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Abstract

Background: To allow an immediate treatment of an infection with suitable antibiotics and bactericides or
fungicides, there is an urgent need for fast and precise identification of the causative human pathogens. Methods
based on DNA sequence comparison like 165 rRNA analysis have become standard tools for pathogen verification.
However, the distinction of closely related organisms remains a challenging task. To overcome such limitations, we
identified a new genomic target sequence located in the single copy gene for tRNA nucleotidyltransferase fulfilling
the requirements for a ubiquitous, yet highly specific DNA marker. In the present study, we demonstrate that this
sequence marker has a higher discriminating potential than commonly used genotyping markers in pro- as well as
eukaryotes, underscoring its applicability as an excellent diagnostic tool in infectology.

Results: Based on phylogenetic analyses, a region within the gene for tRNA nucleotidyltransferase (CCA-adding
enzyme) was identified as highly heterogeneous. As prominent examples for pro- and eukaryotic pathogens, several
Vibrio and Aspergillus species were used for genotyping and identification in a multiplex PCR approach followed by
gel electrophoresis and fluorescence-based product detection. Compared to rRNA analysis, the selected gene
region of the tRNA nucleotidyltransferase revealed a seven to 30-fold higher distinction potential between closely
related Vibrio or Aspergillus species, respectively. The obtained data exhibit a superb genome specificity in the
diagnostic analysis. Even in the presence of a 1,000-fold excess of human genomic DNA, no unspecific amplicons
were produced.

Conclusions: These results indicate that a relatively short segment of the coding region for tRNA nucleotidyltransferase

has a higher discriminatory potential than most established diagnostic DNA markers. Besides identifying microbial
pathogens in infections, further possible applications of this new marker are food hygiene controls or metagenome

analyses.
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Background

Bacterial and fungal infections are one of the major
threats to human health. Among others, increasing resis-
tances of pathogenic microorganisms against frequently
used antibiotics are raising the number of dangerous in-
fections every year [1]. Hence, a fast and reliable iden-
tification system to achieve an effective and specific
medical treatment is essential [2, 3]. In the last decades,
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procedures based on morphological, physiological and
biochemical analyses were progressively replaced by
more sensitive PCR amplifications of pathogen-specific
gene sequences. These target sequences exhibit patterns
of characteristic point mutations, allowing a robust
species-specific verification of an organism [4, 5].

In this study, we present a new and highly specific tar-
get sequence for genotyping bacterial and eukaryotic
pathogens. The CCA-adding enzyme (ATP(CTP):tRNA
nucleotidyltransferase) represents an essential and ubi-
quitous tRNA maturation activity found in all kingdoms
of life. The enzyme catalyzes the posttranscriptional
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addition of the CCA triplet to the 3'-end of tRNAs, gen-
erating the site of aminoacylation [6—8]. Even in organ-
isms where the CCA triplet is encoded in the tRNA
genes, like E. coli or certain Bacillus species, a CCA-
adding enzyme is encoded in the genome, as it is also re-
quired for the maintenance and repair of the CCA-ends
in the tRNA pool [9-11].

Bacterial and eukaryotic CCA-adding enzymes share
five highly conserved sequence motifs A to E in the N-
terminal catalytic core (Fig. 1a) [12]. Molecular model-
ling as well as crystal structures indicate that a sequence
stretch of 10 to 25 amino acids between motifs A and B
forms a flexible loop element that, according to biochem-
ical characterization, is involved in the CCA polymeriza-
tion reaction [12-15]. Despite this important function, the
flexible loop region follows a highly unusual evolutionary
path differing from that of the other core motifs. While
motifs A to E show a high conservation at the amino acid
level, the sequence of the loop element varies dramatically
between different organisms. Accordingly, the protein as
well as DNA sequence pattern of this region allows for a
classification into different sequence families that perfectly
represent individual phylogenetic genera [15]. Here, we
show that this species-specific sequence composition ful-
fils the criteria for a reliable new genotyping marker for
pro- as well as eukaryotic causative organisms. As a proof
of principle, we demonstrate that the loop-encoding DNA
region is suited to identify and discriminate even very
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closely related pathogenic strains in the groups of Vibrio
and Aspergillus.

Besides V. cholerae, other Vibrio species represent
highly pathogenic germs as well. V. alginolyticus, V. para-
haemolyticus and V. vulnificus are gram-negative, halo-
philic bacteria that are frequently found in estuarine,
coastal and other nutrient-rich waters around the world
[16-22]. They are frequently detected in seafood like oys-
ters, shrimps or soft-shell clams. Consequently, they are
associated with gastroenteritis and septicemia as well as
wound infections due to direct contact with contaminated
water [23—31]. Studies in the United States show a correl-
ation between V. parahaemolyticus counts and the num-
ber of zooplankton populations, which are increasing
during the summer months, when the incidence for Vibrio
infections is high [32—34]. In cooler seasons, Vibrio species
only occur in sediments or shellfish before they start to
proliferate again at warmer temperatures with one of the
fastest bacterial growth rates [32, 35—-38]. Accordingly, in-
creased surface temperatures of lakes and seas correlate
with an elevated infection incidence [39—-43].

