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Abstract

Background: The Staphylococcus genus is composed of 44 species, with S. aureus being the most pathogenic.
Isolates of S. aureus are generally susceptible to -lactam antibiotics, but extensive use of this class of drugs has led
to increasing emergence of resistant strains. Increased occurrence of coagulase-negative staphylococci as well as S.
aureus infections, some with resistance to multiple classes of antibiotics, has driven the necessity for innovative
options for treatment and infection control. Despite these increasing needs, current methods still only possess
species-level capabilities and require secondary testing to determine antibiotic resistance. This study describes the
use of metal oxide laser ionization mass spectrometry fatty acid (FA) profiling as a rapid, simultaneous
Staphylococcus identification and antibiotic resistance determination method.

Results: Principal component analysis was used to classify 50 Staphyloccocus isolates. Leave-one-spectrum-out
cross-validation indicated 100 % correct assignment at the species and strain level. Fuzzy rule building expert
system classification and self-optimizing partial least squares discriminant analysis, with more rigorous evaluations,
also consistently achieved greater than 94 and 84 % accuracy, respectively. Preliminary analysis differentiating MRSA
from MSSA demonstrated the feasibility of simultaneous determination of strain identification and antibiotic

resistance.

Conclusion: The utility of CeO,-MOLI MS FA profiling coupled with multivariate statistical analysis for performing
strain-level differentiation of various Staphylococcus species proved to be a fast and reliable tool for identification.
The simultaneous strain-level detection and antibiotic resistance determination achieved with this method should
greatly improve outcomes and reduce clinical costs for therapeutic management and infection control.
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Background

Staphylococci are Gram-positive facultative anaerobes
comprising 44 species commonly found in soil or on the
skin of animals [1]. S. aureus is the most pathogenic of
the genus and is commonly associated with septicemia,
osteomyelitis, endocarditis, and skin infection [2]. Iso-
lates of S. aureus are generally susceptible to B-lactam
antibiotics, but extensive use of this class of drugs has
led to the emergence of resistant strains [3]. In 2011 the
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Centers for Disease Control and Prevention (CDC) re-
ported 80,461 methicillin-resistant S. aureus (MRSA) in-
fections in the U.S. leading to 11,285 deaths. While
improved infection control policies decreased clinical
MRSA infections by 52 % between 2005 and 2011, there
remains a need to rapidly screen patients for S. aureus
and determine antibiotic resistance.

Culture-, biochemical-, and molecular-based methods
are the current standard for clinical MRSA detection. Cul-
ture methods offer high specificity, but relatively lengthy
turnaround times (TAT) of 24-72 h and the requirement
for secondary resistance testing contribute significantly to
delays in onset of treatment. A retrospective cohort study
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of bloodstream infections found that mortality rates rose
7.6 % per hour for every hour of delay in the initiation of
effective antimicrobial therapy [4]. Chromogenic agars
have been used to slightly decrease TAT to 18—24 h, while
also improving specificity, but secondary resistance testing
is still required [5].

Some of the most common approaches for analysis of
the specific biochemical characteristics of staphylococci
include: coagulase and phosphatase activity, hemolysis,
nitrate reduction, and aerobic acid production from
carbohydrate metabolism [6]. Kloos and coworkers re-
ported a simplified scheme for analyzing the extensive
data produced by biochemical results to characterize
staphylococci. The commercially available BioMérieux
API STAPH-IDENT and American Hospital Supply
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Corporation MicroScan Systems are based on this ap-
proach. The API Staph-IDENT utilizes a battery of 10
microscale biochemical tests, whereas the MicroScan
System consists of 27 tests [7]. These systems were re-
ported to have accuracies of 88 and 86.4 %, respectively,
but also showed inherent limitations [8—10].

In order to improve the specificity and selectivity of
Staphylococcus detection, molecular methods for analyzing
specific genetic markers have been explored. In an attempt
to identify S. aureus and assay for methicillin resistance,
multiplexed PCR has been used to simultaneously target
the staphylococcal nuc gene, encoding a thermostable nu-
clease (TNase), and the mecA gene, encoding a penicillin
binding protein [11]. PCR results agreed with coagulase
production and agar screening tests for single-step
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Fig. 2 Species-level PCA differentiation of 14 Staphylococcus isolates
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identification of MRSA. In an attempt to identify
coagulase-negative staphylococcal strains (CoNS), one
study targeted a 429-bp amplicon of the sodA gene encod-
ing the manganese-dependent superoxide dismutase [12].
Clinical isolates and ATCC reference strains were identified
with 83 % accuracy in about 8 h. While culturing and bio-
chemical assays offer comparable specificity to results ob-
tained by /sp60 [13] and 16S rRNA sequencing [14]; TAT
is still typically greater than 24 h.

