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Abstract

Background: Streptococcus mutans is the primary etiological agent of human dental caries. It can metabolize a
wide variety of carbohydrates and produce large amounts of organic acids that cause enamel demineralization.
Phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS) plays an important role in carbohydrates
uptake of S. mutans. The ptxA and ptxB genes in S. mutans encode putative enzyme IIA and enzyme IIB of the
L-ascorbate-specific PTS. The aim of this study was to analyze the function of these proteins and understand the
transcriptional regulatory mechanism.

Results: ptxA~, ptxB~, as well as ptxA~, ptxB~ double-deletion mutants all had more extended lag phase and lower
growth yield than wild-type strain UA159 when grown in the medium using L-ascorbate as the sole carbon
source. Acid production and acid killing assays showed that the absence of the ptxA and ptxB genes resulted in

a reduction in the capacity for acidogenesis, and all three mutant strains did not survive an acid shock. According
to biofilm and extracellular polysaccharides (EPS) formation analysis, all the mutant strains formed much less
prolific biofilms with small amounts of EPS than wild-type UA159 when using L-ascorbate as the sole carbon
source. Moreover, PCR analysis and quantitative real-time PCR revealed that sgaTl, ptxA, ptxB, SMU.273, SMU.274
and SMU.275 appear to be parts of the same operon. The transcription levels of these genes were all elevated

in the presence of L-ascorbate, and the expression of ptxA gene decreased significantly once ptxB gene was
knockout.

Conclusions: The ptxA and ptxB genes are involved in the growth, aciduricity, acidogenesis, and formation of
biofilms and EPS of S. mutans when L-ascorbate is the sole carbon source. In addition, the expression of ptxA is
regulated by ptxB. ptxA, ptxB, and the upstream gene sgal, the downstream genes SMU.273, SMU.274 and SMU.275
appear to be parts of the same operon, and L-ascorbate is a potential inducer of the operon.
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Background

Streptococcus mutans is the primary etiological agent of
human dental caries. It can metabolize a wide variety of
carbohydrates that exist in the human oral cavity and
produce large amounts of organic acids via the glycolytic
pathway [1]. These metabolic byproducts cause a sub-
stantial drop in the pH of the oral cavity that in turn can
result in the demineralization of enamel. The mecha-
nisms of transport and metabolism of carbohydrates by
S. mutans are therefore crucial to the onset and develop-
ment of dental caries.

Although there are examples of carbohydrates that are
internalized through ATP-binding cassette transporters
(ABC transporters) [2], or other pathways [3-5], the
dominant, high-affinity, high-capacity mechanism to trans-
port and concomitantly phosphorylate carbohydrates in S.
mutans is the phosphoenolpyruvate (PEP)-dependent sugar
phosphotransferase system (PTS) [6]. More than 14 unique
PTS permeases that transport a spectrum of carbohy-
drates including glucose [7, 8], sucrose [9], mannose
[10], sorbitol [11], fructose [12], lactose [13], galactose
[14, 15], maltose [16] and nigerose [17] are present in
the reference strain S. mutans UA159. The PTS is usually
composed of two general energy-coupling proteins that
participate in the phosphorylation of all PTS substra-
tes—the enzyme I (EI) and histidine-containing phospho-
carrier protein (HPr) and a series of substrate-specific
permeases, known as enzyme II (EII) complexes, which
are directly responsible for the transportation and phos-
phorylation of the substrates [6]. In most cases, the EII
complexes are comprised of three functional domains, A,
B, and C, but sometimes a fourth domain, D, is required.
The EIIA and EIIB domains are located in the cytoplasm
and take part in the phosphorylation of the cognate sub-
strates, while the EIIC and EIID domains act as the trans-
membrane channel and the sugar-binding site [18]. The
PTS phosphorylates carbohydrates at the expense of PEP.
During the transport process, the phosphoryl group on
PEP is transferred to EI then to a histidine residue on
HPr, then to EIIA and EIIB, and finally to EIIC, forming a
sugar-phosphate [18]. To date, a number of sugar-specific
PTS of S. mutans have been further studied, such as
glucose, sucrose, fructose, mannose, sorbitol, etc. Howerer,
the study of L-ascorbate-specific PTS of S. mutans is little.

