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The calcineruin inhibitor cyclosporine a
synergistically enhances the susceptibility
of Candida albicans biofilms to fluconazole
by multiple mechanisms
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Abstract

Background: Biofilms produced by Candida albicans (C. albicans) are intrinsically resistant to fungicidal agents,
which are a main cause of the pathogenesis of catheter infections. Several lines of evidence have demonstrated
that calcineurin inhibitor FK506 or cyclosporine A (CsA) can remarkably enhance the antifungal activity of
fluconazole (FLC) against biofilm-producing C. albicans strain infections. The aim of present study is thus to
interrogate the mechanism underpinning the synergistic effect of FLC and calcineurin inhibitors.

Results: Twenty four clinical C. albicans strains isolated from bloodstream showed a distinct capacity of biofilm
formation. A combination of calcineurin inhibitor CsA and FLC exhibited a dose-dependent synergistic antifungal
effect on the growth and biofilm formation of C. albicans isolates as determined by a XTT assay and fluorescent
microscopy assay. The synergistic effect was accompanied with a significantly down-regulated expression of
adhesion-related genes ALS3, hypha-related genes HWP1, ABC transporter drug-resistant genes CDR1 and MDRT,
and FLC targeting gene, encoding sterol 14alpha-demethylase (ERGTT) in clinical C. albicans isolates. Furthermore,
an addition of CsA significantly reduced the cellular surface hydrophobicity but increased intracellular calcium
concentration as determined by a flow cytometry assay (p < 0.05).

Conclusion: The results presented in this report demonstrated that the synergistic effect of CsA and FLC on
inhibited C albicans biofilm formation and enhanced susceptibility to FLC was in part through a mechanism
involved in suppressing the expression of biofilm related and drug-resistant genes, and reducing cellular surface
hydrophobicity, as well as evoking intracellular calcium concentration.
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Background biofilm not only provides a protection from environmental

The infection of Candida albicans (C. albicans) con-
tinues to be a major cause of high mortality among
immunocompromised and hospitalized patients, and the
bloodstream Candida infection has been listed as the
third most common causes of nosocomial bacteremia
and the most common etiologic agent of fungal-related
biofilm infection [1, 2]. With an ability to form biofilm seen
in the most microorganisms, a formation of C. albican
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stress, but it also allows a horizontal transfer of genes that
potentially encode antibiotic resistance, sequentially
enhances the resistance of microorganisms to an antimicro-
bial agent by up to 1000-fold greater than that needed for a
treatment of their planktonic counterparts [3, 4].
Fluconazole (FLC) is a member of the azole class,
organic compounds posses a five-membered heterocyclic
ring with two double bonds, which is the most commonly
used first-line agent in the prevention and treatment for
patients with candidemia or suspected invasive candidia-
sis, through a mechanism by which the FLC is able to
functionally target encoding sterol 14alpha-demethylase
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(ERG11), an essential enzyme in the ergosterol biosyn-
thetic pathway of C. albican [5]. However, FLC was found
to be ineffective in treatment of C. albicans biofilm, and
the formation of biofilm has been demonstrated to
contribute to the failure of anti-fungal treatment, includ-
ing FLC and other agents, which has been attributed to a
compromise in C. albicans cell membrane integrity caused
by reduced sterols [6]. Intriguingly, mounting evidence
has revealed that the antifungal activity of FLC in C.
albicans biofilm killing could be synergistically enhanced
when it was employed in a combination with some antibi-
otics or immunosuppressants [7-14]. Among them, the
calcineurin inhibitors, such as cyclosporine A (CsA) and
FK506 have spurred an increased interest [14—19].