Turnaround time was significantly reduced using phage
amplification-based lateral flow immunochromatography
(LFI) [15]. This work led to the FDA-approved Micro-
Phage KeyPath MRSA/MSSA blood culture test [16]. Ex-
ploitation of S. aureus-specific phage amplification
targeting clinical blood isolates allowed for simultaneous
identification and methicillin resistance determination
with a TAT of 5 h and 98.3 % accuracy [15].

Published reports suggest the rise of non-S. aureus
infections in clinical studies, some with resistance to
multiple classes of antibiotics [17-19]. CoNS are
among the most commonly reported bloodstream iso-
lates (37.3 % compared to 12.6 % for S. aureus) [20].
These reports place emphasis on the importance of S.
epidermidis, S. saprophyticus, S. lugdunensis, and S.
schleiferi infection and further demonstrate the need
for more rapid techniques for simultaneous species-
level Staphylococcus identification and antibiotic re-
sistance determination. Bacterial protein-profiling by
matrix assisted laser desorption/ionization-time of
flight mass spectrometry (MALDI-TOF MS) has been
used to identify S. aureus and CoNS in prosthetic
joint infections [21]. Although this method was

relatively rapid, only 52 % highly probable species-
level identification was obtained.

A report by Dubois and coworkers using the Bruker
Biotyper MALDI-TOF MS protein analysis of 152
staphylococcal isolates correctly identify 151 samples at
the species level. These results confirmed their earlier
findings using a PCR-based sodA gene array [22]. Raja-
kurna et al. correctly identified a different set of
Staphylococcus isolates with 97 % accuracy using the
MicrobeLynx macromolecule profiling database, devel-
oped by Waters Corporation [23].

A MALDI mass spectral-bacterial profiling approach
using fatty acids as diagnostic biomarkers rather than
proteins was recently reported [24-26]. Employing
MALDI with CeO, (metal oxide laser ionization [MOLI]
MS) as an in situ saponification catalyst and matrix re-
placement, bacterial samples were identified to the spe-
cies level with 97 % accuracy [27]. In a follow up study,
suites of Enterobacteriaceae, Listeria, and Acinetobacter
were analyzed in parallel by MOLI MS fatty acid profil-
ing and the Bruker Biotyper protein profiling [28]. The
results from this study clearly established fatty acid
MOLI MS profiling for strain-level differentiation of
closely-related phylotypes with 98-100 % accuracy. In
comparison, protein profiling of the same samples cor-
rectly identified Enterobacteriaceae with 30 %, Listeria
with 64 % and Acinetobacter with 66 % accuracy at the
species level.

The present study describes MOLI MS CeO, fatty acid
profiling of 31 non-aureus Staphylococcus strains and
19S. aureus strains (nine MRSA and ten MSSA). A
fuzzy rule building expert system (FuRES) [29] and a
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self-optimizing partial least squares discriminant analysis
(PLS-DA) [30] were used for classification.

Results and discussion

Spectral analysis

MOLI MS was used to analyze 14 Staphylococcus ex-
tracts listed in Table 1A to develop FA profiles. For the
14 Staphylococcus species, the spectra (data not shown)
contained similar fatty acids. C15:0 was common to all
spectra as the base peak, while the other FAs, listed in
Table 2, ranged from 0 to 30 % relative abundance. The
intensities of FA peak distribution allowed the spectra to
be visually divided into three distinct categories: Group
1: S. aureus, S. auricularis, S. capitis, S. epidermidis, and
S. shleiferi, which were all observed to have similar
respective C16:0, C17:0 and C18:0 ratios; Group 2: S.