In addition to these examples of closely related pro-
karyotic pathogens, we have included several species of
Aspergillus, representing a eukaryotic disease-causing
fungus. The most prominent pathogenic species of this
mold genus are A. fumigatus, A. niger and A. terreus,
triggering life-threatening invasive infections which are a
leading cause of mortality in immunocompromised
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V. alg AGAAAGTCAGGTTCTGGTTACACTGGTTTTGAATGTTTCTTCGATCAAAACGTCACCT TAGAAGAAGATTTGATA fV + rValg
o
V. par 5' AGAAAATCAGGCTCAGGTTACACGGGCTTTGACTGTTTCTTCGATCCAAGCGTAACGCTAGAAGAGGATTTGATT 3' fV + rVpar
o
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Fig. 1 A highly variable loop element in CCA-adding enzymes. a. The flexible loop (green) is located between two highly conserved motifs A and
B of the catalytic core. At the DNA level, this allows for the annealing of a genus-specific forward primer fV (Vibrio) or fA (Aspergillus), indicated by
the arrow. b. Sequence alignment of the individual loop regions of V. alginolyticus, V. parahaemolyticus, V. vulnificus, A. fumigatus, A. niger, and A.
terreus. Red characters indicate species-specific point mutations. Arrows indicate the hybridizing regions of the reverse primers. Primer combinations
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patients [44-49]. A. fumigatus is the main causative
agent of invasive aspergillosis that affects skin, ears,
paranasal sinuses or the lung, resulting in a mortality
rate of nearly 100 % in untreated patients [44]. Infections
with A. niger and A. terreus also frequently cause serious
aspergillosis with comparable mortality rates [44]. These
infections represent a worldwide health threat, as several
studies show a ubiquitous presence of Aspergillus spe-
cies. In addition to soil samples and internal building
walls, they can also be isolated from clothes, shower
heads, dusty air conditioners and hospital plants, result-
ing in a constantly high infection incidence in immuno-
compromised patients [48, 50].

Thus, a fast and reliable identification of these patho-
gens is very important for an immediate and successful
medical treatment of such infections. Using the highly
variable gene sequence encoding the flexible loop elem-
ent of CCA-adding enzymes, we show that very closely
related Vibrio and Aspergillus species can be discrimi-
nated at a much higher fidelity compared to approaches
focusing on standard gene sequences in diagnostics.

Results

One of the essential elements in the catalytic core of
CCA-adding enzymes consists of a flexible loop region
located between the conserved sequence motifs A and B
(Fig. 1a). In contrast to other elements of the catalytic
core, the amino acid composition of the loop reveals a
remarkable sequence diversity. Hoffmeier et al. could
show that this variety in the loop sequence correlates
with the evolutionary distance between the correspond-
ing organisms [15]. According to detailed sequence
alignments, distant organisms exhibit great differences
in their loop sequence, whereas the sequences of closely
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related organisms are more similar and can be summa-
rized into loop families. Yet, the loop-encoding DNA se-
quences can be used for a reliable genotyping and are
better suited for a robust species-specific identification
than 16S rRNA analysis, a standard tool to identify and
distinguish certain pathogenic bacteria [51].

To obtain species-specific sequences of the 16S rRNA,
genomic DNA preparations of V. alginolyticus, V. para-
haemolyticus and V. vulnificus were used for PCR-based
amplification. As the first 527 base pairs were shown to
have a distinction potential identical to the full-length
sequence [52], we identified the 5'-terminus of the amp-
lified 16S rRNA genes (850 nucleotides). The obtained
sequences were identical to the corresponding entries
found in the NCBI database (National Center for Biotech-
nology Information; http://www.ncbi.nlm.nih.gov/sutils/
genom_table.cgi), verifying that the correct genes were
amplified. In a corresponding alignment, characteristic
point mutations were identified and their ratio between
the compared species was calculated as the discriminatory
potential (Table 1). Likewise, the gene section encoding
the flexible loop region of the individual CCA-adding en-
zymes was sequenced and the number of base differences
was determined.