Calcineurin is a Ca**-calmodulin-activated phosphatase,
which is a multifunctional regulator with functions in gov-
erning fungal stress responses, physiological and cell cycle
progression, biofilm formation, antifungal resistance, viru-
lence and pathogenesis, and is essential for C. albicans sur-
vival during membrane stress [20-23]. Several lines of
evidence have uncovered that C. albicans was resistant to
calcineurin inhibitors of CsA and FK506, despite some fun-
gal species were susceptible to these agents. Notably, a
combination of either CsA or FK506 with the fluconazole
exhibited a synergistic anti-fungal activity to both of plank-
tonic and biofilm C. albicans [14-17, 20, 24]. Particularly,
the calcineurin inhibitor CsA was recently found to be able
to enhance the susceptibility of biofilm-producing C. albi-
cans to fluconazole [24]. These results implied that target-
ing calcineurin signaling using a combination of calcineurin
inhibitor FK506 or CsA and FLC might be a promising an-
tifungal strategy for prevention and treatment of biofilm C.
albicans infection. However, the underlying mechanism by
which a calcineurin inhibitor enhances the susceptibility of
C. albicans to the most common antifungal agent, FLC has
yet been fully understood.

In the present report, we aimed to interrogate the
molecular mechanism of calcineurin inhibitor CsA in
enhancing the susceptibility of biofilm-producing C.
albicans to FLC by accessing its impacts on the alterations
of the expression of drug-transporters and adhesion asso-
ciated genes, cellular surface hydrophobicity (CSH) and
intracellular calcium ([Ca(2+)]) levels. Our results demon-
strated that an addition of CsA led an enhanced suscepti-
bility of C. albicans to FLC in part through a mechanism
by down-regulating the expression of genes associated to
ABC transporter and adhesion, a decrease of CSH and an
increased intracellular calcium ([Ca(2+)]) level.

Results

Biofilm-producing capacity of clinical Candida albicans
isolates

In order to evaluate the clinical significance of biofilm in
clinical C. albicans infection, the capacity of biofilm
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formation of 24 C. albicans clinical isolates were exam-
ined. The result showed distinct biofilm-producing capaci-
ties of these clinical isolates, which could be categorized
into three groups, strain with capacity of low biofilm
formation (LBF), intermediate biofilm formation (IBF) and
high biofilm formation (HBF), according the absorbance
of ODsgonm, as described as previous report [25]. 6 clinical
isolates were fell into LBF with an ODsgg,y, value less than
the first quartile (Q1 ODsgppm = 0.384), 12 strains in HBF
with an ODsgonpy, value greater than the third quartile (Q3
ODsgpnm = 1.152), and 6 strains could be grouped in IBF
with an ODsggpy, value between Q1 and Q2 in this report
(Fig. 1a). Morphologically, patched biofilm with hyphal
cells was formed in LBF strains (Fig. 1b), while an intact
biofilms could be frequently observed in HBF isolates
(Fig. 1c). This data indicated distinct biofilm-producing
abilities among clinical C. albicans isolates. The isolate
with the greatest capacity of biofilm formation (the great-
est value of absorbance of ODsgg,y) was selected for
further investigation in this study (it was denoted as the
red dot in Fig. 1a).

CsA enhances the susceptibility of clinical biofilm-
producing Candida albicans to fluconazole

Calcineurin inhibitors, such as FK506 and CsA have been
evidenced to enhance the susceptibility of C. albicans to
azole agents [14, 17, 18]. In line with these findings, an
addition of 75 pg/mL of CsA with FLC significantly led an
enhanced susceptibility of clinical biofilm-producing C.
albicans to FLC by 8- 32-fold over the FLC or CsA alone
in the 6 HBF isolates (p <0.01) (Fig. 2a), although FLC
alone also showed an insignificant inhibition (<20 %) of
biofilm growth of C. albicans at concentration of 1024 pg/
mL (Fig. 2a). In addition, CsA alone also exhibited a
moderate ability to inhibit of biofilm growth (<10 %) of C.
albicans at concentration of 300 pg/mL (Data not shown).
Morphological analysis using fluorescent microscopy
further revealed that a combination of 32 pg/mL of FLC
and 75 pg/mL of CsA was able to inhibit C. albicans cell
growth and hyphal formation, while the cells could grad-
ually mature to highly filamentous hyphal cells with a
multi-dimensional structure when they were cultured in a
naive condition (Fig. 2b, c).