harmolyticus, S. haemolyticus, S. hyicus, and S. saprophy-
ticus, which displayed the highest prevalence of unsatur-
ation consisting of 10-38 % unsaturated FAs; and Group
3: S. lugdunensis, S. lentus, S. simulans, and S. warneri,
which each exhibited a unique defining characteristic ab-
sent from the other two groups. Figure 1 shows two rep-
resentative spectra for each of the three groups. As
visual examples, slight differences in the relative abun-
dance of minor FAs for Group 1 enhanced differenti-
ation. Figure la illustrates differentiation of S. aureus
and S. auricularis by the appearance of C17:2 and C20:1
in the latter. As shown in Fig. 1b, minor FAs were cru-
cial in separating Group 2 organisms. For example, S.
haemolyticus was differentiated from S. saprophyticus by
the absence of C20:0 as well as a decrease in C18:0 and
increase in C18:1 in the latter. Figure 1c illustrates the
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Fig. 4 FURES species-level Staphylococcus classification tree. Thirteen rules indicate perfect classification

differentiation of Group 3 organisms. S. lugdunensis, was
distinguished from S. lentus by C14:0, which was the
second most abundant FA with respect to C15:0, encom-
passing 20 % of the relative abundance, as well as by the
appearance of C21:0 in S. lentus. Visual analysis of the
respective ratios of FAs provided a qualitative basis for
bivariate analysis, but multivariate statistics were needed
to process complex data sets.

Species-level differentiation

Principal component analysis (PCA) was employed to
classify Staphylococcus at the species-level. A score plot
of the first three components, which encompassed
93.6 % of total variance, is shown in Fig. 2. Colored

points represent individual replicates of each bacterial
species. The degree of separation was indicated by the
distinct clustering of members of the same species (inner
variance) and the distance between different species
(outer variance). All species clearly plotted in unique
space, which was supported by the 100 % classification
rate obtained by LOSOCV. Figure 3 shows a dendro-
gram based on Euclidean distances between spectra,
which demonstrated classification of the profiles into
well-defined clusters.

FuRES analysis (Fig. 4) defined 13 rules indicating
perfect classification [29]. Average prediction results
for 100 bootstraps were 98.1+0.3 % for FuRES and
90.7+0.3 % for PLS-DA. Bootstrap Latin partition
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validation randomly divided the data into training and
test sets such that the training set contained twice
the number of data points when compared to the test
set. In addition, validation maintained the same class
distributions between training and test sets so that
training and test sets would have the same proportion
of objects (replicates) from each class (isolate). Three
hundred models were built and evaluated for boot-
strap analysis. Because each profile was only used
once per bootstrap, the results of three Latin parti-
tions were pooled and were comprehensive for all FA
profiles. The results from 100 bootstraps were aver-
aged and reported with 95 % confidence intervals.
FuRES and PLS-DA, which are much more rigorous
than LOSOCYV, are a weaker measure with respect to
a model’s dependence on training set composition
and the accuracy of the data within the prediction

set. FuRES consistently outperformed PLS-DA, be-
cause it is a nonlinear classifier ideally suited for pre-
dicting classes that are binary encoded. PLS-DA,
which is designed for calibration of continuous vari-
ables, may construct ill-conditioned models (ones
with poor predictions) when trying to fit the binary
encoded target matrix. This problem often occurs
with complex data sets [31].

Strain-level differentiation

The versatility of MOLI MS for strain-level identifica-
tion was further explored by analyzing extracts of 27
additional strains (Table 1B). Fig. 5 shows a score
plot of the first two PCs for this data; a total vari-
ance of 94.7 % was defined by the first two PCs. The
strains are denoted numerically with each species
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being represented by a different color. Leave-one-
spectrum-out cross-validation of the first ten PC scores
correctly identified 100 % (145/145) of the samples at the
species level and strain level, showing that all strains plot-
ted independently. Species-level groupings were also seen
in the dendrogram in Fig. 6, where each main branch
point corresponded to its own individual species.