In addition to these bacterial species, representatives
of pathogenic fungi were investigated as well. The corre-
sponding gene sequences (185 rRNA gene, loop region
of the CCA-adding enzyme gene) were analyzed in three
closely related Aspergillus species, using genomic DNA
of A. fumigatus, A. niger (ATCC 6275) and A. terreus
(ATCC 10690). In all investigated 16S or 18S rRNA gene
sequences, a discriminatory potential represented by per-
centage sequence differences from 0.1 to 1.1 % (V. para-
haemolyticus, V. alginolyticus) and 0.1 to 0.5 (all tested

Table 1 Discriminatory potential of the loop-encoding DNA sequence compared to 16S (Vibrio) or 185 rRNA gene (Aspergillus)

16S rRNA gene

CCA-adding enzyme loop Comparative potential

Length [bp] Number of % Length [bp] Number of % %/%
specific mutations specific mutations

V. alginolyticus 850 9 1.1 75 10 133 12.1
V. parahaemolyticus 850 1 0.1 75 8 10.7 107.0
V. vulnificus 850 42 49 75 21 280 57
Interspecific similarity 94.0-98.8 % 65.3-82.7 %

18S rRNA gene
A. fumigatus 850 3 04 63 9 14.3 358
A. niger 850 1 0.1 63 10 159 159.0
A. terreus 850 4 0.5 63 7 1.1 222
Interspecific similarity 99.2-99.5 % 74.6-794 %

The discriminatory potential is given as percentage sequence differences. The comparative potential is represented by the ratio of the discriminatory potentials.
Interspecific similarities were calculated based on pairwise alignments in Fig. 1b. For the 16/18S rRNA gene, the first 850 positions were taken into account,
whereas the flexible loop sequence was analyzed in full length. Although the loop sequence represents only 7.4 to 8.8 % in length compared to the analyzed
rRNA gene region, the percentage values of mutations show a substantially higher discrimination potential of this sequence. The specific mutations within the

indicated genes are unique and characteristic for the individual species
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Aspergillus species) was observed. Only the 16S rRNA
gene of V. vulnificus exhibits a higher sequence deviation
with 42 point mutations and deletions, leading to a ratio
of 4.9 %. In all cases, a much higher sequence difference
was observed for the gene region encoding the flexible
loop of the corresponding CCA-adding enzymes. Here,
mutation ratios between 10.7 and 13.3 % (V. alginolyticus,
V. parahaemolyticus) and 11.1 and 15.9 % (Aspergillus
species) were identified, whereas the discriminatory po-
tential of the loop sequence from V. vulnificus reaches
28.0 % (Table 1). In this case, the comparative potential
(represented by the ratio between specific mutations (in
%) in the loop and the 16S rRNA sequences) is 5.7 times
higher than that of the 16S rRNA analysis. For the other
investigated organisms, the discriminatory potential is also
higher for the loop sequence, ranging from a factor of 12.1
to 35.8. In the case of V. parahaemolyticus and A. niger,
the first 850 nucleotides of the corresponding rRNA genes
revealed only one characteristic point mutation, whereas
the loop sequence presents 8 and 10 point mutations in a
sequence of 75 and 63 nucleotides, respectively. Thus, the
distinction potential is increased by factors 107.0 and
159.0 in these species.

The taxonomic resolution of an individual DNA se-
quence is defined by intra- and interspecific similarities
[5]. These values are represented by the percentage dis-
criminatory mutations in the compared versions of a
specific sequence, either within strains of one species
(intraspecific similarity) or within different species (in-
terspecific similarity). Based on the sequence alignment
in Fig. 1b, the interspecific similarity of the loop DNA
sequences was obtained by a comparison of the individ-
ual Vibrio strains, leading to values between 65.3 and
82.7 % (Table 1). For the Aspergillus strains, 74.6 to
79.4 % were calculated. To determine the intraspecific
similarity, the corresponding gene sequences of individ-
ual Vibrio and Aspergillus strains found in the NCBI
database were investigated (Table 2). For V. alginolyticus,
V. parahaemolyticus and V. vulnificus, the intraspecific

Table 2 Intraspecific sequence similarities of selected Vibrio and
Aspergillus species

Species Number  min. point  max. point  Similarity [%]
of strains  mutations mutations

V. alginolyticus 8 0 1 98.7-100.0
V. parahaemolyticus 46 0 1 98.7-100.0
V. vulnificus 7 0 4 94.7-100.0
A. fumigatus 8 0 0 100.0

A. niger 7 0 0 100.0

A. terreus 3 0 0 100.0

DNA sequences of the flexible loop region from different strains were aligned
and point mutations were identified, focusing on the strains with the least and
the most mutations. The intraspecific similarity was calculated relative to the
length of the respective loop sequence (63 and 75 bp, respectively)
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sequence similarities have a range from 94.7 to 100 %,
comparable to that of other Vibrio-specific markers like
toxR or rctB [5]. In the case of A. fumigatus, A. niger
and A. terreus, we observed a surprisingly high sequence
identity. None of the strain-specific loop sequences
showed any discriminating point mutation, resulting in
an intraspecific similarity of 100 %.