Previous studies have reported that some enteric bac-
teria can ferment and oxidize L-ascorbate under anaerobic
conditions [19-21]. The metabolism of L-ascorbate has
been described in detail in Escherichia coli [22—24], Lacto-
bacillus [25] and Prneumobacillus [26, 27], but no study
has formally shown that S. mutans can ferment this com-
pound. In natural environment, the energy supply for
growth and survival is often a limiting factor, organisms
regularly encounter such energy-limited conditions, and
they are forced to scavenge energy from all potential
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sources. L-ascorbate is abundant in many fruits and vege-
tables, so to study on the L-ascorbate-specific PTS that
oral streptococci can use to obtain carbon sources is
important.

Currently, six genes, ptxA, ptxB, sgal, SMU.273,
SMU.274 and SMU.275, analogous to the ula regulon
used by E. coli to catabolize L-ascorbate under anaerobic
conditions, have been identified in the S. mutans gen-
ome. These genes encode putative EIIA, EIIB, and EIIC
of the L-ascorbate-specific PTS of S. mutans and three
catabolic enzymes in the pentose phosphate pathway.
Recently, the crystal structures of the PtxA (PDB: 3BJV)
and PtxB (PDB: 3CZC) proteins have been analyzed
[28]. Specific hydrophobic structures between these two
proteins allow for efficient transfer of the phosphoryl
group from PtxA to PtxB and then to the substrate.

In the present study, we knocked out the putative L-
ascorbate-specific EIIA gene (ptxA) and EIIB gene (ptxB),
individually and together, in S. mutans UA159, to explore
their function. The results indicate that ptxA and ptxB are
involved in growth, aciduricity, acidogenesis, and forma-
tion of biofilms and extracellular polysaccharides (EPS)
when S. mutans is grown with L-ascorbate as the sole
carbon source. Moreover, the expression of ptxA is regu-
lated by ptxB. ptxA, ptxB, and the adjacent genes sgaTl,
SMU.273, SMU.274 and SMU.275 are parts of the same
operon, and L-ascorbate is a potential inducer of the
operon.

Methods

Bacterial strains, plasmids, and culture conditions

The S. mutans strains and plasmids used in this study
are listed in Table 1. S. mutans UA159 and its derivatives
were routinely grown in brain-heart infusion (BHI) medium
(Hopebio, Qingdao, Shandong, China) or tryptone-vitamin
(TV) base medium [29] supplemented with 15 mM L-
ascorbate (Sigma, St Louis, MO, USA) or glucose
(Sigma, St Louis, MO, USA) as the sole carbon source,
which were referred to as TVL medium and TVG
medium, respectively. When needed, 1 mg mL™" spec-
tinomycin (Sigma, St Louis, MO, USA) was added to
the medium. All bacterial cultures were incubated with-
out agitation in an anaerobic atmosphere (10 % CO,,
10 % H,, 80 % N,) at 37 °C, unless specified otherwise.

Construction of ptxA~, ptxB~, and ptxA~, ptxB~ double
deletion mutants and complemented strains

The procedure for generating the plasmid for construc-
tion of a ptxA~ strain was described previously [30].
Briefly, the 5’ and 3’ regions flanking the ptxA gene were
amplified from the genomic DNA of S. mutans UA159
by polymerase chain reaction (PCR) using the primers
shown in Additional file 1: Table S1. Following proper
restriction enzyme digestions, the flanking regions were
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Table 1 Bacterial strains and plasmids used in this study
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Strains or plasmids

Relevant characteristics

Source or reference

Strains

S. mutans UA159

Wild-type, serotype c

Ajdic et al, (2002) [4]