A combination of FLC and CsA alters C. albicans the
expression of drug-resistant genes

We next sought the potential molecular mechanism
behind the ability of CsA to enhance the susceptibility of
biofilm-producing C. albicans isolates to FLC, the
expression of drug-resistant genes, such as agglutinin-like
sequence 3 (ALS3), hyphal wall protein 1 (HWPI),
candlda drug resistance 1 (CDRI), multidrug resistance 1
(MDRI) and ERGI11 of cells exposed to 75 pg/mL CsA
and 32 pg/mL FLC, was determined by a qRT-PCR assay.
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Fig. 1 Distinct biofilm forming capacity of clinical C albicans strains isolated from bloodstream. Candida albicans isolates were cultured in a 6-well plates for
48 h to allow the maturation of biofilm. The biofilms were then stained with crystal violet, and visualized and imaged under a light microscope.

A distinct capacity of biofilm formation was observed among the 24 clinical C albicans isolates. a 24 clinical C. albicans isolates were categorized in LBF

(low biofilm formation capacity) (filled squares), IBF (intermediate biofilm formation capacity) (filled triangles) and HBF (high biofilm formation capacity) (dots).
The isolate marked with red dot in HBF group was chosen for further study in this report. b A representative image of biofilm produced by a LBF (low biofilm
formation capacity) C. albicans isolate. ¢ A representative images of biofilm produced by a HBF (high biofilm formation capacity) C. albicans isolate
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Interestingly, a synergistically inhibitory effect on the
expression of adhesion-related genes ALS3, hypha-related
genes HWP1, ABC transporter drug-resistant genes
CDRI and MDRI, and FLC targeting gene ERGII was
observed in the cells treated with a combination of CsA
and FLC, which was statistically different as compared
with those treated with these agents alone (p<0.05 or
0.01), albeit both CsA and FLC alone also displayed an abil-
ity to moderately suppress the expression of above tested
gene in biofilm-producing C. albicans strains (p <0.05 or
p>0.05) (Fig. 3). Of note, both CsA and FLC alone failed to
inhibit the ERG11 gene expression in these clinical biofilm-
producing C. albicans isolates (Fig. 3). This result imply
that the CsA-induced synergistic effect on the enhanced
susceptibility to FLC may be in part through a mechanism
of down-regulation of the expression of genes associated
with cell adhesion, hyphal formation and drug resistance.

CsA and FLC synergistically reduce cellular surface
hydrophobicity of the C. albicans strain

A compelling body of studies has demonstrated that the
cellular surface hydrophobicity (CSH) is positively corre-
lated with the adhesion and morphological transition, and
key processes of C. albicans biofilm formation [26-28]. In
order to unravel whether a combination of CsA and FLC
has an impact on the biofilm formation of C. albicans, the
CSH of the fungi cells with different treatments was ex-
amined. Despite the fungi cells exposed to both CsA and
FLC alone showed a significantly decreased CSH relative
to the untreated controls (p < 0.05), while a combination

of CsA and FLC further dramatically inhibited CSH in
comparison with the untreated controls (p < 0.01) and the
cells treated with CsA or FLC alone (p < 0.05) (Fig. 4). The
evidence suggests that a combination of CsA and FLC has
a synergistic effect on the reduction of cellular surface
hydrophobicity in these clinical C. albicans isolates.

