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HrcU and HrpP are pathogenicity factors in ® e
the fire blight pathogen Erwinia amylovora
required for the type Ill secretion of DspA/E
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Abstract

Background: Many Gram-negative bacterial pathogens mediate host-microbe interactions via utilization of the type Ill
secretion (T3S) system. The T3S system is a complex molecular machine consisting of more than 20 proteins. Collectively,
these proteins translocate effectors across extracellular space and into the host cytoplasm. Successful translocation
requires timely synthesis and allocation of both structural and secreted T3S proteins. Based on amino acid conservation in
animal pathogenic bacteria, HrcU and HrpP were examined for their roles in regulation of T3S hierarchy.

Results: Both HrcU and HrpP were shown to be required for disease development in an immature pear infection model
and respective mutants were unable to induce a hypersensitive response in tobacco. Using in vitro western blot analyses,
both proteins were also shown to be required for the secretion of DspA/E, a type 3 effector and an important
pathogenicity factor. Via yeast-two hybridization (Y2H), HrpP and HrcU were revealed to exhibit protein-protein binding.
Finally, all HrcU and HrpP phenotypes identified were shown to be dependent on a conserved amino acid motif in the

cytoplasmic tail of HrcU.

Conclusions: Collectively, these data demonstrate roles for HrcU and HrpP in regulating T3S and represent the first

attempt in understanding T3S heirarchy in £. amylovora.
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Background

The type III secretion (T3S) system is a common feature
of Gram-negative bacterial pathogens. The T3S system
functions to facilitate the translocation of bacterial ef-
fector proteins into eukaryotic host cells where they sup-
press host defense responses, facilitate colonization, and
promote disease development [1]. Consequently, T3S
has been the focus of intensive research in both animal
and plant pathosystems.

The T3S system is a complex proteinaceous machine
consisting of more than 20 components. Because the
successful translocation of bacterial effectors necessitates
a functioning multipartite machine, the production of
structural and secreted T3S system components has
been assumed to be hierarchical. Recent analyses have
confirmed the hierarchical nature of T3S in a few animal
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and plant pathogens [2—-7]. Characterization of this hier-
archy has revealed multiple substrate classes. Early sub-
strates are involved in pilus formation while late
substrates, like effectors, are secreted after the assembly
of a complete T3S system.

An array of factors has been implicated in regulating
T3S system hierarchy [8]. Predominately featured are two
protein groups 1) YscU/FIhB proteins and 2) YscP/FliK-
like proteins. YscU/FIhB proteins include YscU, a T3S pro-
tein from Yersinia spp. and FIhB, a flagellar protein from
Salmonella spp., which represent the most characterized
regulators of T3S hierarchy [2-5, 9]. YscU/FIhB proteins
exhibit four N-terminal transmembrane domains that play
a structural role in the inner membrane export apparatus
of the T3S system basal body [10, 11]. T3S is completely
abolished in yscU/flhB null mutants [5, 12, 13]. The C-
termini of YscU/FIhB proteins, however, encode a charac-
teristic cytoplasmic domain involved in regulating T3S
system hierarchy [3, 5, 9, 12, 14]. This domain is required
for conformational changes via autoproteolytic cleavage at
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an Asp-Pro-Thr-His (NPTH) motif [4, 9, 15]. The NPTH
motif is conserved in all YscU/FIhB homologs and point
mutations in the NPTH motif are frequently associated
with phenotypes including 1) avirulence, 2) loss of
protein-protein interactions and 3) loss of secretion heir-
archy [4, 13]. Due to the location of YscU/FIhB proteins at
the basal body-cytoplasm interface and due to their role in
regulating T3S hierarchy, YscU/FIhB proteins display
numerous protein-protein interactions [3, 5, 16, 17].
For example, HrcU from X. campestris has been dem-
onstrated to interact with at least seven other T3S
proteins [16, 18-20]. Among these HrcU-interacting pro-
teins are YscP/FliK-like proteins. YscP/FliK-like proteins dif-
fer from the YscU/FIhB protein in that they share little
amino acid sequence conservation. They are hydrophobic,
globular and contain a Pro-X-Leu-Gly C-terminal motif
[21]. Mutations affecting YscP/FliK-like proteins frequently
compromise the ability of T3S systems to change substrate
specificity during hierarchical T3S and consequently are
termed T3S substrate specificity switches (T3S4) [8]. T3S4
mutant phenotypes include 1) reduced secretion of late
substrates, 2) increased filament length, and sometimes 3)
increased secretion of early substrates [6, 16, 22—25]. YscP
from Yersinia spp., FliIK from flagella, and HpaC from
Xanthomonas campestris all represent T3S4 proteins. Both
FliK and HpaC have been demonstrated to directly bind
the cytoplasmic domains of their cognate YscU/FIhB pro-
teins, and phenotypes associated with NPTH domain muta-
tions are attributed to loss of protein-protein interaction
with T3S4 proteins [3, 4, 9, 16, 25].

