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Helicobacter pylori modulates host cell survival ® e
regulation through the serine-threonine kinase,
3-phosphoinositide dependent kinase 1 (PDK-1)
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Background: Helicobacter pylori (H. pylori) infection affects cell survival signaling pathways including cell apoptosis and
proliferation, which are considered risk factors for the development of gastric cancer when unregulated. In the present
study, we investigated the effect of H. pylori infection on the phosphorylation state of 3-phosphoinositide-dependent
kinase-1 (PDK-1), a master kinase that regulates phosphorylation of Akt (also known as protein kinase B, PKB) and cell

Methods: The activity of PDK-1 was examined in human gastric epithelial cells incubated in the presence or absence of
different H. pylori strains. In addition, the role of H. pylori type IV secretion system and the mechanism of H. pylori effect

Results: In the presence of H. pylori, phosphorylation of the activation loop (serine 241) PDK-1 was rapidly lost suggesting
that dephosphorylation of PDK-1 is a target for H. pylori to modulate cell survival. The extent of dephosphorylation was
strain dependent with H. pylori 60190 being the most effective. H. pylori infection of gastric epithelial cells resulted in
altered phosphorylation and degradation of Akt, suggesting that PDK-1 dephosphorylation affects cell survival pathways

Conclusion: We propose that dephosphorylation of PDK-1 and the resulting changes to Akt phosphorylation is one of
the mechanisms by which infection with H. pylori alter the balance between apoptosis and cell proliferation and identify
a host molecular mechanism regulated by H. pylori that ultimately contributes to carcinogenesis. Our studies therefore
provide insights into one of the mechanisms by which H. pylori infection contributes to gastric cancer by regulating the

Background

Helicobacter pylori infect over 50 % of the world’s popu-
lation, causing inflammatory gastritis, peptic ulcer disease,
and gastric cancer [1, 2]. The molecular mechanisms and
signaling pathways underlying the transition from H. pylori
infection to gastric cancer remain unclear. H. pylori
virulence factors including a cytotoxin-associated gene
A (cagA), pathogenicity island (PAI), and vacuolating
cytotoxin A (VacA) [3-6] have been associated with
severe H. pylori-related disease. Specifically, H. pylori
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strains harboring an intact cag PAI, encoding compo-
nents of a type IV secretion system (T4SS), are associ-
ated with a high risk of gastric cancer [7, 8]. The T4SS,
which is comprised of multiple transporters including
the CagE protein, is used to inject the immunodo-
minant CagA protein into the gastric epithelial cells.
Therefore, CagA secretion depends on the expression
of functional genes that encode the T4SS including cagE.
Upon translocation into the eukaryotic host cell, CagA is
tyrosine phosphorylated by Src family of kinases of the host,
which lead to rearrangement of the host cell cytoskeleton
termed the “hummingbird phenotype” and subsequent in-
duction of cell scattering [9, 10]. This phenomena is widely
considered to be important in neoplastic transformation
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[11, 12]. Phosphorylated CagA interacts with several major
host cell signal-transduction pathways [13, 14] affecting cell
morphology changes such as cell elongation and motility
(see review [15]).

Several intracellular signaling pathways are activated
upon H. pylori infection of host gastric epithelial cells
[9, 10, 13-19]. Specifically, CagA interaction with
SHP2 phosphatase and the Src family of kinases of the
host cell are examples of how H. pylori is thought to
hijack intracellular signaling pathways and potentially
contribute to cancer development [20]. However, it is
unlikely that signaling through these two pathways are
exclusively associated with H. pylori pathogenesis. There-
fore, we wanted to characterize gastric epithelial cellular
signaling responses following H. pylori infection, with a
focus on pro-survival signals from PDK-1, which has not
been investigated in relation to H. pylori infection.