CsA and FLC synergistically increases intracellular calcium
in C. albicans

Since the calcium homeostasis is essential in developmen-
tal and stress signaling pathways in C. albicans [29], the
calcium-associated pathways have important implications
in key pathogenic steps of this fungal species [30]. Given
the fact of that the calcineurin was an important regulator
of Ca®* pathways [21], we thus next investigated whether
the synergistic antifungal effect of CsA and FLC was asso-
ciated with calcium homeostasis disturbance, as seen in a
previously demonstrated in a combination of minocycline
and fluconazole and caused a significant increase of
intracellular calcium [13]. As expected, a combination of
calcineurin inhibitor CsA and FLC indeed induced a time
dependent increase of intracellular calcium, such a fluctu-
ation of Ca** level was statistically different in comparison
with these agents alone, as determined by a FACS assay
using Fluo-3/AM indicator staining (p <0.05 for 6 h of
treatment, and p<0.01 for 12 h of challenge) (Fig. 5).
Intriguingly, the clinical C. albicans cells exposed to either
CsA or FLC alone exhibited rather lower intracellular
levels of Ca>* with slightly changes over time after a 6 h of
treatments relative to untreated controls (p > 0.05) (Fig. 5).
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Fig. 2 A synergistic effect of calcineurin inhibitor cyclosporine A (CsA) on increasing susceptibility of C. albicans isolates to fluconazole. C. albicans
isolates were cultured in 96-well plates with indicated concentration of FLC or a combination of the indicated concentration of FLC and 75 pg/
mL of CsA for 24 h or 48 h. The inhibition of fungi growth was accessed in terms of a XTT assay and fluorescent microscopy. a CsA significantly
enhances FLC-induced inhibition of the growth of C. albicans biofilm-producing isolates at 24 h post-incubation, as compared with FLC alone.
Compared with FLC alone group, *: p < 0.05; **: p < 0.01. Data in A represented the mean + SD from three independent triplicated experiments
(N=9). b, c. Representative images of biofilm formation of a HLF C. albicans isolate for culturing at indicated time, as determined by a fluorescent
microscopy assay. b. Untreated group. ¢. FLC+CsA treated group. In comparison with the untreated group (b), a combination of 75 pg/mL of CsA

and 32 pg/mL of FLC dramatically inhibited the cell growth and biofilm formation (c)

This data clearly indicated that the combination of
calcineurin inhibitor CsA and the most commonly used
antifungal agent FLC could inhibit the growth of biofilm-
producing C. albicans clinical isolates by disturbing their
intracellular calcium homeostasis.

Discussion
Candida albicans is an important nosocomial infectious
agent, and an infection of biofilm-producing Candida
albicans among immunocompromised patients remains a
clinical challenge. In this regard, the use of medical
devices such as central venous catheters (CVC’s) and
prostheses is a well-known risk factor to induce biofilm
formation [31, 32]. Despite a significant advance in our
knowledge such as the molecular mechanism of C.
albicans biofilm formation has been made over the past
decade, there is no ideal therapeutic method for blood-
stream infections caused by biofilm-producing Candida
albicans in clinical practice [33].

Accumulating evidences have revealed that a formation
of biofilm of C. albicans could enhance the resistance of
this fungi species to most of the commonly used antifungal

agents [1, 34, 35]. Therefore, it is urgent to discover novel
antifungal agents or regimens based on new drug targets
for the treatment of bloodstream infections, particularly an
infection of MDR-biofilm-producing C. albicans. With this
respect, several lines of evidence have uncovered that a
combination of calcineurin inhibitor, such as FK506 and
CsA, or antibiotics could synergistically enhance the
susceptibility of biofilm-producing C. albicans to the first-
line antifungal agent FLC [8, 10-14, 17, 18]. In the present
report, we also demonstrated that the calcineurin inhibitor
CsA had a potential to increase the susceptibility of clinical
biofilm-producing C. albicans to FLC by suppressing their
abilities to form biofilm, and inhibiting the expression of
genes related to cell adhesion, hyphal formation and drug-
transportators, as well as decreasing cellular surface
hydrophobicity and increasing intracellular calcium
concentration.

Previous studies have reported that biofilms formed by
C. albicans strains that isolated from bloodstreams dis-
played phenotypes associated with drug-resistance and
pathogenicity [25]. Therefore, we aimed to morphologic-
ally assess biomasses of C. albicans clinical isolates using
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Fig. 3 A combination of calcineurin inhibitor CsA and FLC down-regulated the expression of biofilm-related and drug transporter in clinical C. albicans
isolates. Clinical C. albicans isolates were cultured in 6-well plates with 32 ug/mL FLC and 75 pg/mL of CsA alone or in combination for 24 h.