The Gram-negative plant pathogenic bacterium Erwinia
amylovora is the causative agent of fire blight, a disease of
rosaceous species including apple and pear. Disease devel-
opment by E. amylovora requires a functioning T3S
system [26]. In E. amylovora, the T3S system is known to
secrete at least 12 proteins including the harpins HrpN
and HrpW as well as the effector DspA/E (hereafter
termed DspE), a pathogenicity factor [27-29]. To date,
little is known about how secretion hierarchy is regulated
in E. amylovora. While Hrp] is required for secretion of
translocators HrpN and HrpW, nothing is known about
how E. amylovora regulates the substrate specificity of
DspE, the most important component of the T3S system
for fire blight disease development [29]. In E. amylovora,
YscU/FIhB and TS34 proteins are represented by HrcU
(EAM_2905) and HrpP (EAM_2900), respectively. Here,
HrcU and HrpP are explored for roles in T3S system
regulation in E. amylovora.

Results

HrcU exhibits a conserved NPTH motif required for
pathogenicity in E. amylovora

The NPTH motif in YscU/FIhB proteins is the site of
autoproteolytic cleavage and conformational change
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required for protein function [4, 15]. This NPTH
motif is conserved in all known YscU/FIhB proteins
[3, 5, 30]. Bioinformatic analysis of HrcU from E.
amylovora using a dense alignment surface algorithm
predicted that, like YscU/FIhB homologs, HrcU encodes
four transmembrane domains as well as a cytoplasmic C-
terminal tail (Fig. 1a) [10, 31]. Using T-Coffee multiple
alignment software, the amino acid sequence of HrcU was
compared to multiple homologs in T3S systems of plant
and animal bacterial pathogens as well as in the flagellum
(Table 1) [32]. The E. amylovora HrcU NPTH motif
(HrcUnpry) was found to be conserved in E. amylovora
and in all analyzed homologs (Fig. 1b).

To determine the role of HrcU in disease develop-
ment, a chromosomal deletion of hrcll was created in E.
amylovora Eal189. Eal189AhrcU was confirmed to be

A

Fig. 1 HrcU in Erwinia amylovora. a Schematic representation of
HrcU domain organization. Letters indicate predicted
transmembrane domains (TM), the plasmamembrane (PM) and the
cytoplasm (CP). Numbers denote amino acid positions based on the
genome sequence of £. amylovora ATCC 49946 (NCBI NC_013971).
The NPTH motif is labeled in red and the arrow represents the site
of cleavage and conformational change reported in homologous
proteins. b T-coffee multiple sequence alignment of C-terminal
NPTH motif in HrcU homologs. Weblogo was used to visualize an
alignment of HrcU homologs from animal pathogens Yersinia
enterocolitica, Shigella flexneri and Escherichia coli, plant pathogens
Erwinia amylovora, Xanthomonas campestris and Pseudomonas
syringae as well as a flagellar homolog from Salmonella enteric. NPTH
is conserved in all HrcU homologs
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Table 1 YscU/FIhB family proteins used for sequence alignment

Protein  Accession Bacterium

YscU NC_004564.1 Yersinia enterocolitica A127/90

FIhB NC_021176.1  Salmonella enteric Ty21a

Spad40  AY206439.1  Shigella flexneri

EscU AEQ05174.2  Escherichia coli O157:H7

HrcU NC_013971.1  Erwinia amylovora ATCC 49946

HrcU NC_007508.1  Xanthomonas campestris pv. vesicatoria str. 85-10
HrcU NC_004578.1  Pseudomonas syringae pv. tomato str. DC3000

nonpathogenic due to a lack of symptom development
6 days post inoculation (dpi) in an immature pear in-
fection model (Fig. 2a). In trans expression of hrcl
via the plasmid pRRM1 was able to successfully com-
plement the mutant strain restoring full virulence to
Eall189AhrcU (Fig. 2a).

To ascertain the importance of HrcUypry in E.
amylovora, HrcU was subjected to site-directed muta-
genesis. The asparagine residue of the NPTH motif is
required for YscU/FIhB protein function in assayed
homologs [4, 5, 17]. Consequently, the conserved as-
paragine residue located at position 266 in the amino
acid sequence of HrcU was mutated to encode a
codon corresponding to alanine. This Arcl mutant
allele (HrcUypaesa) was cloned into an expression
vector creating pRRM2 [33].

To determine the role of HrcUyggea in host-microbe
interactions, Eal189AhrcU/pRRM1 and Eall89Ahrcll/
pRRM2 were inoculated into immature pear fruits.
While plasmid-borne hrcll was able to re-establish
wild type (WT) virulence levels to Eall89Ahrcl,
Eal189AhrcU/pRRM2 was unable to restore patho-
genicity 6 dpi in immature pear fruits (Fig. 2a). This
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indicates that HrcUypry is required for HrcU fu-
nction and that HrcUypry is necessary to mediate
compatible host interactions.