S. mutans ptxA~ UA159 derivative, AptxA~, Spe' This study

S. mutans ptxB~ UA159 derivative, AptxB~, Spe' This study

S. mutans ptxAB~ UA159 derivative, AptxA~ and AptxB~, Spe' This study

S. mutans CptxA~ S. mutans ptxA~ carrying pDL278;ptxA, Spe' This study

S. mutans CptxB S. mutans ptxB~ carrying pDL278:ptxB, Spe" This study

S. mutans CptxAB~ S. mutans ptxAB~ carrying pDL278:ptxAB, Spe' This study

Plasmids

pFW5 Commercial cloning vector, Spe' Podbielski A et al., (1996) [52]
pDL278 Shuttle vector, Spe" LeBlanc & Lee (1991) [53]
pDL278:ptxA Shuttle vector carrying ptxA, Spe' This study

pDL278:ptxB Shuttle vector carrying ptxB, Spe This study

pDL278ptxAB Shuttle vector carrying ptxA and ptxB, Spe' This study

Spe” spectinomycin resistance

cloned into two multiple cloning sites of plasmid pFW5
to generate pFW5A. Subsequently, plasmid pFW5A was
used to transform the wild-type strain UA159, which
resulted in replacement of the ptxA gene by a non-
polar spectinomycin resistance (Spe") marker via allelic
exchange. The transformation was carried out in BHI
medium in the presence of 10 % heat-inactivated horse
serum and 100 nM competence-stimulating peptide
(CSP) [31]. Spectinomycin-resistant transformants were
isolated, further confirmed by PCR and sequencing,
and named S. mutans ptxA~ strain. A similar technique
was used to construct a ptxB~ deletion mutant and a
pixA~, ptxB~ double deletion mutant, named S. mutans
ptxB~ strain and S. mutans ptxAB~ strain, respectively.
For complementation of mutants, the ptxA, ptxB, and
ptxA—ptxB coding sequences, plus the P, promoter
[32], were amplified by PCR, digested and cloned directly
into shuttle vector pDL278 to generate pDL278:ptxA,
pDL278:ptxB, pDL278:ptxAB, respectively. After sequence
confirmation, the correct plasmids were used for trans-
formation of S. mutans ptxA~, ptxB~, and ptxAB~ strains,
generating complemented strains S. mutans CptxA~,
CptxB~ and CptxAB~, respectively.

Bacterial growth rates

To measure the growth rates of S. mutans when using
L-ascorbate or glucose as the sole carbon source, wild-
type strain UA159 was grown in BHI medium overnight,
and the optical density at 600 nm (ODgqp) of the cultures
was adjusted to 1.0. The adjusted cultures were inoculated
1:100 into fresh TVL or TVG medium. Data for plotting
growth curves were collected by measuring changes in

ODggo at 2 h intervals using a spectrophotometer over a
total period of 48 h. To compare the growth rates among
UA159 and its derivatives, overnight cultures were diluted
1:100 into fresh TVL medium, and ODgy, values were
measured at 2 h intervals for a total of 72 h.

Acid production assay

Overnight cultures of wild-type S. mutans UA159 and
its derivatives in BHI medium were diluted 1:100 with
fresh TVL medium or fresh BHI medium and then incu-
bated at 37 °C in an anaerobic atmosphere for 24 h and
48 h. The pH of the supernatant in the media was
measured at the beginning, and after 24 h or 48 h of
incubation. The acidogenesis ability was calculated as
the difference in pH values measured at specific incuba-
tion times (ApH).

Acid killing assay

The ability of the mutants to tolerate acid stress was
determined by acid killing assays, as described previously
[33, 34]. Briefly, S. mutans strains were grown in TVL
medium until ODgg = 0.3, harvested by centrifugation at
3800 x g at 4 °C for 10 min, washed once with 0.1 M
glycine (Sigma, St Louis, MO, USA), pH 7.0, then the
cell pellets were resuspended in fresh TVL medium that
was adjusted to pH 5.0 with HCI to undergo an adaptive
acid tolerance response. Following an additional hour of
incubation, cells were harvested, washed and subjected
to acid killing by incubating the strains in 0.1 M glycine,
pH 2.8, for 0, 15, 30, and 45 min. The surviving cells
were appropriately diluted, plated on BHI agar, and incu-
bated in an anaerobic atmosphere at 37 °C for 48 h.
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Biofilm and EPS formation analysis