The expression of indicated genes was determined by a gqRT-PCR assay. The combination of CsA and FLC significantly inhibited the expression of all tested
genes, although CsA or FLC along also could moderately down-regulated the expression of these genes. Compared with the untreated group, FLC alone
group, a: p < 0.05; compared with the CsA or FLC alone group, b: p < 0.01. Data represented the mean + SD from three independent triplicated
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the crystal violet staining, and found distinct capacities of
biofilm formations of clinical Candida albicans blood-
stream isolates, suggesting that the biofilm producing
capacity may have an implication of clinical significance.
Interestingly, an addition of CsA was verified to be able
synergistically increase the susceptibility of these isolates to
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Fig. 4 Calcineurin inhibitor CsA and FLC synergistically decrease
cellular surface hydrophobicity (CSH) of clinical C. albicans isolates.
Clinical C. albicans isolates were cultured in the presence of 32 ug/
mL FLC or 75 pg/mL of CsA alone, or a combination of CsA and FLC
for 24 h prior to be used for CSH measurement. The combination of
CsA and FLC caused significantly decrease of CSH of C. albicans cells,
although CsA or FLC along also had a moderate effect on the
reduction of CSH. Compared to the untreated control, and treated
with CsA or FLC alone groups, **: p < 0.01. Data represented the
mean + SD from three independent triplicated experiments (N =9)

FLC, along with a down-regulation of the expression of
ALS3, HWP1, CDRI, MDR, ERGI11 genes. Among them,
ALS3 are members of the agglutinin-like sequence (ALS)
gene family that encodes cell-wall glycoproteins [36], and
both ALS and HWP1 genes are highly expressed in hyphae
and play essential roles in the yeast-to-hypha morphological
transition of C. albicans, in which the ALS3 contributes cell
adhesions, and HWP1 mediates cell substrate and cell-cell
interactions in biofilms [37-39]. Therefore, a combination
of CsA and FLC-induced down-regulation of these genes
might contribute to the anti-biofilm effect by targeting the
three known stages for biofilm formation: adhesion to
biomaterial surfaces, growth to form an anchoring layer,
and morphological transition to form a complex three-
dimensional structure [40, 41]. Of note, no alteration or
marginal changes of the expression of these genes was
found in cells treated with CsA and FLC alone in this study,
indicating that the CsA or FLC had limited effect on
biofilm growth of C. albicans. Equally noteworthy, FLC
alone exhibited a limited effect on ERG11 gene expression,
which may be in part due to that HBF isolates were more
resistant to FLC than LBF strains, and more abundant
ERGI1 transcripts were to reported to be detected in FLC-
resistant CA strains [42].

The azoles are generally fungistatic agents for treatment
and prevention of C. albicans infections [43]. However,
azole resistant biofilm-producing C. albicans infections
were frequently observed in clinic settings, which have
been attributed to interactions of multiple mechanisms
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Fig. 5 Calcineurin inhibitor CsA and FLC synergistically increase intracellular calcium concentration clinical C. albicans isolates. Clinical C. albicans
isolates were exposed to 32 ug/mL FLC or 75 ug/mL of CsA alone, or a combination of CsA and FLC for 24 h prior to be used for determining

intracellular calcium concentration by a flow cytometric assay (FACS). a Representative plot images of FACS analysis showed the fraction of cells
with high intracellular calcium concentration (M2 fraction) treated with indicated conditions. b Quantitative analysis of percentages of cells with
high intracellular calcium levels. The result showed that both CsA and FLC alone could reduce intracellular calcium, but a combination of them

caused a time-dependently evoked intracellular calcium concentration. Compared with the untreated group of each indicated time point,