The best characterized cell survival signaling pathway
is the PI 3-kinase/PDK-1/Akt pathway. Upon binding to
activated tyrosine kinase receptors, phosphatidylinositol
3-OH-kinase (PI 3-K) phosphorylates inositol phospho-
lipids at the D-3 position of the inositol ring to generate
phosphatidylinositol 3,4-bisphosphate (PI-3,4-P2) and
phosphatidylinositol 3,4,5-trisphosphate (PI-3,4,5-P3).
These lipids serve as membrane docking sites for many
pleckstrin homology (PH) domain-containing proteins,
including PDK-1 and Akt. Phosphorylation of Akt by
PDK-1 activates the enzyme which phosphorylates a
number of pro-survival proteins [21, 22].

PDK-1 is a multi-domain enzyme that contains an amino
terminal kinase domain and a carboxy terminal PH domain
separated by a small linker region. The enzyme is constitu-
tively autophosphorylated at position Ser 241 within the
activation loop (kinase subdomain VIII) [23]. The primary
function of PDK-1 appears to be that of a master regulatory
protein kinase. PDK-1 phosphorylates the activation loop of
AGC serine/threonine kinase family members including
protein kinase A (cAMP-dependent protein kinase),
protein kinase B (Akt), protein kinase C (PKC) isoforms,
p70°® kinase, and serum- and glucocorticoid-inducible
kinase resulting in catalytic competence [24—31]. Phos-
phorylation of the activation loop in AGC protein kinases
is thought to regulate access of substrates to the catalytic
pocket. Phosphorylation of the specific activation loop,
serine/threonine is required for complete activation of
these kinases and initiates specific signaling pathways that
ultimately lead to many of the cellular responses associ-
ated with PI 3-K [32]. Each kinase phosphorylated by
PDK-1 therefore controls specific signaling pathways in
time and space, placing PDK-1 at the apex of complex net-
works of intracellular signaling. The purpose of our study
was therefore to determine whether PDK-1 plays a role in
an in vitro H. pylori infection model with a human gastric
epithelium cell line.
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Methods

Cell culture

The human gastric adenocarcinoma cell line, AGS (ATCC
CRL 1739) was grown in RPMI 1640 medium (Cellgro,
Herndon, VA) supplemented with 10 % heat inactivated
fetal calf serum (FCS, HyClone Laboratories, Logan, UT)
and 100 U/ml penicillin/ 100 pg/ml streptomycin (Pen/
Strep; Cellgro) and incubated at 37 °C with 5 % CO..
Twenty four hours prior to infection with H. pylori, cells
were washed and cultured in antibiotic-free medium at a
concentration of 5 x 10> cells/ml. AGS cells were infected
with various strains of H. pylori (SS1, 26695, 60190, G27,
and SD4; each at a multiplicity of infection, MOI of 100)
for 24 h. Additionally, AGS cells were infected with heat-
killed H. pylori (60190) at a concentration equivalent to an
MOI of 100. Cells were also treated with the Src inhibitor,
PP2 (10 uM) for 24 h.

H. pylori strains

H. pylori strains used in this study including their viru-
lence traits are listed in Table 1. H. pylori were routinely
maintained on solid medium, Columbia agar (Becton
Dickinson, MD) supplemented with 5 % laked blood and
grown at 37 °C under microaerophilic conditions (5 % O,,
10 % CO,, 85 % N,) as previously described [33]. Bacteria
used to infect gastric epithelial cells were subcultured into
liquid medium, brain heart infusion broth (BHI, Becton
Dickinson) supplemented with 5 % FCS and cultured for
24 h on a reciprocal shaker at 37 °C under microaerophilic
conditions. Before infections, spiral bacteria were enumer-
ated using a Petroff-Hausser chamber and added to gastric
cells at an MOI of 100. Bacteria used for infections were
in the logarithmic phase of growth. To heat-inactivate
H. pylori, bacteria were heated at 100 °C for 10 min.