Next, suitable and unique primer annealing regions in
the flexible loop-coding DNA sequence were identified,
allowing for a specific and highly selective amplification
of the corresponding sequences. Sequence alignments
revealed clusters of point mutations and presented seg-
ments suited for species-specific primer hybridization
(Fig. 1). As single mismatches in the 3’-part of the pri-
mer sequence inhibit efficient annealing and, conse-
quently, effective elongation and amplification, only
annealing sites carrying at least two or three characteris-
tic point mutations in the corresponding region were se-
lected for each reverse primer. The individual forward
primers are annealing in the region encoding motif A,
which reveals a much higher DNA sequence homology
than the flexible loop region. In a PCR reaction, all pri-
mer pairs were tested for selective amplification on the
individual DNA preparations of the respective organ-
isms. Agarose gel electrophoresis of the resulting PCR
products indicated a highly specific amplification for the
corresponding genomic DNA samples, leading to reac-
tion products of 201 to 245 bp for the Vibrio species
and 301 to 333 bp for the Aspergillus species (Fig. 2). In
contrast, DNA from the other Vibrio or Aspergillus spe-
cies did not lead to any detectable PCR signal. Hence,
the bands in Fig. 2 represent highly specific amplification
products for the tested individual prokaryotic and
eukaryotic strains.

The high species-specificity in the amplification indi-
cates that the flexible loop sequence has a high potential
as a discriminatory marker in Vibrio or Aspergillus geno-
typing. To further simplify such an analysis, the perform-
ance of the individual primer combinations was tested in a
multiplex PCR, allowing a simultaneous detection of indi-
vidual strains. Reverse primers rValg, rVpar and rVvul,
carrying 5’-terminal fluorophores ATTO 425, ATTO 532
and ATTO 633, respectively, were used in combination
with the Vibrio-specific forward primer fV. The reaction
products were separated on an agarose gel. Each fluoro-
phore was excited by the appropriate wave length, and the
specific emission signals showed a detection limit of 10 pg
of DNA (Fig. 3a). The excitation and emission spectra of
the selected fluorophores allow for a specific and distinct
detection of the individually tested Vibrio sequences. The
observed double bands in Fig. 3a are the consequence of a
length heterogeneity of the labeled primers (data not
shown) but not the result of unspecific hybridization dur-
ing the amplification process.
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Fig. 2 Genome-specific amplification of loop-encoding DNA sequences. a. A Vibrio-specific forward primer (fV) was used in combination with
species-specific reverse primers rValg, rVpar and rVvul to selectively amplify the loop-encoding regions. 1.0 ng genomic DNA of V. alginolyticus
(Va), V. parahaemolyticus (Vp) and V. vulnificus (VW) was used as template. The respective PCR products have a length of 204, 245 and 231 bp,
respectively. b. The corresponding gene region from 3.0 ng genomic DNA from A. fumigatus, A. niger and A. terreus was amplified with appropriate
primers (fA with rAfum, rAnig or rAter), leading to PCR products of 333 (A. fumigatus, A. niger) and 301 bp (A. terreus). Reaction products were separated
on a 2 % agarose gel and stained with ethidium bromide. N, PCR negative control. M, 50 bp DNA ladder (NEB)

Usually, patient samples do not only contain DNA
from the pathogen but carry an excess amount of en-
dogenous human genomic DNA. As the human genome
also encodes for a related CCA-adding enzyme, it is im-
portant that the genotyping procedure strongly discrimi-
nates against such endogenous contaminations. Hence,
0.1 ng of Vibrio DNA was mixed with an increasing
amount of human genomic DNA, leading to a 1,000-fold
excess of human gene sequences. With such contami-
nated material, a multiplex PCR containing the above
mentioned primer combinations was performed and the
reaction products were separated on an agarose gel
(Fig. 3b). The resulting fluorescent signals indicate that
the excess of human DNA has only a minor effect on
the amplification efficiency of the Vibrio sequences,
while no unspecific reaction products resulting from
hybridization to the human DNA were observed. Never-
theless, we have designed a human-specific blocking
oligonucleotide carrying a C3 spacer at the 3’ position
that efficiently inhibits the amplification of the human
loop-encoding sequence, while it does not interfere with
PCR-based detection of bacterial sequences (Additional
file 1: Figure S1) [53]. Hence, if needed, this blocking

oligonucleotide can be added to the PCR reaction in order
to enhance the detection specificity.

Taken together, these results confirm that the DNA se-
quence encoding the flexible loop from CCA-adding
enzymes represents a unique and highly specific amplifi-
cation target that allows a fast and reliable genotyping of
different Vibrio or Aspergillus infections.