* p<005; *: p<001. Data represented the mean £ SD from three independent triplicated experiments (N =9)
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including the alteration of ERGII gene expression [44].
ERGI1 gene encodes the 14a-demethylase enzyme which
has an effect on ergosterol biosynthesis, and an up-
regulated expression of this gene in biofilm C. albicans
isolates may explain their resistance to azole [45]. In agree-
ment with this notion, exposing biofilm-producing C.
albicans isolates to a combination of CsA and FLC caused
adown-regulation of ergosterol biosynthesis-related gene
ERG11, which implied an underlying mechanism by which
calcineurin inhibitors have potentials to enhance the
susceptibility of biofilm-producing C. albicans to FLC [14].
It has been previously demonstrated that the highly fre-
quent azole resistance in C.albicans strains was in part at-
tributed to an increased efflux of drug mediated mostly by
the ATP-binding cassette (ABC) and the major facilitator

superfamily (MFS) transporters [46, 47]. In this context, the
expression of genes encoding both types of efflux pumps
was up-regulated during the course of biofilm formation
and development in C. albicans [47]. Controversially, a later
study by Marchetti et al. suggested that a synergistic anti-
fungal effect of cyclosporine and FLC in C. albicans was
multidrug efflux transporter genes CDRI, CDR2, MDRI
and FLUI independent [48]. Inconsistent with this finding,
we found that there was a significant down-regulation of
efflux transporter genes CDRI and MDRI in clinical
biofilm-producing C. albicans isolates treated with a com-
bination of CsA and FLC, suggesting that the CsA-
mediated increase of susceptibility of biofilm-producing C.
albicans to FLC is at least in part through a mechanism by
suppressing the expression of these drug transporter genes.
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The cell surface hydrophobicity (CSH) of Candida spe-
cies has an implication in the adhesion and biofilm forma-
tion of the organisms on epithelial cells or medical device
[26, 49], which is also associated with the fungicidal resist-
ance [50-52]. For instance, a FLC resistant C. tropicalis
strain exhibited a significantly more hydrophobic, greater
adherence and higher capacity of biofilm formation on
polystyrene surface relative to its parent strain that suscep-
tible to FLC, along with an increased expression of MDR1
and ERGII genes and enhanced virulence in mice [50].
The discrepancy of CSH and biofilm formation capacity
between FLC-susceptible and resistant strains was also
recently reported in C. albicans cells cultured with different
media in presence or absence of FLC [51]. In this regard, C.
albicans cells dispersed from mature biofilms were more
hydrophobic than those dispersed from earlier development
stages of biofilms, and C. albicans isolates with high cap-
acity of biofilm formation displayed an increased CSH rela-
tive to those with lower biofilm formation potential [51]. In
agreement with these findings, our result also indicated that
calcineurin inhibitor CsA could enhance susceptibility of
biofilm-producing C. albicans isolates to FLC and prevent
cell adhesion on polystyrene surface and biofilm formation
(with CSH as the indicator) in part by decreasing CSH.

Ca®* burst is a common cellular response of C. albicans
cells in response to an environmental stress [53]. It is
often along with an activation of calcineurin signaling
pathways, in which the calcineurin is required for survival
in serum, virulence, and resistance to azole antifungals, in
part via its downstream target, Crzl transcription factor
[53-56]. In the present study, a significant Ca** burst was
observed in cells exposed to the combination of CsA and
FLC. Of note, either FLC or CsA alone showed an ability
to decrease intracellular calcium concentration, however a
combination of these two agents had a synergistic effect
on increase but not decrease of intracellular calcium
([Ca®"]) levels. Such CsA-evoked intracellular calcium
concentration might disturbed the calcium homeostasis
and influenced the cell survival, which may partially
explain the potential of CsA to enhance the effectiveness
of FLC against the clinical biofilm-producing C. albicans.
In addition, intracellular calcium was related to biofilm
formation. For example, in a study on plant-pathogenic
bacterium, Xylella fastidiosa, Cruz et al. demonstrated
that intracellular calcium played a role in biofilm forma-
tion, which was related to the initial surface and cell-to-
cell attachment and colonization stages of biofilm estab-
lishment, and was depended on functions of fimbrial
structures [57].