HrcUypry is required for the elicitation of the
hypersensitive response

The hypersensitive response (HR) is a hallmark of incom-
patible plant-microbe interactions. The HR is characterized
by rapid, localized programmed cell-death in response to
pathogen-associated proteins frequently represented by
T3S system substrates. HR elicitation in E. amylovora
requires a functional T3S system [34]. E. amylovora Eal1189
strains were inoculated into Nicotiana benthamiana meso-
phyll tissue and, 16 h post inoculation (hpi), results revealed
that E. amylovora Eal189 requires HrcU, and specifically
HrcUnpty, for HR development (Fig. 2b). While WT
Eal189 and complemented Eal189Akhrcl/pRRM1 induced
robust HR symptoms in N. benthamiana, Eal189AhrcU
and Eal189AhrclU expressing HrcUypesa failed to trigger
an incompatible defense response (Fig. 2b). As the HR in
response to E. amylovora infection requires T3S, these
results suggest that the inability of HrcUnpagea to comple-
ment Eall89Ahrcl is due to the disrupted function of
HrcUnpry in mediating T3S.

HrpP is required for pathogenicity and hypersensitive
response induction

In YscU/FIhB proteins, the NPTH motif is required for
the regulation of T3S hierarchy [3-5, 12]. T3S system
hierarchy regulation is mediated via direct and indir-
ect interactions with T3S4 proteins [3, 4, 16, 25]. In E.
amylovora, HrpP (EAM_2900) is a predicted T3S4
protein. Bioinformatic analyses of the HrpP amino
acid sequence are in accordance with previous ob-
servations that T3S4 proteins are poorly conserved

PBS WT

AhrcU

Fig. 2 Phenotypic characterization of HrcU-related mutant strains in Ea1189. WT Ea1189, Ea1189AhrcU and Ea1189AhrcU stains expressing native
HrcU from pRRM1 or HrcUnagsa from pRRM2 were inoculated into a immature pear fruits and b Nicotiana benthamiana. Pear fruit necrosis was
recorded 6 days post inoculation while the hypersensistive response in N. benthamiana was observed 16 h post inoculation. Ea1189AhrcU was
non-pathogenic and unable to elicit a hypersensitive response while pRRM2 was unable to complement the hrcU null mutation

AhrcU/pRRM1  AhrcU/pRRM2
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between species and that, in bacterial plant pathogens,
T3S4 proteins are N-terminally truncated relative to
homologs in animal pathogenic bacteria and the fla-
gellum (Fig 3a) [8]. Beginning at amino acid position
98 though, HrpP does exhibit a modified Pro-X-Leu-
Gly motif that is characteristic of T3S4 with alanine
replacing leucine at position 100 (Pro-Glu-Ala-Gly)
(Fig 3b) [35].

To establish the role of HrpP in mediating plant-
microbe interactions, a chromosomal deletion of HrpP
was synthesized, and relevant strains were inoculated
into host and non-host plant species. Like Eal189AhrcU
strains expressing HrcUynpogsa, Eal189AkrpP was non-
pathogenic 6 dpi in immature pear fruit and unable to
elicit a HR in N. benthamiana (Fig 3c).

381 408
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Fig. 3 Bioinformatic and phenotypic analyses of HrpP from E.
amylovora. a Schematic representation of T354 domain protein
alignment from animal and plant pathogenic bacteria. The length of
the lines and boxes represent the actual sizes of the protein and
domain. Numbers indicate amino acid position. HrpP in E. amylovora
is markedly smaller than T3S4 proteins in animal bacterial pathogens
and the flagellum. b Visualization of T354 protein sequence
alignments with Weblogo software demonstrates that HrpP exhibits
a conserved P-X-L-G motif characteristic of T354 proteins. ¢ WT
Ea1189 and Ea1189AhrpP inoculated into immature pear fruits and
N. benthamiana. Pear fruit necrosis was recorded 6 days post
inoculation while the hypersensistive response in N. benthamiana
was observed 16 h post inoculation. HrpP is a pathogenicity factor
required for HR elicitation
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HrcU and HrpP interact in E. amylovora

While not all T3S4 proteins have been observed to inter-
act directly with YscU/FIhB counterparts, direct interac-
tions have been recorded between the T3S4 proteins FLiK
and HpaC [3, 16]. To explore the possibility of HrpP inter-
actions with HrcU in E. amylovora, hrpP and hrcl con-
structs were cloned into Y2H vectors and assayed in
Saccharomyces cerevisiae AH109 via survival on minimal
medium and a-galactosidase activity. In the Y2H assay,
hrcl alleles featuring the HrcUnpesa point mutation were
included along with N-terminal hrcl deletions (HrcU-
CT). HrcU-CT constructs were included due to reported
transmembrane domain interference with protein-protein
interactivity in homologous YscU/FIhB proteins [3, 16].
Alongside HrpP, the T3S protein Hrp] was also screened
for the ability to interact with HrcU in yeast as Hrp] is a
demonstrated regulator of T3S system hierarchy in E.
amylovora and homologs are required for late substrate
secretion due to their roles as T3S inner rod proteins [29].
Another example of this occurs in Pseudomonas syringae
where Hrp] functions within the bacterial cell to control
secretion of translocator proteins such as the harpins
HrpZ1 and HrpW1 [36].