Discussion

Infections caused by pathogenic microorganisms repre-
sent a widespread threat of human health. Especially the
incidences of foodborne diseases and invasive fungal in-
fections caused by Vibrio and Aspergillus species are in-
creasing every year. Representatives of these two genera
are able to thrive on a broad spectrum of substrates and
environmental conditions, leading to their world-wide
distribution that is even enhanced by climate changes.
Especially the three non-cholera Vibrio species V. algi-
nolyticus, V. parahaemolyticus and V. vulnificus, all
thriving in coastal and estuarine waters, are benefiting
from global warming and increasing surface temperatures
of lakes and seas all over the world [39, 42, 43, 54, 55].
Hence, the development of fast and reliable identification



Franz et al. BMC Microbiology (2016) 16:47

Page 6 of 11

-

- -
| i e a0 . o).

negative control with 50 ng of human genomic DNA

a genomic DNA b human genomic DNA [ng]

[ ]
' 30pg 20 pg 10pg | 0 50100 0 50100 O 50 100
1 2 31 2 31 2 3N detection: 1 2 31 2 31 2 3 N

V. alginolyticus

l - V. parahaemolyticus

V. vulnificus

Fig. 3 Multiplex PCR with individual fluorescence-labeled primers for different Vibrio strains. a. Species-specific amplification of the flexible loop-
encoding DNA sequence. Indicated amounts of individual genomic DNA (1: V. alginolyticus, 2: V. parahaemolyticus, 3: V. vulnificus) were added to
the primer mix. PCR products were visualized in the agarose gel by the different fluorescence of the species-specific primers. Down to 10 pg of
each DNA sample were readily detected, without any cross reactivity with the other genomes. N, negative control. b. Human DNA does not
interfere with the specific detection of Vibrio DNA. 0.1 ng of genomic DNA (1: V. alginolyticus, 2: V. parahaemolyticus, 3: V. vulnificus) were mixed
with a 500 to 1,000-fold excess (50 and 100 ng) of human genomic DNA in a multiplex PCR and visualized as above. Compared to the positive
control (0, no human DNA added), no additional bands appeared, indicating an exclusive and highly specific amplification of Vibrio DNA only. N,

5‘0—

|am
-

-
- -

methods for such human pathogens is urgently needed.
Since many microbiological analyses were replaced by fas-
ter and more sensitive PCR methods, many specific gene
sequences were identified that allow for a distinction be-
tween closely related species of the same genus. For such
species-specific identification, the analysis of 16S and 18S
rRNA gene sequences represents a widely used standard
approach [2, 51, 56—58]. However, in the case of V. algino-
Iyticus, V. parahaemolyticus and V. vulnificus as well as A.
fumigatus, A. niger and A. terreus, the distinctive potential
of the corresponding ribosomal DNA sequences is rather
low, ranging from 0.1 to 4.9 % (Table 1). The high similar-
ities in the 16S rRNA gene sequence were already de-
scribed by Kwok et al., who observed a sequence identity
of 99 % between V. alginolyticus and V. parahaemolyticus
and a 95 % between V. alginolyticus and V. vulnificus, as
well as between V. parahaemolyticus and V. vulnificus
[59]. Likewise, other studies revealed that rRNA sequence
homologies between V. parahaemolyticus and related spe-
cies are so high that this gene is not suited for identifica-
tion approaches [60, 61].

To overcome these limitations, more specific template
sequences for reliable genotyping were established in the
last years. Especially for the discrimination of Vibrio spe-
cies, pathogenicity markers like thermolabile hemolysin
(tlh), thermostable direct hemolysin (tdh) and thermo-
stable direct hemolysin-related hemolysin (¢r/) are ana-
lyzed [62-65]. A very useful target sequence to identify

different Vibrio species is the toxR gene, a toxicity-
related transcriptional regulator originally found in V.
cholerae [5, 66, 67]. Combined in multiplex PCR or
multi locus sequence typing approaches, these Vibrio-
specific target genes are powerful tools for a solid identi-
fication procedure. However, they are restricted to a
small pool of organisms within a genus, showing no dis-
tribution in other human-relevant pathogens. Studies on
more ubiquitous gene sequences, like the B subunit of
the bacterial DNA gyrase (gyrB), the hsp60 or the rpoB
gene, revealed differences ranging from 3.2 to 20.0 % be-
tween V. alginolyticus, V. parahaemolyticus and V. vulni-
ficus [59, 68, 69]. In 2010, Pascual et al. published a
multi locus sequence analysis of several closely related
Vibrio species, calculating the intra- and interspecific se-
quence similarities of the most promising genotyping se-
quences. Intraspecific sequence similarities were ranging
from 98.8—100 % (16S rRNA gene), 92.7-100 % (recA),
93.7-100 % (pyrH), 95.6-100 % (rpoD), 86.8—100 %
(gyrB), 85.6—100 % (rctB) and 77.2—100 % (foxR), with
interspecific similarities of 97.6-99.9 % (16S rRNA
gene), 87.9-99.9 % (recA), 86.4-97.8 % (pyrH), 79.1-
96.0 % (rpoD), 83.1-99.5 % (gyrB), 74.3-92.7 % (rctB)
and 33.8-72.5 % (toxR) [5]. According to these values,
the best taxonomic resolution is given by the sequences
of rctB, rpoD and toxR.

