic bacteria, and their results have indicated that
the biofilm formation by two species was significantly
greater than its production by any of the single species.
Roder and co-workers also found this phenomenon in
four species combination isolated from meat chopper
and kitchen wall [39]. They suggest that growing with
neighbours is, in most cases, advantageous to the prod-
uctivity of the community [13]. Clinically it seems that
biofilms actively attempt to become poly-microbial,
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Fig. 5 a Maximum intensity projection of CLSM images. CLSM images of 64.5 h bioiflms from mono- and dual-species groups stained with LIVE/
DEAD® Baclight™ Bacterial Viability Kit. Live cells in green were stained with Syto 9 and dead cells in red were stained with propidium iodide.
Images were obtained with a 63x glycerol immersion objective. Scale bar is 50 um. b Maximum intensity projection of CLSM images. CLSM
images of 64.5 h bioiflms from multi-species groups stained with LIVE/DEAD® BacLight™ Bacterial Viability Kit. Live cells in green were stained with
Syto 9 and dead cells in red were stained with propidium iodide. 4sp = C. albicans + A. actinomycetemcomitans + F. nucleatum + S. sanguinis.
5sp=4sp +S. mutans. Images were obtained with a 63x glycerol immersion objective. Scale bar is 50 um
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apparently to improve their survivability [40]. Behind
these phenomena are intra- and inter-species communi-
cations, grouping into antagonistic and synergistic
effects on microbial community members. The interac-
tions described above clearly show synergistic results for
whole communities.

In the last decade, researchers have focused on
studying the antagonistic interactions between oral
micro-organisms in planktonic and biofilm forms, in
vivo and in vitro [41, 42]. To our knowledge, our
present study seems to be the first report to explore
effects of probiotics on defined oral multi-species bio-
films. In our model, L.GG slightly suppressed the in-
crease ratio of C. albicans in all groups, markedly
restrained the growth of S. sanguinis and F. nuclea-
tum in 4sp + L.GG group, and slightly reduced the ad-
hesion of S. mutans in L.GG + Sm group in in vitro
conditions. Our results agree with previous in vitro
studies. L.GG was able to inhibit the growth of oral
pathogens and opportunistic pathogens in laboratory
conditions [19, 20, 43, 44]. This study is an agreement
with the previous clinical findings showing that intake of
probiotics could significantly reduce the caries risk, gingi-
vitis, periodontal pocket depth and attachment loss, and
the counts of yeasts [2, 7-9, 41].

Interestingly, our results showed that C. albicans sig-
nificantly promoted the growth of L.GG. The mechan-
ism is unknown. C. albicans was revealed as a basal oral
mycobiome member in healthy individuals by multitag
454 pyrosequencing [45], but most studies relate it to
diseases, such as oral candidiasis and vaginal yeast infec-
tions [46, 47]. Only few studies have reported its contri-
bution to the balance of micro-ecology [11]. One
explanation is that lactate, which is generated by L.GG
[48], poses harmful effects on itself, but C. albicans is
able to metabolize it, and to reduce the accumulation
and toxic level for L.GG in the environment [37]. Benefi-
cial effects of oral pathogens on lactobacilli have also
been reported by Filoche et al. [49] by showing that
Actinomyces species and S. mutans were able to improve
the growth of Lactobacillus. The mechanism to this is
unclear, however.

The pH value of the spent broth varied due to glucose
fermentation and other metabolic activities of the micro-
organisms on the surface of saliva coated HA discs, in
the broth, and on the inner walls of 24-well-plates wells.
Our results showed that the number of viable cells in
biofilms correlated with lower pH values. S. mutans, S.
sanguinis, C. albicans and L.GG are well-known acid
producers [44, 50]. In the adhesion period, inoculated
planktonic micro-organisms adjusted themselves to the
new conditions in 24-well plates, and attached to the
surface of the discs, but the numbers of detected viable
cells from the discs were much lower than in the
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inoculations, thus indicating that the pH value measured
at 16,5 h was mainly contributed by planktonic form
cells. In the self-development stage, attached biofilm
cells were the only micro-organisms in the new wells.
After 48 h cultivation biofilms became matured and
spent media were filled with planktonic cells. Both bio-
films and planktonic cells affected the pH values of the
spent media.