To evaluate the biomass and structure of the biofilms
with confocal laser scanning fluorescence microscopy, S.
mutans UA159 and its derivatives were incubated in
BHI medium overnight, and new cultures were inocu-
lated by diluting them 1:100 into fresh TVL medium and
dispensing 5 mL aliquots into 6-well plates (Corning,
NY, USA) with coverslips in each well. After 120 h of
37 °C anaerobic incubation, the formed biofilms were
washed gently twice with sterile PBS to remove unbound
bacteria and stained with SYTQO9 (Molecular Probes,
Eugene, OR, USA) for 15 min at room temperature in a
dark room. After SYTO9 removal, biofilms were incu-
bated in calcofluor white (Sigma, St Louis, MO, USA) to
stain the EPS under identical conditions. Then the bio-
films were washed gently twice with sterile PBS again
and examined with an Olympus Fluoview FV10i confocal
microscope (Olympus, Tokyo, Japan). For the detection of
SYTO9 (green), we used the 488 nm line of the argon
laser. For calcofluor white (blue), we used the 351 nm line.
At least five independent fields were collected at 100x
magnification per experiment and three independent ex-
periments were performed. Image ] was used to calculate
the area that the biofilms covered.

PCR analysis and quantitative real-time PCR

To characterize the mechanism regulating expression of
the ptxA and ptxB genes, total RNA was extracted and
purified. Briefly, an overnight culture of S. mutans UA159
was added to TVL medium or TVG medium and grown
to late exponential phase. The cells were disrupted with
liquid nitrogen and the RNA was extracted with RNAiso
reagent (Takara, Otsu, Shiga, Japan) and treated with
DNase I (Thermo Scientific, Utena, Lithuania). After con-
firming the absence of DNA by PCR, the conversion of
RNA into cDNA was carried out using the PrimeScript
RT Master Mix protocol (Takara, Otsu, Shiga, Japan).
PCR was performed on cDNA templates with specific
primers that span the sequences SMU.268 to sgaT, sgaT
to ptxB, ptxB to ptxA, ptxA to SMU.273, SMU.273 to
SMU.274, SMU.274 to SMU.275 and SMU.275 to
SMU.277 (Additional file 1: Table S1), using DNA of S.
mutans UA159 as a positive control [35, 36]. To evalu-
ate the expression of ptxA, ptxB and their adjacent
genes under the influence of 15 mM L-ascorbate (with
15 mM glucose used as control), quantitative real-time
PCR (qRT-PCR) was performed with specific primers
(Additional file 1: Table S1) using the SYBR Premix Ex
Taq Kit protocol (Takara, Otsu, Shiga, Japan). The qRT-
PCR amplification with primers to the 16S rRNA gene
was used as a reference for normalization. Non-template
controls were included to confirm the absence of primer-
dimer formation. In addition, expression of ptxA gene in
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wild-type UA159 and ptxB~ strain was also evaluated by
qRT-PCR.

Statistical analysis

Quantitative data were analyzed using the Independent-
samples t-test or One-way ANOVA test, and a P value
< 0.05 indicated statistically significant differences.

Results

Deletion of ptxA or ptxB causes major defects in bacterial
growth rates

In initial experiments, we tested the growth of the wild-
type S. mutans UA159 under anaerobic conditions in
TV base medium supplemented with various concentra-
tions of L-ascorbate as the sole carbon source. We found
that, to some extent, the growth yield increased with in-
crease in the L-ascorbate concentration. However, higher
concentrations retarded or even stopped growth. Conse-
quently, considering the terminal yield of bacteria and
the extent of the lag phase, we selected 15 mM as the
optimal concentration of L-ascorbate. When grown in
the two different media, S. mutans reached a growth
plateau in TVL medium at about 36 h, and in TVG
medium at 14 h. The maximal culture density (ODgg)
in TVL medium was found to be reduced by more than
one third of that in TVG medium (Fig. 1a). These results
indicated that L-ascorbate could act as a carbon source
for S. mutans to survive under anaerobic conditions, but
not as effectively as glucose. The slow induction in TVL
may in part account for its longer lag period and lower
terminal yield.

