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Abstract

Background: Multiple types of solid waste in developing countries is disposed of together in dumpsites where
there is interaction between humans, animals and the bacteria in the waste. To study the bacteria at the dumpsite
and the associated risks, previous studies have focused on culturable, leaving behind a great number of unculturable
bacteria. This study focuses on a more comprehensive approach to study bacteria at the dumpsite. Since the site
comprised of unsorted wastes, a qualitative survey was first performed to identify the variety of solid waste as this has
influence on the microbial composition. Thus, domestic (Dom), biomedical (Biom), river sludge (Riv), and fecal material
of pigs scavenging on the dumpsite (FecD) were sampled. Total DNA was extracted from 78 samples and the v4-16S
rRNA amplicons was characterized using an Illumina MiSeq platform.

Results: A total of 8,469,294 sequences passed quality control. Catchall analysis predicted a mean of 8243 species per
sample. Diversity was high with an average InvSimpson index of 44.21 ± 1.44. A total of 35 phyla were detected and
the predominant were Firmicutes (38 %), Proteobacteria (35 %), Bacteroidetes (13 %) and Actinobacteria (3 %). Overall
76,862 OTUs were detected, however, only 20 % were found more than 10 times. The predominant OTUs were
Acinetobacter (12.1 %), Clostridium sensu stricto (4.8 %), Proteinclasticum and Lactobacillus both at (3.4 %),
Enterococcus (2.9 %) and Escherichia/Shigella (1.7 %). Indicator analysis (P ≤ 0.05, indicator value ≥ 70) shows that
Halomonas, Idiomarina, Tisierella and Proteiniclasticum were associated with Biom; Enterococcus, Bifidobacteria, and
Clostridium sensu stricto with FecD and Flavobacteria, Lysobacter and Commamonas to Riv. Acinetobacter and
Clostridium sensu stricto were found in 62 % and 49 % of all samples, respectively, at the relative abundance of
1 %. None of OTUs was found across all samples.

Conclusions: This study provides a comprehensive report on the abundance and diversity bacteria in municipal
dumpsite. The species richness reported here shows the complexity of this man-made ecosystem and calls for
further research to assess for a link between human diseases and the dumpsite. This would provide insight into
proper disposal of the waste, as well as, limit the risks to human health associated with the dumpsite.
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Background
The amount of solid waste generated has risen due to the
increasing urban population in most developing countries
[1–3]. Limited resources and inefficient infrastructure pre-
vent proper waste separation leading to waste remaining
in their production sites since it does not get transported
to the final dumpsite. The lack of proper waste manage-
ment systems has also created a dumpsite that includes
solid waste, such as plastics, organic waste from house-
holds, markets, and abattoirs, agricultural waste, industrial
waste, and chemical, pharmaceutical, and biomedical
waste. Unattended wastes on dumpsites attract insects,
birds, and rodents, as well as, domestic and wild animals.
Livestock, such as pigs, goats, and cattle scavenge on this
waste. Humans, including children also visit the dumpsite
to pick waste without protective gear. The unique, man-
made ecosystem in the Arusha municipality in Tanzania,
representing conditions in other developing cities, has the
potential to cause serious impacts to public health.
Studies on the abundance and diversity of bacteria in

environments, especially at interfaces like the dumpsite
with human and animal activity, would enrich our under-
standing of the risks from such interfaces. The presence of
disease vectors, such as insects, rodents, and several other
small wild animals, at dumpsites can potentially spread
pathogens from the dumpsite to other habitats. This high-
lights the importance of a need for a comprehensive study
of the abundance and diversity of bacteria in municipal
dumpsites.
Previous studies have only focused on the identification

of disease vectors and culturable bacteria on the dumpsite.
For example, studies by Ahmed et al., and Onyindo et al.,
[4, 5] report Periplaneta americanus (Cockroach), Musca
domestica (House fly), and Ophyra leucostoma (Black gar-
bage fly) and Stomoxys calcitrans (stable fly) the most
prevalent disease vectors on the dumpsite. Awisan et al.,
[6] found Staphylococcus aureus, Pseudomonas aerugio-
nosa, Klebsiella pneumonia and Escherichia coli as the
aerobic and opportunistic bacteria associated to clinical
diseases in Irisan dumpsite, and Emmanuel et al., [7]
found antibiotic resistant Salmonella spp., Shigella spp.,
and Vibrio cholerae, Proteus spp., and Pseudomonas spp.
from the Utisols dumpsite. However, these methods detect
less than 1 % of bacteria found in a particular environ-
ment [8, 9]. Other studies have used molecular ap-
proaches to identify culturable and unculturable bacteria
in a sample, yet, these techniques, such as Sanger sequen-
cing [10, 11], are tedious and inefficient.
In the current study, total genomic DNA was extracted