FuRES and PLS-DA calculations correctly classified
the data into 27 strains. These results were obtained
with 100 bootstraps and three Latin partitions. FURES
and PLS-DA had 939+ 0.4 % and 84.1 + 0.4 % predic-
tion rates, respectively. From the PCA scores, it was
shown that strains of the same species exhibit profiles
that were highly similar.
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Table 1 Staphylococcus species used

Species Strain

A. Species-level study
S. aureus ATCC 29213
S. auricularis JMI 66-1339p
S. capitis JMI 186-14645a
S. epidermidis JMI's12410
S. haemolyticus JMI 14138
S. harmolyticus JMI's11298
S. hominis JMI9382
S. hyicus JMI 15-8308a
S. lentus IMI'7613
S. lugdunensis JMI'112-3379a
S. saprophyticus PTX-0652
S. shleiferi JMI'100-1511a
S. simulans JMI 7295
S. warneri JMI'12019

B. Strain-level study
S. aureus ATCC 13150
S. aureus ATCC 14775
S. aureus NCTC 9315
S. aureus NCTC 8292
S. aureus NCTC 8321
S. aureus NCTC 10023
S. aureus JMI105
S. aureus CC 4051
S. aureus CC 4083
S. epidermidis PTX 0254
S. epidermidis PTX 0260
S. epidermidis PTX 0257
S. epidermidis PTX 0255
S. epidermidis PTX 210
S. epidermidis PTX 0145
S. epidermidis PTX 0385
S. epidermidis PTX 0427
S. epidermidis PTX 380
S. hominis JMI 12008
S. hominis JMI 2541
S. hominis IMI'7922
S. hominis JMI10153
S. hominis JMI 6983
S. hominis IMI 6856
S. hominis JMI 3655
S. hominis JMI 3059
S. hominis IMI 3143
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Table 1 Staphylococcus species used (Continued)

C. Resistance study

S. aureus ATCC 13150
S. aureus ATCC 14775
S. aureus NCTC 9315
S. aureus NCTC 8292
S. aureus NCTC 8321
S. aureus NCTC 10023
S. aureus JMI 105

S. aureus CC 4051

S. aureus CC 4083

S. aureus ATCC 49476°
S. aureus CC 4002°

S. aureus CC 4038°

S. aureus CC 4045°

S. aureus CC 4048°

S. aureus CC 4049°

S. aureus CC 4078°

S. aureus CC 4086°

S. aureus CC 4097°

~ MRSA strains are denoted by *

MRSA/MSSA differentiation

MALDI protein profiling methods have shown a series
of characteristic peaks for identification of S. aureus
[32]. From direct comparison of reference strains, dis-
crimination between MSSA and MRSA was achieved,
but a uniform signature profile could not be identified to
allow for unknown classification [33]. To assess the util-
ity of MOLI MS FA profiling for antibiotic resistance
profiling, 18S. aureus strains (nine MRSA and nine
MSSA), listed in Table 1C were analyzed. A score plot of
the first two components defining 97 % of the total vari-
ance is shown in Fig. 7. In this projection, all strains
were separated into unique groups according to methi-
cillin resistance/susceptibility. Strain-level classification
correctly identified 90/90 total replicates leading to
100 % accuracy using LOSOCV.

The above data set yielded a FuRES tree with a single
rule (figure not shown) indicating perfect separation of
the two bacterial classes. Because each of the MRSA and
MSSA groups comprised five replicates each of nine dif-
ferent strains, bootstrap Latin partitioning grouped all
samples such that no profiles from any given strain were
contained in both the training and prediction sets at the
same time. The prediction rates for strain-level identifi-
cation of S. aureus were 94.7 £0.6 % for FuRES and
93.7+0.5 % for PLS-DA. FuRES discriminant weights,
based on a 95 % confidence interval, for MRSA and
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MSSA classification revealed that odd-numbered fatty
acids (C13, C17, C19, C21) were more prevalent in
MSSA isolates, while even-numbered fatty acids (C14,
C16, C18) were more prevalent in MRSA isolates (Fig. 8).
If the confidence interval intersected the origin in the
positive or negative direction, that weight was signifi-
cant. These results were in agreement with other re-
ports in the literature that showed differences in FA
composition between daptomycin-resistant Entero-
coccus strains [34].

Conclusions

We demonstrated the utility of CeO,-MOLI MS FA pro-
filing coupled with multivariate statistical analysis for
performing strain-level differentiation of various
Staphylococcus species. The emergence of MRSA and
CoNS clinical isolates and the need for rapid clinical
intervention has made it increasingly important to dif-
ferentiate Staphylococcus isolates at the species and
strain level. LOSOCVs yielded 100 % correct classifica-
tion at the species and strain level. FURES classification,
with a more rigorous evaluation, also consistently
achieved 94 % accuracy. Preliminary analysis differentiat-
ing MRSA from MSSA demonstrated the feasibility of
simultaneously determining strain identification and
antibiotic resistance, which is increasingly important for
therapeutic management and infection control. By elim-
inating the need for secondary testing, this could de-
crease the delay of drug administration by up to 54 h
over conventional diagnostic techniques. Ultimately, as
is also the case in protein profiling, construction of a
comprehensive database will be necessary for identifica-
tion of unknown isolates.