SDS-PAGE and Western blotting

Both attached and detached gastric epithelial cells were
harvested, washed in phosphate buffered saline (PBS) three
times, lysed in buffer (20 mM HEPES, pH 7.5, 2 mM
EDTA, 2 mM EGTA, 5 mM MgCl,, 300 uM phenyl-
methylsulfonyl fluoride, 1 mM vanadate, 40 pug/ml leupep-
tin, and 1 pM microcystin), sonicated, and resuspended in
Laemmli sample buffer. The proteins were separated by so-
dium dodecyl sulfate-polyacrylamide gel electrophoresis

Table 1 H. pylori strains used in this study

Name Virulence traits Reference
60190 vacA (s1a/m1) and cagA positive [47]
26695 vacA (s1b/m1) and cagA positive [63, 641
G27 vacA (s1b/m1) and cagA positive [65, 66)°
SS1 vacA (s2/m2) and cagA positive [63, 67]
SD4 vacA and cagA positive [68]

2Strain has been sequenced
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(SDS-PAGE) in 10 % gels and transferred to polyvinylidine-
difluoride membranes (PVDF, Bio-Rad, Hercules, CA).
Membranes were probed with the antibodies to phospho
Ser 241 PDK-1, total PDK-1 protein, phospho Ser 473
Akt, total Akt protein, or heat shock protein 27 (Hsp27)
which were all purchased from Cell Signaling Technologies
(Danvers, MA). Proteins were detected using chemilumin-
escence and quantified with a CCD camera using an Alpha
InnotechFluorQ bio-imaging system.

Generation of His-tagged PDK-1

His-tagged PDK-1 WT was expressed and purified from
baculovirus-infected Sf21 cells. Sf21 cells were maintained in
Hink's TNM-FH medium (Cellgro), supplemented with
10 % FCS and 1 % penicillin/streptomycin, and incubated for
4 days with a baculovirus encoding His-PDK-1. Purification
was conducted using the IMAC purification kit on Profinia
(Bio-Rad), and purity was assessed by Coomassie staining of
SDS gels. Whole H. pylori lysates were directly incubated
with purified recombinant Hiss-PDK-1 for up to 60 min.

Statistical analysis
Data are represented as mean + standard deviation. Data
from different groups were compared statistically using
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two-tailed Student’s ¢ test. P values of less than 0.05 were
considered statistically significant.

Results

Effect of H. pylori infection on PDK-1-activity in gastric
epithelial cells

Secretion of CagA by H. pylori into human cells through
the T4SS, has previously been demonstrated to hijack
intracellular signaling systems involving the tyrosine kinase
Src, the tyrosine phosphatase SHP-2, and the adaptor
protein Grb2 [34, 35]. We identified Src and Grb2 as PDK-
1binding proteins through a proteomic screen (King, un-
published results), suggesting that PDK-1 activity may also
be regulated in response to H. pylori infection. In initial
studies, we wanted to determine whether incubation of H.
pylori with a gastric epithelial cell line, AGS could directly
modulate signaling through PI 3-kinase. Cells were in-
fected for 24 h with five different H. pylori strains: SS1,
26695, 60190, G27, and SD4. Incubation of cells with H.
pylori resulted in dephosphorylation of endogenous PDK-1
at Ser 241 (Fig. 1a, upper panel). The extent of dephos-
phorylation of PDK-1 was dependent upon the strain of
H. pylori used, with the 60190 strain being the most effect-
ive. It was possible that incubation of H. pylori with AGS
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Fig. 1 Incubation of H. pylori with AGS cells resulted in dephosphorylation of PDK-1 at Ser 241. a After infection with H. pylori strains SS1, 26695,
60190, G27, or SD4, total AGS protein was separated by SDS-PAGE followed by Western blot to detect phopho Ser 241 PDK-1 (upper panel) and
total PDK-1 protein (lower panel). b H. pylori, strain 60190 incubated with AGS cells for 24 h and PDK-1 phosphorylation at Ser 241 and total
protein levels were quantified. Both phospho Ser 241 and total protein levels were normalized to the housekeeping protein Hsp27. The amount
of phosphorylation or total PDK-1 protein is expressed as a ratio of control protein, i.e. (phospho protein/Hsp27)/(total protein/Hsp27). Data are
representative of at least 5 different experiments and presented as a percent of control and indicate the relative amount of phosphorylation or
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cells simply activated destruction of the PDK-1 protein,
which would explain the loss of phosphorylation at serine
241. To test this, we stripped the blot and re-probed for
total PDK-1 protein (Fig. 1a, lower panel). Although we did
see some proteolytic clipping of the PDK-1 protein, it
largely remained intact, suggesting that H. pylori infec-
tion of AGS cells resulted in dephosphorylation of
PDK-1. Next, we measured the activity of endogenous
PDK-1 in AGS cells after incubation with the most ef-
fective H. pylori strain, 60190 for 24 h. There was an
85 % decrease in Ser 241 phosphorylation but no sig-
nificant loss of PDK-1 protein (Fig. 1b).