from samples collected from the different types of solid
wastes in the dumpsites and the v4 region of the16S rRNA
amplicons were sequenced using a high throughput
Illumina MiSeq platform. To our knowledge, this is the
first report using culture independent approaches and

high throughput sequencing to study bacterial abundance
and diversity in a municipal dumpsite where interaction
between the microbes, animals, disease vectors, and
humans is common.

Results
Qualitative survey of the dumpsite
Qualitative survey of the dumpsite revealed the pres-
ence of different types of unsorted solid wastes on the
dumpsite. Domestic and wild feral animals as well as
people were found interacting on the dumpsite. Diversity
of animals and solid wastes on the dumpsite is shown in
Additional file 1.

Diversities of bacterial communities on dumpsite
A total of 8,469,294 v4 region of 16S rRNA gene sequences
of bacteria from 78 solid wastes samples passed all quality
control filters. The number of high quality sequences
per sample ranged from 329 to 291,482 (mean 108,581,
SD 56,553). Catchall analysis of richness predicted an
overall mean of 8243 ± 759 species per sample (range
349–21,092, SD 4804). Good’s coverage ranged from
0.9766 to 0.9934 (mean 0.9837, SD 0.0083). Rarefaction
curves for different types of solid waste are presented
in Additional file 2. The overall diversity of bacteria popula-
tions was high with an average inverse Simpson index of
44.21 ± 1.44, Shannon’s evenness average 4.95 ± 0.02, Chao1
richness estimator of 5926 ± 239, and an abundance based
coverage estimator (ACE) of 7202 ± 228.
Thirty-five bacterial phyla were detected, however, only

seven of these accounted for more than 93 % of all se-
quences. The predominant phyla were Firmicutes (38 %),
Proteobacteria (35 %), Bacteroidetes (13 %), Actinobacteria
(3 %), Acidobacteria (2 %), Chloroflexi (2 %) and Spiro-
chaetes (1 %). A large number of phyla were rare and
had < 1 % of all sequences (Fig. 1). The unclassified bac-
teria at phylum level accounted for 2.4 % of all sequences.
The heatmap (Additional file 3) shows the abundance and
distribution of the predominant bacteria phyla on the
dumpsite. When each type of solid waste was separately
analysed, Proteobacteria was the most predominant in
Biom (37.4 %), Dom (35.7 %) and Riv (42.5 %) solid
wastes, while Firmicutes predominated in FecD (59.1 %)
only. Majority of the bacterial phyla in all solid waste were
rare and contributed < 0.1 % of all sequences. Biom and
FecD had only 11 phyla accounted for 98.2 % and 99.7 %
of all sequences, respectively. Likewise in Dom and Riv, 12
phyla accounted for 99.6 % and 99.4 % of all sequences,
respectively.
A total of 76,862 OTUs were detected, yet, only 20 %

(15,272/76,864) were identified more than ten times. At
family level; Moraxellaceae (12 %), Clostridiaceae-1 (8 %),
Ruminococcaceae (5 %), Lachnospraceae (3.7 %) and
Lactobacillaceae (3.4 %) were the most abundant.
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Fig. 1 Relative abundance of predominant bacterial phyla on dumpsite. a show the overall predominant taxa in different solid wastes pooled together.
Different colours represent types of taxa and their relative abundance. b show levels of abundance of each predominant taxon when each solid waste was
analysed separately. Solid biomedical waste (Biom, n =15 domestic solid waste (Dom, n= 33), faecal material of pigs on scavenging on dumpsite (FecD,
n= 20) and in river sludge (Riv, n =8). Only phyla in abundance≥ 0.1 % are shown. Bacterial taxa were assigned at 97 % sequence similarity cut-off level
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Unclassified bacteria accounted for about 14 % of all se-
quences at family level. A total of 1350 genera were de-
tected, of which 16 % (220/1350) were unclassified.
Acinetobacter was the most abundant genus accounting
for (12.1 %) of all sequences followed by Clostridium
sensu stricto (4.8 %), Proteiniclasticum (3.4 %), Lactoba-
cillus (3.4 %), Prevotella (2.6 %), Enterococcus (2.9 %)
and Escherichia/Shigella (1.7 %) (Fig. 2).
The core microbiota analyses revealed that none of the