Deletions of the ptxA or ptxB genes impaired the
ability of S. mutans to grow when using L-ascorbate as
the sole carbohydrate (Fig. 1b). After 72 h of 37 °C an-
aerobic incubation, wild-type UA159 reached an ODggq
of 0.8 and its lag phase was 12 h. However, compared
with wild-type UA159, the ptxA~ strain had an ex-
tended lag phase and decreased growth yield. The lag
phase of ptxA~ strain was 22 h and its maximal culture
density was only 0.6 approximately. In addition, the
growth of ptxB~ and ptxAB™ strains was decreased even
more substantially. In the 72 h of incubation, they
could hardly grow. As expected, the presence of the
recombinant plasmids pDL278:ptxA and pDL278:ptxAB
restored the anaerobic growth of the CptxA™ and CptxAB~
strains on L-ascorbate, although the growth rates and the
ODgqo were lower after 72 h of incubation when compared
to those of the wild-type UA159. However, the CptxB~
strain could not be complemented by inclusion of the
plasmid pDL278:ptxB.

ptxA and ptxB deletions resulted in reduced acidogenesis
As seen in the results of the acid production assay
(Fig. 2), the wild-type UA159 and all mutant derivatives
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Fig. 1 Bacterial growth rates. a Growth of S. mutans UA159 incubated in TV medium supplemented with 15 mM glucose (e) or L-ascorbate (m).

b Growth of wild-type UA159 (%), ptxA™ strain (e), ptxB~ strain (A), ptxAB~ strain (m), CptxA~ strain (o), CptxB~ strain (A\) and CptxAB™ strain ()
incubated in TV medium supplemented with 15 mM L-ascorbate. Samples were all grown at 37 °C for more than 48 h under anaerobic conditions
and monitored every 2 h at 600 nm (ODggo). The data presented here are the average of three independent experiments performed in triplicate
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grew well and acidified the medium to about the same
terminal pH in BHI medium after both 24 h and 48 h of
incubation. The ApH of the BHI medium was almost
0.95. However, in the case of the TVL medium, the
terminal pH slightly decreased for all strains after incu-
bation. The three mutants, and especially the ptxB~ and
ptxAB~ strains, lowered the pH to a level significantly
lower than that observed in wild-type UA159 culture
after 24 h of incubation (P < 0.01). The ApH of the TVL
medium that ptxA~ strain, ptxB~ strain and ptxAB~
strain grown in were 0.0567 +0.0115, 0.0233 +0.0100
and 0.0067 + 0.0057, respectively. Furthermore, comple-
mented strains recovered their acid production capacity,
with the exception of the CptxB~ strain. The reduced
growth of the CptxB™ strain may account for its negli-
gible pH change. Results that after 48 h of incubation
were the same, except that all strains had produced
more acid and the ApH of the medium was greater than
it was at 24 h.

ptxA~ and ptxB~ mutants did not survive an acid shock
To determine the effects of ptxA and ptxB deletions on
the ability to tolerate acid stress, the wild-type UA159
and single or double mutants were incubated in TVL
medium with a pH of 5.0 for 1 h to induce an adaptive
acid tolerance response and then were subjected to acid
killing with a low-pH buffer (pH 2.8). However, none of
the mutant strains formed colonies on the assay plates
following 15 min of low-pH incubation in triplicate tests,
showing that the acid shock caused serious damage to
the mutants.

Inactivation of the ptxA and ptxB genes affects biofilm
and EPS formation in TVL medium

It could be seen from the results of confocal laser scan-
ning fluorescence microscopy analysis, biofilms stained
with the fluorescent dye SYTO9 appeared green (Fig. 3a)
and EPS stained with calcofluor white appeared blue
(Fig. 3b). The cover area of the biofilms formed by S.
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Fig. 2 Acid production assay. Wild-type UA159, ptxA™ strain, ptxB~ strain, ptxAB~ strain, CptxA~ strain, CptxB~ strain and CptxAB™ strain were incubated
in BHI or TVL medium for 24 h (a) and 48 h (b) anaerobically. The pH measurements of the media were performed before and after the incubation,
and are presented as ApH. A significant difference is indicated by *P < 0.05, **P < 0.01 compared to UA159. The results presented here are the average
of three independent experiments performed in triplicate