In all cases, full-length HrcU encoding N-terminal
transmembrane domains were unable to interact with
either HrpP or Hrp] (Fig 4). HrpJ exhibited a very weak
interaction with both HrcU-CT and HrcU-CT 664 (Fig 4).
Conversely, HrpP interacted strongly with HrcU-CT in
Y2H experiments (Fig 4). While the HrcUypry motif was
not absolutely required for interactions with HrpP, HrcU-
CTnoesa displayed less a-galactosidase activity in the
presence of HrpP than did HrcU-CT (Fig 4). This indi-
cates that HrpP does interact with HrcU and that
HrcUnpry-mediated conformational changes in HrcU
affect HrpP binding in Y2H assays. All qualitative Y2H
results were assessed quantitatively using image analysis
software Image] and shown to be statistically significant.

HrcUnpry and HrpP are required for the secretion of DspE
The T3S system effector DspE is a pathogenicity factor of
E. amylovora and the translocation of DspE is required for
fire blight disease development [27, 28, 37, 38]. Mutations
affecting the T3S system that result in a loss-of-
pathogenicity phenotype are consequently hypothesized to
be attributed to decreased DspE translocation by E. amy-
lovora. To determine if HrcUnpry and HrpP are involved
in regulating DspE secretion, E. amylovora strains were
transformed with pLRT201 to express a DspE-CyaA
fusion protein and incubated in vitro in Arp-inducing
minimal medium (HrpMM) used to mimic conditions of
the plant apoplast [39]. Proteins were extracted 48 hpi and
subjected to one-dimensional SDS-PAGE separation and
western blot analysis using an anti-CyaA antibody. As pre-
dicted, an Eal189 strain harboring native hrcl secreted
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to native HrcU constructs
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Fig. 4 HrcU yeast two-hybrid interaction assays (Y2H). Native HrcU, HrcUyagsa and C-terminal (CT) truncations of both proteins were cloned into
the bait vector pGBKT7. HrpJ and HrpP were expressed from the prey vector pGADTY. Blue coloration indicates the strength of protein—protein
interactions. All Y2H interactions were quantified relative to an empty-vector control using ImageJ software and tested for significance using
Kendall rank correlation coefficient T tests. Both full-length and truncated HrcUyeea eXhibited impaired interactions with HrpP and HrpJ relative

DspE in vitro while Eal189AhrcU failed to secrete any
DspE protein (Fig 5a). Likewise, an Eal189 strain synthe-
sizing HrcUypeea and Eal189AhrpP were also unable to
secrete DspE (Fig 5a). Using SDS-PAGE analysis, we also
show that Eal189Ahrcl complemented with the full-
length hrcU on pRRM1 secreted the native DspE protein,
while Eal189Akrcl complemented with hrclliesa On
pRRM2 was unable to secrete DspE (Fig 5b). Finally, the
wild-type Eall89 strain containing pRRM2 could still
secrete DspE, indicating that HrcUnpesa does not exhibit
a dominant-negative effect on HrcU (Fig 5b). These
results show that HrcUypry and HrpP are required for
DspE secretion in vitro and suggest that Eall189AhrpP
and Eal189AhrcU/pRRM2 are nonpathogenic due to loss
of DspE secretion and translocation capability.

Discussion
In this study the roles of HrcU and HrpP in regulating
the T3S system in E. amylovora Eal189 were explored.
Using site-directed mutagenesis, phenotypic analyses,
Y2H assays and protein visualization, HrcU and HrpP
were shown to interact and mediate host-microbe inter-
actions via the regulation of T3S system substrates like
the effector DspE.

HrcU and HrpP were both confirmed to be pathogen-
icity factors in E. amylovora Eall89. Eal189Ahrcl and
Eall189AhrpP were both unable to cause disease in

immature pear fruits (Fig. 2a and 3c). Likewise,
Eal189AhrcU and Eall89AhrpP were also unable to
elicit a HR after inoculation into N. benthamiana
(Fig 2b and 3c). These results are in agreement with
previous observations regarding HrcU in P. syringae
and X. campestris [5, 40]. Interestingly, while HrpP in E.
amylovora and P. syringae are both required for disease
and HR induction, the T3S4 homolog HpaC is not a
pathogenicity factor in X. campestris [41, 42].