Methods

Bacterial isolates

Table 1 summarizes the bacteria used in this study. All
strains were obtained from an in house collection at
CSM, JMI laboratories (North Liberty, IA) and the Na-
tional Collection of Type Cultures (NCTC) (Salisbury,
UK). Bacteria were streaked on brain heart infusion
(BHI) medium (BD-Difco, Franklin Lakes, NJ) from
cryogenic freezer stocks and cultured at 37 °C for 18 h.
as specified in Bruker standard operating procedures for
bacterial cultivation.

Lipid extraction

Lipids were extracted as previously described [24, 27].
Briefly, individual colonies were suspended in 50 pL of a
1:2 v/v methanol/chloroform (Pharmco-AAPER, Shelby-
ville KY and Fischer, Pittsburgh PA, respectively) and
vortexed for 120 s. to allow for cell disruption. An equal
volume of phosphate buffer saline (PBS) at a pH of 7.4
was added prior to additional vortexing to facilitate
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phase separation. Extracts were centrifuged prior to
MALDI sample preparation.

Mass spectrometry

Sample preparation for MOLI MS analysis was carried out
as previously described [25]. Briefly, 100 mg of CeO, (Cer-
mac Inc., Milwaukee, W1) was suspended in 1 mL of n-hex-
ane (Sigma Aldrich) prior to spotting 1 pL of the resulting
slurry on a standard Bruker stainless steel MALDI plate.
Two pL of each lipid extract was deposited directly on a
CeO, spot and allowed to air dry prior to analysis. MOLI-
MS measurements were performed with a Bruker Ultraflex-
treme MALDI-TOF MS (Bruker Daltronics, Billerica, MA)
in negative-ion reflectron mode with a grid voltage of
50.3 %, a delayed extraction time of 120 ns, and a sampling
frequency of 1 kHz on a 355 nm Nd:YAG laser. Five repli-
cates of each isolate were analyzed as 500 shot composites

Table 2 Fatty acids used in Principal Component Analysis

Fatty acid [M-H]™
C13:1 211
C13.0 213
C141 225
C14.0 227
C150 241
C16:1 253
C160 255
c17:2 265
c17:1 267
c170 269
C18:2 279
C18:1 281
C180 283
c191 295
C190 297
C20:1 309
C20:0 31
C21:1 323
c21:0 325
221 337
€220 339
C23:1 351
€230 353
241 365
€240 367
€25:1 379
250 381
C26:1 393
C26:0 395
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using automated laser rastering to ensure instrument

stability.

Data analysis

Mass spectra were exported as ASCII files and processed
using a Python algorithm to select and centroid 29 specific
fatty acid peaks (Table 2), and scale each peak to total ion
intensity. Processed data were written as.xls files for import
into R (Ver. 3.0.2, R Foundation, Vienna, Austria) as a data
frame. The prcomp()function mean centered and calculated
PCA scores before plotting with the built-in plot()function.
Leave-one-spectrum-out cross-validation (LOSOCV) was
performed using linear discriminant analysis to validate the
classification rate.

Processed fatty acid profiles were further analyzed with
MATLAB 2014a (Mathworks, Natick, MA). Generalized
prediction rates were measured using three Latin parti-
tions and 100 bootstraps [29]. Two classifiers were eval-
uated: a fuzzy rule-building expert system (FuRES) [29]
and partial least squares discriminant analysis (PLS-DA)
[30]. The PLS-DA algorithm used two Latin partitions
and ten bootstraps to calculate average pooled predic-
tion errors [31]. The number of components (i.e., latent
variables) that minimized error was selected and used to
build a model from the set of training data, which was
then used as a prediction set. Training data consisted of
a set of profiles used to build the classifiers; the test data
was the set of profiles used to evaluate the performance
of these classifiers. Hierarchical cluster analysis was used
to generate dendrograms and graphically illustrate link-
age distances (Euclidean distances) obtained from an ag-
glomerative algorithm. The distances were between pairs
of profiles or between the averages of profiles from
subclusters.
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