OTUs were present across all 78 samples at relative
abundance of 1 % or more. Only one OTU, Acinetobacter
(assigned sequences 688,875) was found in 62 % (48/78) of
samples and Clostridium sensu stricto (assigned sequences
202,494) in 49 % (38/78) of samples. When each type of
solid waste was analysed separately, Proteiniclasticum and
Acinetobacter were found in 67 % (10/15) of Biom; Clostri-
dium_sensu_stricto in 80 % (16/20) of FecD; Acinetobacter
and Proteiniclasticum were found in 73 % (24/33) and
55 % (18/33) of Dom, respectively, and in Riv, 80 % (8/10)
of samples had Acinetobacter. Indicator analysis clearly
revealed higher affiliation of some bacterial OTUs to
specific solid waste on the dumpsite. Thirteen OTUs were
significantly associated with Biom (Indicator value ≥ 70 and
P ≤ 0.05) amongst which are Halomonas, Alishewanella,
and Proteiniclasticum; five were associated to FecD, for
example Enterococcus, Bifidobacterium, Clostridium sensu

stricto and Cellulosilyticum, and nine were associated with
Riv, such as Commamonas, Lysobacter and Flavobacter-
ium (Table 1). None of the OTUs were significantly affili-
ated with Dom at indicator value ≥ 70 and P ≤ 0.05.
Of the 35 bacterial phyla detected, Metastats revealed

11 phyla significantly different between Dom and FecD.
Further, at genus level, out of 1428 differentially abundant
genera, 173 were significantly different between Dom and
FecD. When Biom and FecD were compared, 8 phyla and
144 genera were significantly different. The Biom and
Dom comparison revealed no difference in bacteria com-
munity at phylum level (P > 0.05), but 9 bacterial family
and 39 genera were significantly different. Of the 1428
genera found in Biom and Dom, 16 % (227/1428) were
unclassified. The phylum Lentisphaerae, 66 bacterial
family and 180 genera were significantly different between
Dom and Riv solid waste (Additional file 4).

Comparison of the bacteria community structure and
membership between solid wastes
Phylogenetic tree generated using the Yue & Clayton
measures as well as the Jaccard index (Additional file 5)
were used in the comparison of the bacterial community
structure and membership for different solid wastes.
Results of the Parsimony test obtained after the phylo-
genetic analysis of the Yue and Clayton tree ignoring

Fig. 2 Abundance of predominant bacteria at genus level in the municipal dumpsite. Bar graph depicts the percentage of sequence reads assigned
to each taxon at 97 % sequence similarity cut-off
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the branch length revealed a significant difference in bac-
terial community structure between Dom-FecD (P =
0.011) and Dom-Riv (P = 0.028). There was no difference
in community structure between Biom-Dom (P = 0.111),
Biom-FecD (P = 0.068), Biom-Riv (P = 0.5240 and FecD-
Riv (P = 0.100). When branch length was considered,
significantly different structures were found between
Dom-Riv (P = 0.001) and FecD-Riv (P = 0.034), while
none was detected between Biom-Dom, Biom-FecD,
Dom-FecD and Biom-Riv (P > 0.05) using Unweighted
UniFrac (Table 2). Further, comparison of the community
membership using the phylogenetic tree based on the
Jaccard index; the parsimony test revealed that Biom-Dom,

Dom-FecD and Biom-Riv (P > 0.05) (Table 3) have the same
community membership, while in Biom-FecD (P = 0.016),
Dom-Riv (P = 0.002) and FecD-Riv (P = 0.002) were differ-
ent. When Unweighted UniFrac analysis was performed,
only Dom-FecD (P = 0.039) had significantly different
community membership. Analysis of molecular variance
revealed a significant similarity in bacterial community be-
tween Biom-Dom (Yue & Clayton, P = 0.475, Jaccard
index, P = 0.012), while the rest of the groups were statisti-
cally different (P < 0.008) (Tables 3 and 4).
Further, Fig. 3a and b are the graphic representation of

the PCoA plot based on Bray-Curtis distances. The spatial
separation between centers of the clouds of the bacteria