Infection of AGS cells with H. pylori results in altered
phosphorylation of Akt

Phosphorylation of PDK-1 at Ser 241 has been reported
to be constitutive and necessary for phosphorylation of
downstream substrates [36]. Therefore, we wanted to de-
termine whether incubation of AGS with the H. pylori
strain 60190, which robustly desphosphorylated Ser 241
had an effect on Akt. Endogenous Akt activity was mea-
sured in AGS cells after incubation with H. pylori 60190
for 24 h. Incubation of cells with H. pylori resulted in-
complete dephosphorylation of endogenous Akt at Ser
473 (Fig. 2a, upper panel). Interestingly, the Akt protein

Page 4 of 9

was substantially and specifically degraded upon treat-
ment with H. pylori (Fig. 2a, middle panel), but a control
protein, Hsp27 was not affected. An 80 % decrease in
Ser 473 phosphorylation and 78 % decrease in Akt pro-
tein were observed in cells incubated with H. pylori
60190 (Fig. 2b).

Mechanism of H. pylori dephosphorylation of PDK-1

To further explore the effect of H. pylori on PDK-1 ac-
tivity, H. pylori strain 60190 was used. Endogenous
PDK-1 Ser 241 was robustly dephosphorylated upon in-
cubation of AGS cells with H. pylori 60190, but not in
cells incubated with heat-inactivated H. pylori 60190, in-
dicating that the H. pylori effect on PDK-1 was protein-
aceous (Fig. 3a). To determine whether H. pylori directly
secreted a protein phosphatase that dephosphorylates
PDK-1, purified recombinant Hisg-PDK-1 generated in
baculovirus and constitutively phosphorylated at Ser
241, was incubated with whole H. pylori lysate for up to
1 h (Fig. 3b). At various times, Hisg-PDK-1 was removed
from the incubation mixture and phosphorylation at Ser
241 was verified by Western blotting. No significant de-
crease in phosphorylation over the 1 h time course was
observed, suggesting that PDK-1 is not the direct target
of a secreted H. pylori protein.
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Fig. 2 H. pylori associated dephosphorylation of PDK-1 alters the phosphorylation stability of Akt. a After infection with H. pylori strains SS1, 26695,
60190, G27, or SD4, total AGS protein was separated by SDS-PAGE followed by Western blot to detect phopho Ser 473 Akt (upper panel), total
Akt (middle panel), or Hsp27 (bottom panel). b H. pylori, strain 60190 was incubated with AGS cells for 24 h and Akt phosphorylation at Ser 473
and total protein levels were quantified. Both phospho Ser 473 and total protein levels were normalized to the housekeeping protein Hsp27 and
expressed as a ratio of control protein, ie. (phospho protein/Hsp27)/(total protein/Hsp27). Data are representative of at least 3 different experiments
and presented as a percent of control and indicate the relative amount of phosphorylation or protein remaining in the system
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To determine whether signal transduction through Src,
a previously known H. pylori target in mammalian cells,
was indirectly responsible for the dephosphorylation of
PDK-1, AGS cells were next incubated with H. pylori,
SD4. We switched to SD4 because this strain previously
yielded a strong hummingbird effect (data not shown).
Therefore, this made it an efficient system to study the ef-
fects of Src. AGS cells were incubated with H. pylori SD4
for 24 h in the absence or presence of a Src inhibitor, PP2
(Fig. 3c). As expected control cells incubated without
H. pylori, had robust Ser 241 phosphorylation, while cells
incubated with H. pylori had decreased Ser 241 phosphor-
ylation. Treatment with PP2 did not abrogate PDK-1 de-
phosphorylation. As a control that PP2 was working, the
AGS cells did not display the typical ‘hummingbird’
phenotype (data not shown), which is known to be Src
dependent [10, 34, 37]. Taken together, these results
suggest that the effect of H. pylori on PDK-1 Ser 241
phosphorylation is not a Src-mediated event.