mutans UA159 and its derivatives was shown in Table 2.
When using L-ascorbate as the sole carbon source, wild-
type UA159 formed both small and large amorphous
microcolonies and covered 6593 % of the surface. It
created a thick and complex biofilms structure with a
large amount of EPS. However, the biofilms and EPS
ptxA~ strain formed were sparser and much thinner
than UA159. It covered only 39.61 % of the surface, but
it still could form network structure. ptxB~ and ptxAB~
strains formed much less prolific biofilms with only
small amounts of EPS, in which cells were scattered on
the surface as chains and the biofilms were too thin to
form three-dimensional structure.

They covered only 24.24 and 18.57 % of the surface re-
spectively. Complementation in strains CptxA~ and
CptxAB™ restored biofilms and EPS formation to a level
similar to that of wild-type UA159. However, CptxB~
strain could not restore the wild-type phenotype.

Transcriptional analysis of ptxA, ptxB and their operon

Transcriptional analysis using ¢cDNA templates and
primers that spanned the adjacent genes showed amp-
lified bands in b, ¢, d, e and f regions (Fig. 4a) indi-
cating that ptxA, ptxB, and the upstream gene sgaT,
the downstream genes SMU.273, SMU.274 and SMU.275
are parts of the same operon. However, SMU.268 and
SMU.277 are not parts of it. Quantitative real-time PCR
(Fig. 4b) demonstrated that, compared with the gene
expression in cells grown in medium containing glucose,
the transcription level of these genes in cells grown in the
presence of 15 mM L-ascorbate were all elevated signifi-
cantly (P < 0.01), further revealing that ptxA, ptxB, and the
adjacent genes sgal, SMU.273, SMU.274 and SMU.275
are parts of the same operon. In addition, the higher tran-
scription levels of ptxA and ptxB genes in TV medium
containing only L-ascorbate reinforced the finding that S.
mutans could ferment L-ascorbate to obtain energy under
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Fig. 3 Biofilm and EPS formation analysis with confocal laser scanning fluorescence microscopy. Wild-type UA159, ptxA™ strain, ptxB~ strain,
ptxAB™ strain, CptxA™ strain, CptxB~ strain and CptxAB™ strain were incubated in TVL medium for 120 h anaerobically. The formed biofilms were
stained with SYTO9 (a) and EPS were stained with calcofluor white (b). Confocal laser scanning fluorescence microscopy was used to examine.
At least five independent fields were collected at 100x magnification per experiment and three independent experiments were performed.
Red lines represent 20 pm

anaerobic conditions, and suggested that the presence of
L-ascorbate was required for up-regulation of transcrip-
tion of ptxA and ptxB. However, once ptxB gene was
knockout, the expression of ptxA gene decreased signifi-
cantly (P < 0.01) compared with wild-type UA159 (Fig. 4c).
This result could well explain the finding in bacterial
growth rates that why the wild-type phenotype could not
be restored in the CptxB~ strain.

Table 2 Cover area of the biofilms formed by S. mutans UA159
and its derivatives

UA159 ptxA™ ptxB™ ptxAB~ CptxA~ (CptxB~ CptxAB~
Cover area (%) 6593 3961 2424 1857 6216 3197 56.01
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Fig. 4 Transcription evaluation of ptxA, ptxB and their operon. a PCR analysis of ptxA, ptxB and adjacent genes with specific primers that span the
sequences SMU.268 to sgal, sgaT to ptxB, ptxB to ptxA, ptxA to SMU.273, SMU.273 to SMU.274, SMU.274 to SMU.275 and SMU.275 to SMU.277 by
using cDNA. The letters a-g correspond to the amplified regions illustrated above the agarose gel. Lanes: M1, 100 bp DNA Ladder; DNA, chromosomall
DNA of UA159; cDNA, cDNA of UA159; M2, 1 kb DNA Ladder. b Quantitative real-time PCR (gRT-PCR) analysis of the influence of L-ascorbate on the
transcription levels of ptxA, ptxB and adjacent genes. The results are presented as relative mRNA expression. Significant differences are indicated by
**P < 001. ¢ Expression of ptxA gene in wild-type UA159 and ptxB~ strain evaluated by qRT-PCR. There was a statistically significant difference between
these two strains (**P < 0.01). The gRT-PCR results presented here are the average of three independent experiments performed in triplicate