Conclusion

In conclusion, in this in vitro model, L.GG was able to
integrate in all oral biofilms on saliva-coated HA discs,
and reduced the growth of S. sanguinis, C. albicans, and
lowered the biofilm-forming ability of F. nucleatum, but
showed only minor effects on the adhesion of S. mutans.
C. albicans significantly promoted the growth of L.GG.
Based on the findings in our study, we could surmise
that plausible clinical implication of probiotics could be
towards prevention and management of oral infectious
diseases by alteration of biofilm composition.

Methods

Strains, growth conditions, and inoculum preparation
The commercially available probiotic Lactobacillus
rhamnosus GG (L.GG) was tested against five oral
strains, namely Streptococcus mutans (Sm), Streptococcus
sanguinis (Ss), Aggregatibacter actinomycetemcomitans
(Aa), Candida albicans (Ca), and Fusobacterium nuclea-
tum (Fn) (Table 1). A. actinomycetemcomitans and F.
nucleatum were added to increase the complexity for
the multi-species groups. All the strains were maintained
as frozen stock at =80 °C in 20 % skim milk (Difco™, BD,
Becton, Dickinson and Company, Sparks, MD, USA).
Before each experiment, strains were cultivated on
respective agars (Table 1). Pure colonies of each strain
were inoculated in 5 mL corresponding broth, and
grown overnight at 37 °C anaerobically.

Strains grown overnight in broth were harvested by
centrifugation for 10 min at 3,000 x g, room temperature,
washed three times with 5 mL 0.9 % NaCl and re-
suspended in Biofilm Medium (BM, glucose as carbohy-
drate source) adapted from Lemos et al. [22]. The suspen-
sions were diluted to an OD,4g of 0.130 + 0.010 (similar to
McFarland standard No. 1, the concentration of each
strain was 10° CFU/mL, but for C. albicans it was
10’ CFU/mL) by a spectrophotometer (Multiscan Plus,
Labsystems, Helsinki, Finland, measured by 200 pL of
each well in a 96-well plate). Strains were pooled accord-
ing to the group setup (Table 1.). Thirteen experimental
groups were designed in this study, namely Group L.GG,
Group Sm, Group Ss, Group Aa, Group Ca, Group Fn,
Group L.GG + Sm, Group L.GG +Ss, Group L.GG + Ca,
Group 4sp, Group 5sp, Group L.GG + 4sp, and Group
L.GG + 5sp. Physiological saline was used as a negative
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Table 1 Strains and groups involved in this study
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a. Strains and growth conditions

Strain Origin Agar/Broth Growth conditions
Lactobacillus rhamnosus GG ATCC Valio Ltd., Helsinki, Finland de Man, Rogosa and 24 h,37°C, 5% CO,
53103 (LGG) Sharpe (MRS)

Candida albicans ATCC 10231 (Ca) American Type Culture Collection (ATCC)  Sabouraud 24 h, 37 °C, air

Streptococcus mutans ATCC 27351 (Sm) ATCC
Streptococcus sanguinis ATCC 10556 (Ss) ATCC
Aggregatibacter actinomycetemcomitans ATCC
ATCC 43718 (Aa)

Fusobacterium nucleatum ATCC 25586 (Fn) ATCC

Brain Heart Infusion (BHI) 24 h, 37 °C, 5 % CO,

BHI 24 h,37°C,5% CO,
BHI 24 h,37°C, 5% CO,
Brucella 48 h, 37 °C, in anaerobic condition

(mixture of 0.2 % O,, 5 % CO,,
9.9 % H,, 84.9 % N,)

b. Group setup of dual- and multi- species biofilm groups and respective agars and cultural conditions to detect viable cells from biofilms