The important influence of HrcU and HrpP in facili-
tating disease development is hypothesized to stem from
roles in regulating T3S hierarchy. In YscU/FIhB proteins,
the regulation of T3S hierarchy hinges on a conserved
NPTH amino acid motif [4, 5, 9, 13]. The cytoplasmic
C-terminus of HrcU in E. amylovora encodes an NPTH
motif (Fig. 1b). Notably, a site-directed mutation of hrcl
resulting in the construct HrcUnpesa was unable to
complement Eall89AhrclU suggesting that the role of
HrcU in mediating plant-microbe interactions requires
the presence of an asparagine residue at position 266
(Fig. 2). Eall89AhrcU strains expressing HrcUppogsa
were nonpathogenic and here we report via western blot
analysis that HrcU-mediated secretion of DspE was
dependent on the integrity of its conserved NPTH
motif (Fig. 5). While full-length hrcl was able to
complement Eall89AhrcU in trans and restore DspE
secretion, hrcllysesa failed to rescue Eall89AhrcU
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Fig. 5 DspE secretion in Ea1189 strains. a Composite image of in
vitro secretion of DspE-cyaA fusion proteins in minimal medium was
visualized via western blot assay using an anti-CyaA antibody. DspE
localization was detected in both the culture supernatant (S) and
the cell pellet (P). Native HrcU, HrpP and the HrcUypry domain were
required for DspE secretion as Ea1189AhrcU/pRRM2 expressing
HrcUpogsn Was unable to complement DspE secretion into the
supernatant. HrcU and HrpP did not affect the production of DspE
in the cell pellet. b Separate images composing (a). ¢ T3S secretome
in Ea1189 strains. All strains were cultured in minimal medium and
after processing, were separated via one-dimensional SDS-PAGE and
stained with silver nitrate. DspE is represented by a band corresponding
to ~200 kDa and marked with an arrow. Both WT Ea1189 and
Ea1189AhrcU/pRRM1 secrete DspE in vitro. Ea1189AhrcU and
Ea1189AhrcU/pRRM2 cannot secret DspE indicating that HrcUygea is
required for DspE secretion. WT Ea1189 producing HrcUy 64 does not
exhibit a dominant negative effect on DspE secretion

mutant phenotypes (Fig. 2 and 5). These phenotypes
are likely linked as DspE secretion is required for
disease development [38]. Collectively, results illus-
trating the roles of HrcU and HrcUypeea in E. amy-
lovora reinforce data highlighting the importance of
the NPTH motif in YscU/FIhB proteins as synonym-
ous mutations in X. campestris, enteropathogenic E.
coli and Y. enterocolitica also abolish disease devel-
opment [5, 43, 44].

Notably though, while the NPTH motif is required for
T3S-dependent disease development, YscU/FIhB medi-
ated regulation of T3S differs between bacterial species.
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In Salmonella, the flagellar protein FIhB functions to
establish hook assembly prior to filament secretion.
Consequently, FIhBypg04 mutants fail to terminate hook
protein secretion and initiate export of flagellin [43].
YscU in turn regulates the secretion of late substrates
including translocators and effectors [4, 45].

One of the lesser-described proteins in the YscU/FIhB
family is EscU from Escherichia coli EPEC strain E2348/69.
EscU is particularly relevant to discussions of E. amylovora.
Thomassin et al. [46] observed that EscUypepa poorly
secretes effectors while differentially regulating the secre-
tion of effector chaperones. While chaperone EspC was
secreted at wild-type levels, EspA, EspB and Tir were
poorly secreted in vitro. The authors also revealed that Tir-
induced actin polymeration was comparably reduced in in-
fected HeLa cells. E. amylovora also utilizes a large
consortium of chaperones to regulate effector secretion.
Special attention should be given to how chaperones inter-
act with HrcU to regulate secretion hierarchy [38, 47].

HrcU from X. campestris pv. vesicatoria represents
the most characterized YscU/FIhB protein in plant
pathogenic bacteria. Like YscU, HrcUy,, inhibits the
secretion of late substrates. HrcUy,, NPTH mutants
in turn over-secrete early T3S substrates analogous
to increased hook secretion exhibited by FlhB flagel-
lar mutants [5, 9]. Research concerning HrcUx,, has
developed to reveal that while the NPTH motif in
YscU/FIhB proteins has been the focus of much
attention, additional HrcU domains and amino acid
residues play a role in regulating T3S. While this
research is the first demonstration of HrcUg, con-
trolling substrate specificity in hrpl-T3S systems via
the NPTH motif, more analyses are required to
understand the full scope of HrcU-mediated T3S
regulation.

Examinations of the T3S4 protein HrpP in E. amy-
lovora revealed that, while exhibiting a c-terminal P-
X-L-G motif, HrpP is diminutive like T3S4 proteins
in other plant pathogenic bacteria. Conversely, mam-
malian bacterial pathogens exhibit T3S4 proteins up
3X in length. While structurally distinct, all T3S4
proteins share some commonalities. Here we present
for the first time that HrpP is a pathogenicity factor
in E. amylovora Eal189. Eal189AhrpP was unable to
generate disease development on immature pear fruit
or induce a HR in N. benthamiana (Fig. 3c). Like
HrcUye6a, Eal189AhrpP was also unable to secrete
the T3S effector DspE as displayed using an in vitro
western blot (Fig. 5).