Table 1 Indicator analysis showing bacterial OTUs associated to different solid waste

OTUs Description (Genus) #sequences Indicator value P-value

Biomedical solid waste (Biom)

Otu000140 Idiomarina 6078 89 0.001

Otu000011 Halomonas 83211 86 0.022

Otu000116 Sporolactobacillaceae_incertae_sedis 7683 82 0.023

Otu000035 Tissierella 18780 80 0.007

Otu000080 Alkaliflexus 16213 79 0.004

Otu000136 Saccharofermentans 5945 78 0.005

Otu000124 Alishewanella 13449 78 0.053

Otu000003 Proteiniclasticum 269626 78 0.001

Otu000141 Unclassified Bacteroidetes 7998 75 0.001

Otu000411 Proteiniclasticum 3303 74 0.006

Otu000525 Unclassified Bacteroidetes 346 73 0.001

Otu000567 Pseudomonas 2187 71 0.013

Otu000069 Corynebacterium 18152 70 0.046

Faecal material of pigs scavenging on dumpsite (FecD)

Otu000114 Clostridium_sensu_stricto 12444 78 0.039

Otu000477 Unclassified Lachnospraceae 2394 78 0.008

Otu000310 Clostridium_sensu_stricto 2749 77 0.009

Otu000005 Enterococcus 159372 77 0.005

Otu000104 Bifidobacterium 11495 73 0.007

River sludge (Riv)

Otu000054 Cloacibacterium 30207 84 0.051

Otu000807 Flavobacterium 2218 84 0.003

Otu000037 Lysobacter 35128 81 0.013

Otu001247 Unclassified Xanthomonadaceae 849 77 0.001

Otu001672 Lacibacter 479 77 0.001

Otu000017 Commamonas 54114 77 0.039

Otu001307 Ferruginibacter 613 75 0.001

Otu000133 Dechloromonas 7673 75 0.039

Otu001398 Novosphingobium 571 74 0.001

Otu000596 Flavobacterium 2057 73 0.002

Otu001167 Niabella 931 72 0.005

None of the OTUs were affiliated to the Dom waste at p ≤ 0.05 and indicator value ≥ 70
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community structure of different solid waste using Amova
have shown statistical difference between Biom-FecD (P <
0.001), Dom-FecD (P = 0.002) and FecD-Riv (P = 0.004),
but the same community structure between Biom-Dom
(P = 0.012) which is clearly depicted in a PCoA plot
constructed from a pool of bacteria community of the
same waste type (Fig. 3b). Bacterial OTUs responsible
for the difference in clustering of solid waste types were
Halomonas, Acinetobacter and Lactobacillus from Biom
and Dom solid waste; Enterococcus and Kurthia in
FecD, and Lysobacter in Riv.

Discussion
This study has identified a substantial abundance and di-
versity of bacteria in a municipal dumpsite in Arusha,
Tanzania. The estimated richness (8243 species) per
sample and high diversity (InvSimpson index = 44.21) of
bacteria on the dumpsite surpasses many of the previous
culture based studies. The detection of 76,862 OTUs
from 35 bacterial phyla using high throughput sequencing
technique gave a more comprehensive look at the bacter-
ial community on the dumpsite. Of the four predominant
phyla, Firmicutes was the overall most abundant and in-
cludes a variety of gram-positive bacteria. Its particularly
dominance in fecal material of pigs is consistent with pre-
vious reports by Pajarillo et al., [12] as well as in horse
fecal microbiota by Costa et al., [13] and Shepherd et al.,
[14]. The predominance of Firmicutes in FecD, especially
the genus Clostridium sensu stricto may be due to the

feeding habits of pigs on fibre from a variety of un-
sorted solid waste as reported by Middelbos et al., [15]
and Yildirim et al.,[16].
The presence of some bacterial genera exclusively to

some types of solid waste, justifies a need to sort and
treat solid wastes differently. This would deter a possible
genetic material exchange, a process which can result in
the emergence and re-emergence of new bacteria of
public health importance. The revealed affiliation of
Enterococcus to FecD is consistent with previous find-
ings in fecal material of pigs [17–19]. The potential of
Enterococcus in nosocomial infections and multidrug
resistance [20–22], suggests a need to further examine
the antibacterial resistance of isolates from pigs scav-
enging on dumpsites, and their relation to human and
animal pathogens.
The affiliation of Halomonas (1 %) to Biom is consistent

with findings in gold mines [23] and in contaminated
heavy metals wastes [24], as both environments are rich in
chemicals. Halomonas metabolize cyanide [25] and some
are reported to carry plasmid pZM3H which confers re-
sistance to different chemicals [24], leading to their ap-
plication in soil remediation [25, 26]. The fact that
these bacteria are predominant, it would be worthwhile
to study their roles in the dumpsite, and examining if
they contain plasmids that confer resistance to different
chemicals. This could lead into their application in the
control of chemical pollutants, especially cyanide at the
dumpsite.