Conclusion

In the present study, we provided additional evidences
that calcineurin inhibitors (such as CsA) were able to
enhance the susceptibility of C. albicans clinical biofilm-
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producing isolates to the most commonly used fungicidal
agent, fluconazole (FLC). Mechanistically, CsA could syner-
gistically suppress the expression of adhesion-related genes
ALS3, hypha-related genes HWPI, ABC transporter drug-
resistant genes CDRI and MDRI, and FLC targeting gene
ERGI1 in biofilm producing C. albicans. In addition, a
combination of CsA and FLC also could synergistically
reduce cellular surface hydrophobicity (CSH) and increase
intracellular calcium concentration in biofilm-producing C
albicans isolates. Together with other studies, these results
clearly suggest a combination of calcineurin inhibitor and
fluconazole may prove to be a novel and effective thera-
peutic option, which warrants for further investigation.

Methods

Candida albicans strains and culture and identification
Candida albicans 1strain SC5314 was purchased from
American Type Culture Collection (Mannasas, VA, USA).
24 FLC sensitive C. albicans clinical strains were isolated
from bloodstream samples and collected from the depart-
ment of laboratory medicine of the General Hospital of
Ningxia Medical University between September 2014 and
January 2015, which were identified by harnessing the
VITEK-2 COMPACT fully automated microbiological
system. The C. albicans strains were routinely grown in
YPD liquid medium (20 g of glucose per liter, 10 g of yeast
extract, 20 g of peptone) at 30 °C with 5%CO, atmosphere
[58]. All strains had normal and comparable growth rates.
Human blood samples were collected with a protocol
approved by the Ethic Committee for the Conduct of
Human Research at Ningxia Medical University (NXMU-
2016-092). Written consent was obtained from every indi-
vidual according to the Ethic Committee for the Conduct
of Human Research protocol.

Characterization of Candida albicans biofilm formation

Candida albicans cells were grown in YPD overnight at
37 °C and resuspended in RPMI buffered with HEPES at
a concentration of 1.0 x 10° cells/mL prior to be applied
for biofilm formation culturing. The biofilm model was
established using a method described in a previous study
[59]. Briefly, an 100 uL of above cell suspension was
seeded in a flat-bottomed 96 well plates with and incu-
bated at 37 °C at with 5%CO, atmosphere for 24 h or
until formation of mature biofilms, and biomass of each
isolate was assessed in terms of the crystal violet (cv)
assay by determining the distribution of biomass using
the value of ODs;ony, as previously reported [60]. A C.
albicans isolate with a less than the 1st quartile (Q1)
was grouped as having low biofilm formation (LBF) cap-
acity, and a isolate with a biomass greater than the 3rd
quartile (Q3) was considered isolates with high biofilm
formation (HBF) ability, and an isolate that lay in be-
tween Q1 and Q2 was a deemed strain with intermediate
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biofilm formation (IBF Q2) potency (Fig. la) [25]. After
the culturing or treatment, harvested the cells by washing
and scratching off from the culture wells, the cell suspen-
sion was then centrifuged for harvesting cell pellet.

Test of antifungal susceptibility of biofilm-producing C.
albicans isolates

The antifungal susceptibility of biofilm-producing C.
albicans was ascertained by determine minimum inhibitory
concentration (MIC) of fungal cells on 24 h preformed
biofilms, as previously described in flat-bottomed, 96 well
microtitre plates [60]. The MIC was determined at 80 % in-
hibition of fungal cells using an XTT (2,3-bis(2-methoxy-4-
nitro-5-sulfo-phenyl)-2H-tetrazolium-5-caboxanilide) meta-
bolic reduction assay [61, 62]. The tested range of concen-
trations of agents was 2 pg/mL to 1024 pg/mL for FLC,
and 9.3 pg/mL to 300 pug/mL for CsA. Combinations of
these two agents were prepared in a chequerboard format
as previously reported [63]. All C. albicans strains were
tested in duplicate for three independent experiments.

Fluorescence microscope assay

In order to morphologically observe the formation and
integrity of C. albicans biofilm, biofilms cultured under
different conditions were stained with 50 pug/mL FITC-
conA, and imaged using a fluorescent microscopy.