Compared to these established Vibrio-discriminating
sequences, the region encoding the flexible loop of the
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CCA-adding enzyme shows an intraspecific similarity of
94.7 to 100 %, while the interspecific sequence similar-
ities lie between 65.3 and 82.7 % (Fig. 4). Furthermore,
in 46 strains of V. parahaemolyticus, only a single point
mutation was observed in two strains, corresponding to
an intraspecific similarity of 98.7 to 100 % (Table 2). For
V. alginolyticus and V. vulnificus, comparably high
values (98.7-100 % and 94.7-100 %) were obtained,
indicating that the taxonomic resolution (defined by the
gap between the maximum intraspecific distance and
the minimum interspecific distance [5]) outperforms the
usual Vibrio marker genes rctB and rpoD, while it is
nearly as distinctive as the toxR gene (Fig. 4). A striking
exception is V. alginolyticus strain E0666, where nine in-
traspecific point mutations were detected in the loop-
encoding region, corresponding to an intraspecific simi-
larity of 88.0 %. However, the toxR sequence of the same
strain shows a comparable intraspecific similarity of
87.6 %, as this gene also carries an unexpected high
number of characteristic point mutations (109 in 879 bp).
As all other investigated V. alginolyticus genomes showed
sequence similarities of 98.7 % in both foxR and loop se-
quence, E0666 was not included in our analysis, as it is
very likely that it does not represent a true V. alginolyticus
strain. Nevertheless, even when this strain is included,
the intraspecific similarity of V. alginolyticus would
be between 88.0 and 100 %, again comparable to that
of toxR.

CCA
rctB rpoD toxR loop
95 L
90
85
o
= 80
b L
= 75
o
E 70
%)
65
60
55
50
33.8%
Fig. 4 Taxonomic resolution of Vibrio-specific sequence markers.
According to Pascual et al, the ranges of intraspecific (open bars)
versus interspecific (filled bars) similarities (%) are indicated [5]. In
contrast to the frequently used marker genes rctB and rpoD, the
gene sequence encoding the loop sequence of the CCA-adding
enzyme shows a superb resolution, comparable to that of toxR
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Taken together, these classification parameters indicate
that the flexible loop region of CCA-adding enzymes has
an identification potential similar to that of established
genetic Vibrio markers, although its sequence with a
length of 75 bp is much shorter than that of the main
discriminatory regions of toxR (477 bp), rctB (591 bp)
and rpoD (780) [5]. Furthermore, while foxR and rctB
markers can only be used for Vibrio genotyping, CCA-
adding enzyme genes with varying flexible loop regions
are found in all bacteria and eukaryotes, indicating that
the loop sequence has the potential as a genotyping
marker for a wide range of different pathogens [15].