Table 2 Comparison of bacterial community structure between different solid wastes

Parsimony Unweighted UniFrac Amova

Groups ParsScore ParsSig UWscore UWSig FScore P* - value

Biom-Dom 10 0.111 0.894454 0.052009 2.28212 0.012

Biom-FecD 8 0.068 0.910399 0.085009 3.14737 <0.001

Dom-FecD 10 0.011 0.853535 0.127009 3.38992 0.002

Biom-Riv 7 0.524 0.934552 0.197003 1.92136 0.016

Dom-Riv 6 0.028 0.959495 0.001009 1.80755 0.028

FecD-Riv 6 0.1 0.967847 0.034006 2.46059 0.004

P* = Correction for multiple comparisons (Bonferroni): Significance P- value ≤ 0.0083. Analysis was based on phylogenetic tree generated using Yue &
Clayton measure

Table 3 Comparison of bacteria community membership between different solid wastes

Parsimony Unweighted UniFrac Amova

Groups ParsScore ParsSig UWScore UWSig FScore P* - value

Biom-Dom 11 0.297 0.982725 0.149009 0.988888 0.475

Biom-FecD 7 0.016 0.972863 0.235009 2.24675 < 0.001

Dom-FecD 12 0.08 0.981599 0.039009 2.39594 < 0.001

Biom-Riv 5 0.061 0.98467 0.055007 1.37949 < 0.005

Dom-Riv 5 0.002 0.98451 0.060009 1.57885 0.004

FecD-Riv 4 0.003 0.976693 0.159006 2.25111 0.001

P* = Correction for multiple comparisons (Bonferroni): significance P- value ≤ 0.0083. Analysis was based on phylogenetic tree generated using Jaccard index
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Proteobacteria was the predominant second overall
phylum, and the most abundant in Biom, Dom and Riv
solid wastes. Several studies have linked the predomin-
ance of this phylum with human and animals diseases
[13, 27, 28]. At the genus level, the overall predomin-
ance of Acinetobacter (12 %) on the dumpsite is consistent
with report by Saini et al., [29] and Hossein et al., [30] in
solid waste. Previous studies report some species of Acine-
tobacter associated with human and animal’s diseases. A
case example is the existence of Acinetobacter in clinical
isolates from intensive care unit [31], animal with urinary
tract infections [32], and as a causative agent of the noso-
comial outbreak in Spain [33]. Its predominance in such
extreme environment may be linked to their re-counted
capacity to detoxify chemicals as well as their multidrug
resistance [33–35] which would support their survival in
an environment with diverse chemicals from unsorted
solid wastes.
Escherichia and Shigella spp. were among the predom-

inant genera on the dumpsite. These bacteria were also
reported in several culture based studies [36–38]. Their
capacity to acquire multidrug resistance and their associ-
ation to human and animal pathogens is well known
[39–41]. The abundance of these bacteria within the
dumpsite with such extraordinary interaction between
animals, humans and microbes may be causing potential
health risks. The predominance of these bacteria at the
dumpsite underscores a need to study on whether a link
exists between bacteria on the dumpsite and the known
pathogens. Understanding the potential health risks as-
sociated with bacteria from the dumpsite would improve
the health of not only the humans interacting with the
dumpsite, but with all others that may come in contact
with them or other animals.
The significant similarity in bacterial community struc-

ture and membership between Biom-Dom, Biom—Riv,
and FecD—Riv, implies that similar types of bacteria are
found in multiple types of solid wastes. This may be at-
tributed to random disposal of unsorted wastes in the
same dumpsite and hence, exchange of bacteria between
them. Despite all samples were from the same dumpsite
whereby exchange of microbes between solid wastes is
possible; distinct affiliation of some bacteria OTUs exclu-
sively to some waste was evident. This phenomenon

implies that some bacteria have specific nutritional
requirement to survive. It would be interesting to study
the bacterial community of sorted solid wastes to
examine changes in abundance and diversity.