Quantitative reverse transcriptional PCR (qRT-PCR)
Candida albicans cells were homogenized using liquid
nitrogen grinding method, and the total RNA was
extracted using an RNA purification kit (TaKaRa Biotech-
nology, Dalian, China). The first strand of ¢cDNA was
synthesized by reverse transcription using a commercial
RT kit (TaKaRa Biotechnology, Dalian, China). The ther-
mal cycling condition was 94 °C for 4 min as an initial
denaturation step, followed by 37 cycles of PCR, consist-
ing of 94 °C for 30 s, 57 °C for 30 s and 72 °C for 30 s.
After reacting, a melting curve was evaluated the specifi-
city of the primers. The primer sets for amplifying genes
of agglutinin-like sequence 3 (ALS3), hyphal wall protein 1
(HWPI), candlda drug resistance 1 (CDRI), multidrug re-
sistance 1 (MDRI) and ERG11 were listed in Table 1 [64].
The result was analyzed using 2" “*“Y [65]. The gene of
18S rRNA was used as an endogenous reference control
for normalization the relative expression, and the data was
interpreted as fold of changes over the untreated controls.
All analysis was carried out on data from three independ-
ent experiments with three replicates.

Cellular surface hydrophobicity assay

Since a hyphal form of C. albicans showed higher affin-
ity for hydrocarbon than the yeast form, and the adher-
ence of these fungus to hydrophobic surfaces increased
when its morphology was changed from the yeast form
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Table 1 Primer sequences used in this study

Gene Primer sequences (5-3) Length
CDR1-F ACTCCTGCTACCGTGTTGTTATTG 192
R ACCTGGACCACTTGGAACATATTG

ERG11-F AAGAATCCCTGAAACCAA 134
R CAGCAGCAGTATCCCATC

MDR-F GGTGCTGCTACTACTGCTTCTG 226
R TGATGAAACCCAACACGGAACTAC

HWP1-F GCTCAACTTATTGCTATCGCTTATTACA 105
R GACCGTCTACCTGTGGGACAGT

ALS3 -F CAACTTGGGTTATTGAAACAAAAACA 80
R AGAAACAGAAACCCAAGAACAACCT

185 rRNA-F GGATTTACTGAAGACTAACTACTG 144
R GAACAACAACCGATCCCTAGT

to the hyphal form [66], C. albicans cellular surface hydro-
phobicity (CSH) was assessed using a water-hydrocarbon
two-phase assay as described previously [52]. Briefly, C.
albicans isolates were standardized to 1 x 10° cells/mL in
RPMI-1640 and 24 h at 37 °C and washed twice with PBS.
C. albicans biofilms were scraped off to obtain a cell sus-
pension (ODgpopm, 1.0 mL in YPD medium). Then,
1.2 mL of cell suspension was transferred into a clean
glass tube for each group and overlayed with 0.3 mL of
octane. The cell suspension was incubated at 30 °C for
10 min prior the aqueous phase to be measured ODggonm
[25]. CSH was calculated using a formula as ([ODggonm 0of
control - OD6,,, of test]/OD600nm of control) x 100 %
as previously described [58].

Detection of intracellular calcium ([Ca'*"]) level

Candida albicans biofilms with different treatments were
stained with 5 pmol/L of calcium-sensitive indicator Fluo-
3/AM (Invitrogen, USA) in light proof at 37 °C for
30 min. The cells were then washed three times with D-
Hanks buffer (Invitrogen, USA). The calcium levels were
determined by flow cytometry in a FACScan flow
cytometer (Becton Dickinson, USA) using a parameter of
the excitation/emission wave lengths (485 nm/530 nm)
with reading sensitivity level at 8 [10].

Statistical analysis

All data were recorded and analyzed by using the
WHONET software (version 5.6). The statistical analysis
was processed with the Statistical Package for the Social
Sciences (SPSS) software (SPSS, version 18.0, Chicago,
IL, USA). The changes of MICs for MDR C. albicans
isolates between FLC or CsA alone and a combination
of them were compared with a ¢-test analysis. Data were
represented as the mean + SD. A p < 0.05 was defined as
a statistical significance.
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