Groups Strain(s) Agars and cultural conditions

LGG+Ca LGG, Ca 72 h, 37 °C,

L.GG+Ss LGG, Ss Sm, Ss, Aa, Fn: BHI in anaerobic condition
4SP Ss, Aa, Ca, Fn

4SP + L.GG Ss, Aa, Ca, Fn, LGG

5SP Ss, Aa, Ca, Fn, Sm

5SP + LGG Ss, Aa, Ca, Fn, Sm, LGG

control. When preparing mixed strains, each strain sus-
pension was pipetted in equal volume in each group.

Preparation of biofilms

Biofilms were grown on saliva-coated HA discs
(Clarkson Chromatography Products, Inc., South
Williamsport, PA, USA). The discs were 7.0 mm in
diameter and 1.8 mm high. The HA discs were placed
in a vertical position by disc holders bent from ortho-
dontic wire according to Lemos et al. [22] with minor
changes. The holders and the HA discs were auto-
claved after assembling.

To allow formation of a salivary pellicle, each HA disc
was placed in a well of a sterile 24-well polystyrene cell
culture plate, fully immersed and incubated with 1.8 mL
of processed saliva and gently shaken for 4 h at room
temperature. The processed saliva was prepared and
pasteurized according to Guggenheim et al. [23]. We
assessed the efficacy of pasteurization by plating
processed saliva samples onto Brucella agar (BBL™, BD,
Becton, Dickinson and Company, Sparks, MD, USA,
with Vitamin K3 10 ug/mL, Hemin 5 ug/mL, and 5 %
defibrinated horse blood from bio TRADING, Mijdrecht,
the Netherlands); after 72 h at 37 °C, no CFU were ob-
served on either aerobically or anaerobically incubated
plates.

When the saliva pellicle was formed, HA discs were
transferred to a new 24-well plate containing 2.5 mL BM
and 0.3 mL pooled strains, after two consecutive dip-
washes in another 24-well plate filled with 2.8 mL
physiological saline per well. The HA discs were then
incubated anaerobically at 37 °C for either 16.5 h or
64.5 h. Culture media were renewed at 16.5 h and
40.5 h. The discs were first washed by dipping twice into
2.8 mL physiological saline and then transferred to a
new 24-well plate containing 2.8 mL fresh BM per well.
Following medium replacement, the plates were
returned to the anaerobic incubator.

Harvesting the biofilms

At the end of their designated incubation times, one
portion of the HA discs was taken for counting the
cell number on the biofilms. After two dip washes in
physiological saline, each HA disc was transferred
into a sterile 50 mL polypropylene tube containing
5 mL of physiological saline at room temperature,
and vortexed (by Vortex-Genie® 2 mixer, Scientific
industries, Inc, Bohemia, N.Y., USA, speed control
to position 5) vigorously for 2 min, and sonicated
(by Wagner instrusonic, PS-Terd Oy, Lahti, Finland,
90/180 watts) for 5 sec at room temperature [23].
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Examination of harvested cells

Serial dilutions of the sonicated cells were cultivated on
agar plates (Table 1). Counts of L.GG, S. mutans, S.
sanguinis, A. actinomycetemcomitans, F. nucleatum, and
C. albicans were gained by observation of different colo-
nial morphology on MRS, BHI, and Sabouraud agars (de
Man, Rogosa and Sharpe; Brain Heart Infusion; Sabouraud
dextrose; Lab M Ltd, Bury, UK) incubated at 37 °C in a
5 % CO, or in anaerobic or air environments. After 72 h,
colony forming units (CFU) were counted. Total viable
counts in a group were calculated by the sum of the num-
ber of each strain.