This is further supported by our findings concerning
the genotyping of individual Aspergillus species. Here,
the discriminatory potential of the loop sequences of A.
fumigatus, A. niger and A. terreus is even higher, with in-
terspecific similarities between 74.6 and 79.4 % com-
pared to 99.2-99.5 % in the 18S rRNA gene sequences
(Table 1, Fig. 1b). In addition, no intraspecific point mu-
tations were observed (Table 2), leading to an excellent
taxonomic resolution. Yet, 18S rRNA sequence analysis
is frequently used for Aspergillus genotyping [2, 70, 71].
Alternatively, random amplification of polymorphic DNA
(RAPD) and restriction fragment length polymorphism
PCR (RFLP-PCR) are used, where the internal transcribed
spacer regions between 18S, 5.8S and 28S rRNA genes are
investigated [50, 72—74]. Both methods are suitable for a
reliable identification of Aspergillus species, but the
correct interpretation of the resulting complex DNA
fragment patterns is difficult [73]. Furthermore, these
methods cannot be used for analyzing several species
within a single multiplex PCR, as it was done in this
study. In contrast, the flexible loop-encoding region
of the gene for CCA-adding enzyme is much better
suited for identification of pathogenic microorganisms
(in single or multiplex PCR), fulfilling the criteria for
a successful application in genotyping [4]. First, as
the CCA-adding enzyme represents an essential pro-
tein, the corresponding gene is ubiquitously distributed in
the kingdoms of Bacteria and Eukaryotes [75, 76]. Second,
to allow a specific sequence analysis, the target gene must
be unique within a genome, without closely related para-
logs. Bacterial and eukaryotic CCA-adding enzymes are
closely related to bacterial poly(A) polymerases, sharing
the same conserved core motifs [77, 78]. However, the
flexible loop element of the poly(A) polymerase has a very
unique sequence composition, showing no similarity to
the loop sequence of CCA-adding enzymes [11]. Further-
more, in several bacterial species, the CCA-adding activity
is shared between two closely related enzymes, where the
first catalyzes the addition of two C residues (CC-adding
enzyme), while the second one adds the terminal A (A-
adding enzyme) [79-81]. Yet, such a gene constellation
still allows for a specific species identification, as CC-
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adding enzymes have lost the loop region due to a deletion
of the corresponding coding region [13]. In contrast, A-
adding enzymes carry a loop sequence. However, this se-
quence shows the same discriminatory potential as in
CCA-adding enzymes, so that the loop region in A-adding
enzymes can also be used for genotyping. Third, the gene
sequence has to be long enough to contain sufficient
phylogenetic information, and, on the other hand, short
enough for fast sequence analysis using a minimal set of
primers. With a length of 63-75 bp, as found in Vibrio
and Aspergillus species as well as in other organisms, the
loop-encoding region is indeed very short. Nevertheless,
our data indicate that it contains a high number of unique
and characteristic sequence differences for a species-
specific amplification and identification.

Conclusions

Taken together, the DNA sequence encoding the flexible
loop region of CCA-adding enzymes shows all features re-
quired for a highly discriminating gene marker in patho-
genic microorganisms. This is supported by the presented
results, where closely related pro- and eukaryotic patho-
gens could be easily discriminated, in contrast to most of
the established diagnostic markers. Although in the case
of Aspergillus, no loop sequence information of type
strains is available, the data clearly show that this DNA
marker is also very useful for eukaryotic pathogens. Com-
bined with other sequences with high discriminatory po-
tential, this new marker will contribute to a superb and
highly reliable diagnostic procedure in infectology and sys-
tematic microbiology. Furthermore, the loop sequence
can be a useful diagnostic tool in food hygiene analysis or
in the detection of specific microbial species in so far un-
identifiable metagenome DNA sequences.

Methods

Microbial strains and DNA extraction

Genomic DNA of V. alginolyticus (ATCC 17749), V. para-
haemolyticus (ATCC 17802) and V. vulnificus (ATCC

Table 3 Sequences of primers used in this study
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27562) was obtained from the Leibniz Institute DSMZ -
German Collection of Microorganisms and Cell Cultures
(Braunschweig, Germany). A niger and A. terreus were ob-
tained as freeze-dried cultures from the same institute. P.
Zipfel (Leibniz Institute for Natural Product Research and
Infection Biology - Hans Knoll Institute, Jena, Germany)
provided the genomic DNA of A. fumigatus. The freeze-
dried cultures were handled as directed and dissolved in
40 % glycerol for storage at —20 °C. 50 ml Sabouraud dex-
trose broth were inoculated with 200 pl of the glycerol
stock and incubated for 24 h at 37 °C and 200 rpm. After
a centrifugation step, the pellet was resuspended in DNA
extraction buffer containing 0.7 M NaCl, 0.1 M Tris—HCl
(pH 7.5), 50 mM EDTA and 1 % SDS (w/v). Cells
were lysed in a FastPrep®24 system (MP Biomedicals,
Heidelberg, Germany), using lysing matrix C at 6.0 m/s
for 30 s. After a second centrifugation step, the super-
natant was incubated for 5 min at room temperature and
mixed with 5 ml 24:1 chloroform/isoamyl alcohol for
30 min on ice. The DNA in the supernatant was precipi-
tated with 100 % ethanol. After centrifugation, the pellet
was washed with 70 % ethanol, air dried, and dissolved in
50 pl double-distilled water. DNA concentrations were
determined on a NanoDrop™ 1000 spectrophotometer
(Thermo Fisher Scientific, Braunschweig, Germany).

Gene sequences of the individual CCA-adding enzymes
were obtained from the National Center for Biotechnology
Information (NCBI) database (Additional file 2: Table S1).
The loop-encoding sequences were identified by aligning
the corresponding DNA sequence between conserved
core motifs A and B. 16S and 18S rRNA gene regions
were sequenced on an ABI Prism 3700 automated sequen-
cer (Amersham Biosciences). Accession numbers of fur-
ther 16/18S rRNA genes used for interspecific alignments
are summarized in Additional file 3: Table S2.