Conclusion
We report an ever rich and diverse bacterial community
in Arusha municipal dumpsite. The species richness re-
ported here shows the complexity of this man-made
ecosystem and calls for further research to assess for a
link between human diseases and the dumpsite. Under-
standing the role of the bacteria within the dumpsite
and bacteria found within different types of waste will
provide insight into proper disposal of the waste, as well
as, limit the risks to human health associated with the
dumpsite.

Methods
Study site and samples
The site for this study was the Arusha municipal dump-
site, where waste from different urban sources is thrown.
Sampling was performed in March through June of 2013,
whereby prior to sample collection, a qualitative survey
was conducted to identify types of most common waste
on the dumpsite as these wastes have influence on micro-
bial composition. This comprised waste from households
and markets (foods, pampers, clothes, etc.), chemical and
biomedical waste (drug containers, used syringes), various
plastics and used glassware, waste from abattoirs and
brewers, as well as fecal matter from animals scavenging
on the dump itself. Samples for this study were the
fresh fecal material of pigs scavenging on the dump
(FecD, n = 20), domestic solid waste (Dom, n = 33), solid
biomedical waste (Biom, n = 15), and run-off water sludge
adjoining a nearby river (Riv, n = 8). The core of fresh fecal
materials of pigs as well as solid waste and sludge were
collected into sterile plastic containers, and, within 1 h,
the samples were transported on ice to the laboratory,
where total DNA was extracted.

Extraction of total genomic DNA
Total genomic DNA was extracted from about 250 mg
of solid waste samples using PowerSoil™ DNA extraction
kit (MOBIO Laboratories, Carlsbad, CA) according to

Table 4 Summary of good quality sequences and diversity indices of bacteria from different solid waste at species level
bSamples Valid reads OTUs ACEa Chao1a Shannona InvSimpsona

Dom 3,466,427 26,243 7338 ± 230 6788 ± 244 5 ± 1.0 26.9 ± 0.7

Biom 1,706,442 18,994 8218 ± 249 6756 ± 257 5.1 ± 0.01 54.2 ± 1.3

Riv 926,648 15,025 10,422 ± 283 8219 ± 287 5.6 ± 0.01 58.5 ± 1.2

FecD 2,369,595 16,697 6183 ± 214 5073 ± 226 4.5 ± 0.01 31.2 ± 0.9

OTUs Operational taxonomic units, ACE abundance based coverage estimator
aCalculations were performed using Mothur package with an OTU definition at > 97 % sequence similarity
bSamples: Dom—Domestic solid waste; Biom—Solid biomedical waste; Riv—River sludge; FecD—Faecal material of pigs scavenging on dumpsite
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Fig. 3 Principal coordinate analysis plots showing clustering of bacterial community from different solid wastes. The PCoA plot was built based
on Bray-Curtis dissimilarity distances. a was generated from individual samples from different waste types while in (b) bacteria population from
the same waste type was pooled together. Distances between symbols on the ordination plot reflect relative dissimilarities of bacteria community
between solid wastes. The OTUs were estimated at 97 % sequence similarity cut-off
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the manufacturer’s protocol. Quality and quantity of
total DNA was verified with a NanoDrop ND-2000c
spectrophotometer (Thermo Scientific) and gel electro-
phoresis run in 0.8 % agarose and visualized by ultraviolet
illumination after staining with gel red™. The DNA was
stored at -20oC until further processing.

16S rRNA amplification, Library Construction and
Sequencing
The Illumina sequencing preparation guide [42] was used
to prepare a pooled amplicon of the v4 region of 16S rRNA
gene for sequencing. Primers (515 F/806R) designed for v4
region of 16S rRNA and protocols were adapted from
Caporaso [43]. Duplicate reactions were done in PCR mas-
ter mix reaction in 20 μl AccuPower® Taq PCR PreMix
composed of 0.5 μl of 10pmol/μl each for the forward and
reverse primers, 17 μl molecular grade water, and 2 μl
DNA template. The PCR program was run on GeneAMP™
PCR system 9700 set at 95 oC for 3 min, 35 cycles of 94 oC
for 45 s, 50 oC for 60 s and 72 oC for 90 s and a final exten-
sion at 72 oC for 10 min. Amplicon quality was visualized
using gel electrophoresis, and then pooled and purified
using QIAquick® PCR purification kit (Qiagen, German)
following manufacturer’s protocol. Purified PCR prod-
ucts were normalized to 120 ng. DNA was quantified
using Qubit® dsDNA assay kit in Qubit fluorometer 2.0
(Invitrogen, Life Technologies) and the quality was
assessed using Agilent DNA 1000 Chip in Agilent 2100
Bioanalyzer (Agilent Technologies, Waldbronn, Germany.
Library denaturing, dilution, and PhiX control preparation