Other T3S4 proteins, similarily to HrpP in E. amylo-
vora, function to promote the secretion of late T3S
substrates. Null mutations in YscP from Y. enterocolitica,
HpaC from X. campestris and HrpP from P. syringae all
fail to secrete late T3S substrates [16, 23, 41, 42]. More
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notably though, many T3S4 proteins also function to
actively suppress the secretion of early T3S substrates
and null mutations result in increased secretion of pilus
subunits and inner rode proteins. FliK from the flagel-
lum suppresses the secretion of the inner rod-like hook
protein FIhB [13, 48]. Mutations in YscP trigger hyper-
secretion of the pilin protein YscF and the inner rod
protein Yscl while HpaC mutants secrete more inner
rod protein HrpB2 than wild-type [16, 23, 45].

Conversely, HrpP from P. syringae pv. tomato ap-
pears to function atypically relative to other know
T3S4 proteins. While previously-described T3S4 pro-
teins actively suppress early T3S events, PstAhrpP
poorly secretes the early substrate HrpA, a T3S pilus
subunit protein [42]. Consequently, HrpPp,, may be
more accurately described as a post-translational acti-
vator of T3S as opposed to a T3S4 protein. More
experimentation will be required to determine if
HrpPg, also functions as a post-translation activator
though it is important to note that HrpPp, has not
been observed to interact with HrcUp,, while evidence
suggests that HrpPg, binds HrcUg, as has been re-
ported for other canonical T3S4 proteins [25, 49-52].

Using Y2H analysis to explore protein-protein interac-
tions, we demonstrate that HrpP and the cytoplasmic
tail of HrcU bind when co-expressed in Saccharomyces
cerevisiae (Fig. 4). These results conform to previous ob-
servations in other plant and animal pathogenic bacteria.
For example, in Salmonella, FIhB binds directly to FliK
[50] and in Xanthomonas, HrcUy,, directly binds HpaC
[5, 9]. Noteably, YscU from Yersinia has never been
shown to interact with YscP indicating potential variabil-
ity in T3S hierarchy regulation [17]. Despite some vari-
ability, to date, all known YscU/FlhBypry domains are
required for T3S function and disease development.

In E. amylovora, virulence and DspE secretion as-
says are consistent with previous observations con-
cerning the functional importance of the HrcUnpry
domain (Fig. 2 and 5). Our Y2H results reveal how-
ever that while HrcUypry affects HrpPg, interactions,
the domain is not required for binding (Fig. 4). Con-
firmation of observed HrcUg,-HrpPg, interaction data
in yeast will require future use of more sensitive and
specific techniques such as co-immunoprecipitation
assays. In addition, work by Haunser and Buttner [9]
also indicates that HrcUy,, exhibits multiple amino
acid residues, in addition to the NPTH domain, with
functional significance for plant disease outcomes
and, in response, a more through mutational analysis
will be required to understand the role of HrcUg, in
T3S regulation and interactions with HrpPg,. Consid-
ering that both HrcU and HrpP are pathogenicity
factors in E. amylovora and as both Eall89AhrclU
and Eall189AhrpP exhibit impaired DspE secretion, it
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is tempting to speculate that interactions between
HrcU and HrpP may be important for their relative
roles in pathogenicity.

Conclusions

Here we report the first information regarding the roles
of HrcU and HrpP in regulating T3S of DspE in E. amy-
lovora. Both proteins were shown to be required for
pathogenesis in E. amylovora Eal189, were required for
DspE secretion, and show evidence of inter-protein
interactions. Future work should focus on how HrcU
and HrpP regulate the secretion of the inner rod protein
Hrp] and the needle protein HrpA as well as how
regulator copy number influences HrpA secretion. In
addition, as effector chaperones are known to be regulated
by YscU/FIhB proteins in animal pathogenic bacteria,
identifying a role for HrcU in regulating plant pathogenic
effector chaperones would be a novel contribution to the
plant pathology community.

Methods

Bacterial strains and growth conditions

Table 2 lists bacterial strains and plasmids used in this
study. Unless otherwise referenced, bacterial strains were
grown in Luria Bertani (LB) broth supplemented with
50 pg ml™ ampicillin, 20 pg ml™ chloramphenicol,
12 pg ml™' oxytetracycline or 30 pg ml™ kanamyacin
where appropriate. All strains were cultured at 28 °C in
a shaking incubator.

DNA manipulation and cloning

Restriction enzyme digestion, T4 DNA ligation, and PCR
amplification of genes were carried out using standard
molecular techniques [53]. DNA extraction, PCR purifi-
cation, plasmid extraction, and isolation of DNA frag-
ments from agarose were performed with related kits
(Qiagen, Valencia, CA). The sequences of oligonucleo-
tide primers used in this study are listed in Additional
file 1: Table S1. All DNA was sequenced at the Research
Technology Support Facility at Michigan State Univer-
sity. Double digestion and directional ligation into
pBBRIMCS3 [54] with PCR-generated gene sequences
was utilized for mutant strain complementation. Final
constructs were transformed into competent Eal189 by
electroporation and screened on LB agar plates amended
with oxytetracycline.