The 64.5 h experiment was separated into two
stages for better analysis (Fig. 6). The first 16.5 h
was adhesion stage: cell suspensions were inoculated
into the wells with saliva-coated HA discs at 0 h (as
described in Preparation of biofilms), and planktonic
cells started to attach onto the surface of saliva-
coated HA discs during this stage. Inoculated vol-
umes of the cell suspensions (IVCS) were recorded
and the numbers of viable cells of the 16.5 h bio-
films (NVC16.5) were detected. The latter 48 h, from
16.5 h to 64.5 h, was named as self-development
stage: biofilms on discs transferred to new wells were
the only microbes in the new environment, where
biofilm grew and matured. The numbers of viable
cells of the 64.5 h biofilms (NVC64.5) were mea-
sured. In order to compare abilities of the strains to
build the connections to the saliva-coated HA discs
in the first stage, adhesion ratio of each strain was cal-
culated in the 13 groups. In self-development stage, the
increase ratio, standing for the ability of strains to
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reproduce themselves, of each strain and total strains were
also calculated. The adhesion ratio and increase ratio were
calculated by the equations below:

adhesion ratio = NVC16.5
" concentration of cell suspension x IVCS
(1)
i . NVC64.5
increase ratio = (2)

average of NV (C16.5

NVC16.5/64.5: viable cells of the 16.5/64.5 h biofilms
IVCS: inoculated volume of the cell suspension.

Confocal Laser Scanning Microscopy (CLSM)

Biofilms on saliva-coated HA discs were stained with
LIVE/DEAD BacLight™ Bacterial Viability Kit (catalog
number L7007, Molecular Probes™, Life Technologies™,
Eugene, Oregon, USA) solution, containing Syto 9 for
live cells and propidium iodide for dead cells. Afterwards
biofilms were sampled with distilled water. Prepared bio-
films were examined with an inverted microscope fitted
with an Argon laser (488 nm) for excitation and a TCS
SP8 computer-operated confocal laser scanning micros-
copy system (Leica Microsystems Gmbh Wetzlar,
Germany). Filters were set to 493—-522 nm for Syto9 and
618-676 nm for propidium iodide. CLSM images were
obtained with ax 63 glycerol immersion objective.
Each biofilm was scanned at randomly selected areas
as a series of vertical optical sections, each section
was 0.50 pm thick. Digital images were processed
with Image] [51].

' Adhesion stage .1

Self-development stage

Il

TIME  0h 16.5h 16.5h 40.5h 40.5h 64.5h
POINT
fﬁ ~\ s N\
DISC O > G--—>CFU
1/2
. J \_ )_> pH
( ) ( ) ( 3\ 4 N\ (" ~\ e ~\
DISC
o | O O O] | O Of
——>[pH ——>]|pH oH
\. J . J 4 ) \_ ) \ ) L 5
( h ( C p e N\ ~\ r ~
N
o« OB T OB O [0 O
e pH ==L H
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i icro- i Fresh medium Fresh medium
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confocal laser scanning microscopy

Fig. 6 Experimental algorithm for each group. CFU = viable cell counting from HA discs; pH = pH values of spent media; CLSM = observation with
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pH measurement of spent cultural media

The pH of spent media was measured by pH 1000 L (pHe-
nomenal®, VWR International, Rador, PA, USA) at all three
time points when HA discs were transferred into fresh
media. The spent media were centrifuged for 10 min,
3,000x g prior to pH measurement from the supernatant.

Statistical analysis

Data are shown as means + standard deviations. Statistical
analyses were performed with IBM SPSS Statistics version
22 for Windows. One way ANOVA and Bonferroni test
were used to determine statistical significance. A differ-
ence was deemed significant at P < 0.05.

Abbreviations

Aa, Aggregatibacter actinomycetemcomitans; ATCC, American Type Culture
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microscopy; Fn, Fusobacterium nucleatum; HA, hydroxyapatite; L.GG,
Lactobacillus rhamnosus GG; MRS, de Man, Rogosa and Sharpe; NS, not
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Streptococcus mutans; Ss, Streptococcus sanguinis
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