was done as described in the 16S metagenomic sequencing
library preparation guide [42]. Libraries were denatured and
primers were used according to the method described in
Caporaso [43]. Sequencing of the library was performed
with the Illumina MiSeq platform (San Diego, USA) using
2 × 250 paired- end chemistry at the BecA—ILRI Hub gen-
omic platform, Nairobi, Kenya.

Sequence data analysis and statistics
The Mothur package algorithms (v1.34.1) were used for
both quality control and sequence data analysis [44]. After
paired end reads were assembled, sequences were
aligned with the Silva 16S rRNA reference database
(www.arb-silva.de) [45]. Sequences that were < 239 bp
and > 260 bp in length, contained >2 ambiguous base
calls or long runs (>8 bp) of homopolymers, or did not
align with the correct region were removed. Chimeras were
identified using Uchime [46] and eliminated. Taxonomy
was assigned using the RDP taxonomy database (http://
rdp.cme.msu.edu/index.jsp) [47]. Sequences were binned
into operational taxonomic units (OTUs) at 97 % sequence
similarity cut-off.
Species richness was assessed with Chao1 [48] and abun-

dance based coverage estimator ACE [49] while evenness

and diversity of species were estimated by Shannon [50],
jackknife [51] and inverse Simpson [52] indices as well as
catchall analysis [53]. All analyses were performed using
built-in commands in Mothur v1.34.1. Rarefaction analyses
were done at a maximum of 97 % sequence similarity
cut-off and was plotted using Phyloseq package [54] in
R version 3.1.2. In order to compare bacterial populations
between different solid wastes in the same municipal
dumpsite, subsampling of sequences from different wastes
was done to normalize them for efficient comparison [55].
This consisted of random selection of a number of se-
quences from each sample consistent to the lowest abun-
dance in all samples. The community membership was
compared using the traditional Jaccard index, while popu-
lation structure was assessed using the Yue & Clayton
measure of dissimilarity. Dendrograms were created using
Mothur to compare the similarity of bacterial populations
among all sample types using both Jaccard index and Yue
& Clayton measure which account for the relative abun-
dances in each sample. Figures were generated by FigTree
v1.4.2. [56].
To check if the bacterial communities differed signifi-

cantly between solid wastes, the parsimony [57] and
Unweighted UniFrac [58] tests were done. The MOTHUR
commands “parsimony” and “Unifrac.Unweighted”, re-
spectively, were applied to the Jaccard and the Yue &
Clayton OTU based phylogenetic tree. The statistical sig-
nificance of the difference in genetic diversity of bacteria
community within each solid waste type from the average
genetic diversity of both communities pooled together
was also assessed using Analysis of Molecular Variance
(AMOVA) [59].
The core microbiota analysis was performed in Mothur

with command “get.coremicrobiome” and it consisted of
identification of OTUs (at relative abundance of 1 %)
present in all samples when pooled together and also
when each type of solid waste was individually analysed.
Indicator analysis [60] was used to test for possible OTUs
affiliated to different types of solid waste. Indicator values
(IV) ranged from 1 to 100 with higher values for stron-
ger indicators. Though literature considers indicator
values > 30 and P-value ≤ 0.05 as good indicators [60],
in this study only OTUs with indicator values ≥ 70 and
P ≤ 0.05 were judged as having strong affiliation to par-
ticular solid waste. The Metastats program [61] was
used to identify statistically different OTUs among solid
wastes. The shared OTUs file, consensus taxonomy file,
and metadata file generated in Mothur v.1.34.1 were
imported into METAGENassist [62] where visualization
using a heatmap, bar charts and PCA plots was done
get more insights on the nature of bacteria present on
dumpsite. The BIOM file generated in Mothur was
imported into MEGAN5 v5.5.3 [63] where Principal co-
ordinate analysis and relative abundance of different
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taxa were visualized. A p-value of ≤ 0.05 was considered
significant for all comparisons.
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