Bioinformatics

Lasergene® 7.2.0 software suite was used to manage nucleic
and amino acid sequences (DNASTAR, Madison, WI).
Genes were annotated in agreement with the E. amylovora
ATCC 49946 genome [55]. Protein sequence conservation
was determined using BLAST programs at NCBI (http://
blast.ncbi.nlm.nih.gov/Blast.cgi) [56]. The sequences of
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Table 2 Bacterial strains and plasmids and their relevant characteristics

Strains & Plasmids Relevant characteristics®

Source or reference

Escherichia coli strain

DH5a
SUpPE44, gyrA96, relAl A-

Yeast strain

Saccharomyces cerevisiae AH109

F- 80dlacZ, AM15, A(lacZYA-argF)Uu169, endAl, recAl, hsdR17(rK-mK+), deoR, thi-1,

Invitrogen, CA, USA

MATa, trp1-901, leu2-3, 112, ura3-52, his3-200, gal4A, gal80A, LYS2 : : GALTyas-GALTaTA [61]

-HIS3, G/—\LZUASfGAL%ATAf/-\DEZ, URA3 :: MEL1 UAS’MEL]TATA’laCZ

Erwinia amylovora strains

Ea1189 Wild type [62]

Ea1189AhrcU hrcU deletion mutant, Cm" This study
Ea1189AhrpP hrpP deletion mutant, Cm"® This study

Plasmids

pPBBR1-MCS3 Tc® broad host-range cloning vector [54]

pGADT7 LEU2, AmpR, Y2H activation vector Clontech, CA, USA
pGBKT7 TRP1, Km®, Y2H bait vector Clontech, CA, USA
pLRT201 AmpR, pMJH20 expressing DspE(1-737)-CyaA [38]

pMJH20 Amp®, PWSK29 containing codons 2 to 406 of CyaA [63]

pRRM1 Tc®, pBBR1-MCS3 containing hrcU This study

pRRM2 Tc®, pBBR1-MCS3 containing hrcUnossa This study

pRRM3 Amp", pGADT7 containing hrpP This study

pRRM4 Amp", pGADT7 containing hrpJ This study

pRRM5 Km® pGBKT7 containing hrcU This study

pRRM6 Km®, pGBKT7 containing hrcUnassa This study

pRRM7 Km®, pGBKT7 containing hrcUspe-360 This study

PRRMS Km®, pGBKT7 containing hrcUsgs-3e0, nossa This study

pRRM9 Tc® pAlter-Ex1 containing hrcU This study
pRRM10 Amp", pAlter-Ex1 containing hrcUnassa This study
pAlter-Ex1 TcR, mutagenesis vector Promega, WI, USA
pKD3 Amp®, Cm® mutagenesis cassette template [59]

pKD46 Amp", expresses A red recombinase [59]

2Cmf, Tc®, Amp®, Km® indicates resistance to chloramphenicol, oxytetracycline, ampicillin and kanamycin

T3S4 domain-containing proteins were acquired from
NCBI, with the accession numbers: ACI16082.1 (Yersinia
enterocolitica YscP), CDH77977.1 (Pseudomonas aeruginosa
PscP), WP_012228919.1 (Y. pestis FliK), GAO95686.1 (P.
syringae HrpP), WP_020830096.1 (Ralstonia solanacearum
YscP), and WP_004155345.1 (E. amylovora HrpP). The
T3S4 domains were identified using the T3S4 AA se-
quences described from a previous work [21]. Putative
transmembrane domains were predicted using the DAS -
Transmembrane Prediction server (http://www.sbc.su.se/
~miklos/DAS) [31]. T-Coffee multiple sequence alignment
software (http://www.tcoffee.org/homepage.html) was used
to create all amino acid sequence alignments [32]. Multiple
sequence alignments were visualized using Weblogo 2.8.2
(http://weblogo.berkeley.edu) [57].

Virulence and hypersensitive response assays

The virulence of E. amylovora Eall89 was assayed
using a standard immature pear fruit assay as de-
scribed previously [58]. In brief, bacterial strains
were cultured overnight, washed, and resuspended in
0.5x phosphate buffered saline (PBS) to 1x10° to
1 x 10* CFU/ml. Immature pear fruits (Pyrus commu-
nis L. cv. Bartlett) were surface sterilized with 10 %
bleach, dried in laminar flow hood, and pricked with
a needle prior to application of 2 pl bacterial sus-
pension. Inoculated pears were incubated at 28 °C in
humidified chambers. Symptoms were recorded
6 days post inoculation. The experiments were re-
peated three times with six replications per ex-
periment. To study elicitation of the HR during
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incompatible interactions, E. amylovora strains were
cultured over night in LB broth. Bacterial cells were
collected via centrifugation and washed twice with
0.5X PBS. Cells were resuspended and adjusted to a
final concentration of 1x 10’ CFU ml™" in 0.5X PBS.
100 pl of cell suspension were in turn infiltrated into
9-week-old N. benthamiana leaves using a syringe and
HR was observed 16 hpi.