Discussion

Since the first discovery of PTS in E. coli [37], special
efforts have been made to study the characteristics and
functions of various PTS proteins in both gram-negative
and gram-positive microorganisms, including S. mutans,
the most common pathogen in dental caries. The pres-
ence of PTS involved in high-efficiency transport and
phosphorylation of numerous carbohydrates largely ac-
counts for the high cariogenicity of S. mutans. Apart
from the two general proteins, EI and HPr, many genes
coding for different carbohydrate-specific EII complexes
of the PTS have been isolated and identified, such as the
scrA gene for sucrose [38], the mt/A gene for mannitol

[10], the lacFE genes for lactose [39], the manLMN
genes for mannose [40], and others. In the present study,
two genes, ptxA and ptxB, that were identified and
presumed to be involved in anaerobic utilization of L-
ascorbate, were analyzed.

Similar to E. coli and some other enteric bacteria, S.
mutans could grow in defined medium supplemented
with L-ascorbate as the sole energy. This provided evi-
dence that S. mutans can obtain energy by fermenting
this compound in an anaerobic atmosphere. However,
at high concentrations, L-ascorbate failed to support
the growth of S. mutans. This may be the result of an
alteration of the internal redox state of the cells [23].
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L-ascorbate can trigger the Fenton reaction in the pres-
ence of redox-active iron and oxygen, which yields ROS
from hydrogen peroxide and leads to oxidative stress
[41, 42]. Moreover, although L-ascorbate is an effective
antioxidant, H,O, will be released from its oxidation
and can cause damage to cells [43]. The deletion of the
ptxA and ptxB genes seriously affected the growth of S.
mutans when using L-ascorbate as the sole carbon
source, which indicated that the ptxA and ptxB gene
products are indeed involved in the anaerobic dissimila-
tion of L-ascorbate. However, the deletion of ptxB caused
a more severe impact on cell growth than deletion of
ptxA, and the wild-type phenotype could not be restored
in the CptxB~ strain. This suggests that the ptxB gene, or
its product, seems to be more important in this metabolic
process. Previous study has found that the interaction of
PtxA and PtxB proteins of S. mutans is weak [28], which
increased the complexity of the phosphoryl transfer mech-
anism of L-ascorbate-specific PTS of S. mutans. Based on
our experimental results, we have reasons to believe that
ptxB plays a more essential role in the phosphoryl transfer.
Another reasonable interpretation is that deletion of the
ptxB gene caused a polar effect on the downstream ptxA
gene, in which case complementation by ptxB could not
restore the phenotype.

S. mutans has the ability to produce organic acids and
cause enamel demineralization, so acidogenic capacity
plays a crucial role in the occurrence of caries. The acid
production assay indicated that an absence of ptxA and
ptxB genes leads to lower glycolytic activities. This weak-
ened capacity for acidogenesis is likely attributed to the
reduced ability to grow, as reflected by the reduced
growth rates and culture densities. Additionally, the pH
of the medium can also affect the ability of glycolytic
activity to lower the external pH. At lower pH, the
cellular metabolism and energy levels are lower due to
repression of amino acid synthesis genes. In addition,
both glycolytic activity and amino acid biosynthesis
require NAD" as a cofactor [44, 45]. Since the total
intracellular NAD™ pool is limited, competition be-
tween these two processes for NAD" should slow down
both pathways [46].