Oligonucleotide primers
For the specific amplification of loop-encoding DNA
sequences, a universal forward primer was used that

Primer  Sequence Description 5'-label abs (nm) em [nm]
v 5'- GTAGGTGGCGCAGTTCGAG -3' Degenerated forward primer for motif A region of V. alginolyticus/

5'- GTGGGTGGAGCGGTAAGAG -3' V. parahaemolyticus (sequence 1) and V. vulnificus (sequence 2)
Valg  5'- ACCAGTGTAACCAGAACCTGAC -3'  Reverse primer for loop sequence of V. alginolyticus ATTO 425 436 484
Vpar  5'- TCCTCTTCTAGCGTTACGCTTG -3' Reverse primer for loop sequence of V. parahaemolyticus ATTO 532 532 553
vul  5'- CACATCTGGGGAGAAAAAGCAC -3'  Reverse primer for loop sequence of V. vulnificus ATTO 633 629 657

fA 5'- GGGTGAGGGACAAGCTG -3'
5'- GGGTGCGGGACAAGCTG -3'

rAfum  5'- CATCTTCTTCGGCGGTG -3'
rAnig  5'- CGTCTTCCTGGGCTGTTC -3
rAter  5'- GGATTCCGACTATCATCCGTATAG -3'

Degenerated forward primer for motif A region of A. fumigatus/
A. niger (sequence 1) and A. terreus (sequence 2)

Reverse primer for loop sequence of A. fumigatus
Reverse primer for loop sequence of A. niger

Reverse primer for loop sequence of A. terreus
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recognizes the conserved DNA sequence of motif A of
the CCA-adding enzyme gene of Vibrio (fV) or Aspergil-
lus species (fA). The reverse primers hybridize to the
individual loop-encoding DNA sequences and are there-
fore highly specific for the individual species. Annealing
regions for reverse primers are shown in Fig. 1b. Primer
sequences including fluorescent 5'-labels (ATTO 425,
ATTO 532, ATTO 633; biomers, Ulm, Germany) are
summarized in Table 3.

Standard and multiplex PCR amplifications

PCR was carried out in a volume of 20 pl of 20 mM Tris/
HCl (pH 8.4), 50 mM KCl, 2 mM Mg Cl,, 150 uM dNTPs,
0.3 uM forward and reverse primers, 1 % DMSO, 1 U Taq
DNA polymerase (NEB) and 0.1 to 3.0 ng of genomic
DNA. An initial denaturation for 3 min at 96 °C was
followed by 40 cycles of denaturation (96 °C, 60—90 s), pri-
mer annealing (53/59 °C, 60 s) and elongation (68 °C, 30/
60 s). A final elongation was performed at 68 °C for 5 min.
To improve the hybridization specificity in some of the re-
actions, a touch-down PCR was performed with tempera-
ture gradient for primer annealing from 60 °C to 53 °C
within the first 10 cycles.

Detection of PCR products and imaging

PCR products were separated on an agarose gel and vi-
sualized by ethidium bromide staining. Fluorescent PCR
products were detected by scanning the agarose gel in a
Typhoon 9410 Variable Mode Imager using suitable
laser-filter combinations. The absorption and emission
maxima of the fluorescent labels are presented in Table 3.
Resulting images were saved as tagged image files (tif).

Sequence alignments

DNA sequences encoding the individual loop or rRNA se-
quences were aligned using Clustal Omega (http://www.ebi.
ac.uk/Tools/msa/clustalo/) with default parameters [82].

Additional files

Additional file 1: Figure S1. A 3"-blocked oligonucleotide efficiently
inhibits the amplification of human loop-encoding DNA. A. The blocking
oligonucleotide (black) recognizes the human loop sequence (red) and part
of the upstream located region encoding motif A (green). This interferes
with binding of the PCR forward primer (green), and, consequently,
amplification of the human sequence. The 3'- end of this oligonucleotide is
blocked by a C3 spacer (x). B. Increasing ratios of blocking oligonucleotide
versus forward primer inhibit amplification of the human sequence, while
the bacterial sequence amplification remains unaffected. Hence, the
blocking oligonucleotide can increase the selective amplification of
pathogenic loop sequences in the PCR reaction. N, PCR negative control; M,
50 bp DNA ladder (NEB). (DOCX 4696 kb)

Additional file 2: Table S1. Strains used for analysis of intraspecific
similarities in the gene region encoding the loop sequence. Accession
numbers indicate genome sequences of the corresponding strains.
(DOCX 19 kb)
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Additional file 3: Table S2. Strains used for interspecific 16 or 185
rRNA gene sequence alignments. Accession numbers are indicating the
16/18S rRNA gene sequences of the corresponding strains. (DOCX 15 kb)
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