Mutagenesis

E. amylovora site-directed nonpolar chromosomal mu-
tants were generated using the phage A Red recombinase
system previously described [59]. Briefly, E. amylovora
strain Eall89 harboring pKD46, encoding recombi-
nases red P, y, and exo, was cultured overnight at
28 °C in a shaking incubator. Strains were reinocu-
lated with 0.1 % L-arabinose in LB broth and cultured
for four hours to exponential phase. Cells were
made electrocompetent and stored at -80 °C. Hom-
ologous recombination fragments encoding acetyl-
transferase cassettes were generated via polymerase
chain reaction (PCR) using the plasmid pKD3 as a
template. A PCR purification kit (Qiagen; Valencia,
CA) was using to purify recombination fragments
before electroporation into competent Eall89. LB
agar amended with chloramphenicol was used to
screen putative mutants and single-gene recombina-
torial deletion was confirmed using PCR and func-
tional complementation.

Site-directed point-mutations were introducted into
HrcU using and as described by the Altered Sites® II
in vitro Mutagenesis System (Promega; Madison,
WI). Briefly, full-length HrcU (NC_013971) was
cloned into pAlter-Ex1 via Ncol and Nsil restriction
sites creating pRRMY9. Mutagenic oligonucleotide
HrcU_N266A (5'-GACCTGCTGCTGGTCGCTCCCA
CGCACTATGCG-3") was designed to convert the
asparagine amino acid at position 266 to an alanine
residue. pRRM9 and HrcU_N266A primer were dena-
tured and phosphorylated respectively and via PCR
pAlter-Ex1(hrclnesa) (PRRM10) was synthesized and
transformed into competent E. coli cells.

Yeast two-hybridization
The bait vector pGBKT7 and the prey vector
pGADT7 were used for yeast expression and Y2H

T=nNc—Ng n represents sample size

1/2n(n—1) nc is the number of concordant pairs
z = 3**Vn(n-1) ng is the number of discordant pairs
V2(2n+5)
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screening (Clontech, Mountain View, CA, USA). A
Frozen-EZ Yeast Transformation II Kit was used to
create competent Saccharomyces cerevisiae AH109
and for cotransformation of bait and prey (Zymo
Research Corporation, Orange, CA, USA). Transfor-
mants were selected on minimal SD agar amended
with -Ade/-His/-Leu/-Trp dropout supplement and
Mell a-galactosidase activity was detected using
topically applied X-a-Gal at 4 ug ul™' (Clontech,
Mountain View, CA, USA). The intensity of blue
color was quantified using Image] (http://imagej.nih.-
gov/ij/download.html). Kendall rank correlation coef-
ficient 1 tests were performed to determine the
statistical significance. Equations are listed below:

Secretion assays

Strains were cultured overnight in 50 ml LB broth at
28 °C. Cells were washed twice with 0.5X PBS, and
resuspended in 50 ml minimal medium, pH 5.7 [60].
Strains were induced for 48 h with shaking, collected
by centrifugation, and the supernatant was filtered
using 0.22 pm vacuum filtration (Millipore, Billerica,
MA, USA). Filtrate was supplemented with 0.5 mM
phenylmethylsulfonyl fluoride and concentrated to
approximately 500 pl using 10-kDa Amicon centrifu-
gal filter units (Millipore, Billerica, MA, USA). For
ease of detection of secreted DspE protein, we used
plasmid pLRT201 which is an expression construct
that encodes the first 737 amino acids of DspE fused
to an adenylate cyclase (CyaA) reporter [38]. We
have previously demonstrated secretion of this
DspE;.737,-CyaA fusion protein via the T3S system
[38]. DspE secretion was examined in the WT E
amylovora Eal189/pLRT201, Eal189Ahrcl/pLRT201,
Eal189AhrpP/pLRT201 and Eall89AhrcU/pRRM2/
pLRT201.

For western blot analysis, proteins were analyzed
using anti-CyaA antibody (Santa Cruz Biotechnology,
Santa Cruz, CA). For protein visualization, proteins
were additionally purified to remove biofilm polysac-
charides as previously described [29]. Briefly, protein
samples were extracted twice with 0.5 volume of
water-saturated phenol and precipitated with by the
addition of 5 volumes 100 mM ammonium acetate
in methanol. After overnight incubated at -20 °C,
protein were extracted via centrifugation, resus-
pended in 50 ul water and reprecipitated in 500 pl
of cold acetone. Samples were again incubated over-
night at =20 °C and protein pellets were collected by
centrifugation at 13,000 g at 4 °C for 30 min and
subsequent resuspension in 50 pl 5 % acetic acid
supplement with 0.5 mM PMSF. A bicinchoninic
acid (BCA) protein assay kit was used to measure
protein concentrations and concentrations were
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adjusted to 1 pg pl™'. Eight pg of each protein sam-
ple were used for western blot analysis.
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