It is well known that S. mutans possesses an acid-
tolerance response and the ability to tolerate acid stress
will elevate after initial incubation in low pH medium
[47, 48]. However, according to the results from the acid
killing assay, none of the three mutants could survive in
a buffer with a pH of 2.8, even after a 1 h acid adapta-
tion. This showed that absence of the ptxA and ptxB
genes resulted in the loss of the ability to tolerate acid
stress when using L-ascorbate as the sole carbon source.
The possible reason may be that L-ascorbate is not the
most optimistic carbon source for S. mutans to ferment.
The strains, on one hand, were under nutritional stress,
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and on the other hand, were under acidic stress. Oral
streptococci often encounter acid stress conditions in
the oral cavity. Therefore, the ability to survive acidic
conditions may play a crucial role in the growth of these
bacteria. Proton extrusion by the membrane-associated
F-ATPase is the primary mechanism employed by S.
mutans to maintain intracellular pH homeostasis [49],
and mutations in some genes can have an impact on the
conformation of, and functional capacity to extrude
protons by, the F-ATPase enzyme [33]. However, the
mechanism by which the absence of the ptxA and ptxB
genes hinders the acid tolerance response remains to be
discovered.

Biofilm formation is an important pathogenic trait
that allows bacteria to attach to and colonize the tooth
surface. Glucosyltransferases (GTFs) and glucan-
binding proteins (GBPs) always play important roles in
the process. However, when using L-ascorbate as the
sole carbon source, UA159 still could form prolific bio-
films and EPS, with no sucrose or glucose exist. We
speculated that the limited nutritional stress was re-
sponsible for the prolific biofilm and EPS formation
[46]. In TVL medium, L-ascorbate was the only energy
source to support growth, and this may have automatic-
ally triggered biofilm formation because S. mutans is
adapted to biofilm formation as its primary life style.
What's more, the difference of biofilm and EPS forma-
tion capacity among wild-type strain, mutant strains
and complemented strains is likely attributed to the dif-
ference of bacterial growth rates.

The carbohydrate-specific PTS catalyze the concomitant
transport and phosphorylation of their sugar substrates
[6]. So far, 45 homologous L-ascorbate phosphotransferase
transport systems from a wide variety of bacteria have
been identified [50]. These systems fall into five structural
types, and in S. mutans, EIIA, EIIB, and EIIC are encoded
by distinct genes. The ptxA and ptxB genes of S. mutans
encode the putative EIIA and EIIB of the L-ascorbate-
specific PTS, and sgaT encodes the putative EIIC. What's
more, the downstream gene SMU.273 encodes 3-keto-L-
gulonate-6-phosphate decarboxylase, SMU.274 encodes
L-xylulose 5-phosphate 3-epimerase, and SMU.275 en-
codes L-ribulose-5-phosphate 4-epimerase. They also play
essential roles in L-ascorbate metabolism. Based on the
PCR analysis using cDNA as template, sgaZ, ptxB, ptxA,
SMU.273, SMU.274 and SMU.275 appear be parts of the
same operon. This is similar to the ulaA-F operon in
E. coli [51] that encodes the three components of the L-
ascorbate phosphotransferase transport system (#/aABC),
as well as three catabolic enzymes (ulaDEF). The ulaA,
ulaB, and ulaC gene products are involved in the uptake
and phosphorylation of L-ascorbate, and the ulaD, ulaF,
and ulaF gene products are involved in the subsequent me-
tabolism by the pentose phosphate pathway [23, 24]. Based
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on the result that sgaT; ptxA, ptxB, SMU.273, SMU.274 and
SMU275 could be all up-regulated significantly in the
presence of L-ascorbate, it was concluded in this study that
L-ascorbate is a potential inducer of the operon.

Conclusion

This work indicates that ptxA and ptxB genes, encode
putative enzyme IIA and enzyme IIB of the L-ascorbate-
specific PTS in S. mutans, influence the physiology and
virulence of S. mutans, including the growth rate, the
capacity of aciduricity, acidogenesis, and formation of
biofilm and EPS when using L-ascorbate as the sole
carbon source. In addition, the expression of ptxA is
regulated by ptxB. ptxA, ptxB, and the adjacent genes
sgal, SMU.273, SMU.274 and SMU.275 are parts of the
same operon, and L-ascorbate is a potential inducer of
the operon. Functional analysis of genes in PTS of the
primary cariogenic etiological agent is crucial to the pre-
vention and treatment of dental caries. Current efforts
are being directed toward gaining a better understanding
of how these genes are regulated, and to reveal further
insights into their roles in metabolic pathways.
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