The role of H. pylori type IV secretion system in
PDK-1dephosphorylation

We next wanted to determine whether disruption of the
T4SS machinery could alter the ability of H. pylori to
modulate PDK-1 phosphorylation. Minimal PDK-1 de-
phosphorylation observed in the SS1 strain (Fig. 1la),

which is reported to have a non-functional T4SS [38]
suggests that a defect in the ability of H. pylori to deliver
CagA into the target cell might be involved in this effect.
To test this, we used CagE deficient H. pylori (SD4
cagE-), which are unable to deliver CagA protein into
gastric epithelial cells [39, 40]. Triplicate samples of
AGS cells were infected with either wild type SD4 H.
pylori strain or SD4 cagE- for 24 h and the phosphoryl-
ation state of PDK-1 was monitored by Western blot
(Fig. 4a top panel). Almost complete dephosphorylation
(96 %) of endogenous PDK-1 at Ser 241 was observed in
cells infected with the wild type SD4 H. pylori (Fig. 4b).
In cells infected with SD4 cagE-, residual PDK-1 phos-
phorylation was detected, but was also greatly reduced
(>80 %) suggesting that the T4SS plays a minor role in
this process (Fig. 4a, top panel and Fig. 4b). Reprobing
with PDK-1 again showed that the protein remained
largely intact, however, partial clipping of PDK-1 pro-
tein was observed in the presence of wild-type and cagE
deficient H. pylori (Fig. 4a, middle panel). A Western
blot of Hsp27 is shown in the bottom panel as a loading
control (Fig. 4a, bottom panel). Because only partial
recovery of PDK-1 phosphorylation was observed in
the presence of the cagE- mutant suggests that dephos-
phorylation of PDK-1 is not entirely dependent on the
H. pylori T4SS.
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Fig. 4 H. pylori type IV secretion system is not required for complete PDK-1 dephosphorylation. a AGS cell lysates were separated by SDS-PAGE
followed by Western blotting with antibodies to phospho Ser 241 PDK-1 (upper panel), total PDK-1 protein (middle panel), or Hsp27 (lower panel).
Total PDK-1 protein ran as two distinct species, one at the expected molecular weight (arrow) and at a faster migrating band (*) that
was likely proteolytically cleaved. b PDK-1 phosphorylation levels and total protein were quantified by normalizing to Hsp27 levels and
the amount of phosphorylation or total protein expressed as a ratio of control protein, i.e. (phospho protein/Hsp27)/(total protein/Hsp27). Data are
representative of at least 3 different experiments and presented as a percent of control and indicate the relative amount of phosphorylation or protein

Discussion

Disruption of cell survival signaling pathways leads to
inappropriate cellular proliferation, growth, and survival,
which has been implicated in the genesis and/or pro-
gression of numerous human cancers, including melan-
oma, breast, colon, pancreatic, prostrate, ovarian, lung,
and gastric cancers [41-43]. Host signaling pathways
play significant roles in the pathogenesis of H. pylori
disease. We used the gastric adenocarcinoma cell line,
AGS in the present study. The use of this cell line is
invaluable and has been used as a standard model to
study effects of H. pylori infection in gastric epithelial
cells [44-48]. However, there are limitations of using
this cell line given that it is a gastric cancer cell line
and as such does not always represent normal cell
physiology. Here, we showed that incubation of gastric
epithelial cells with H. pylori for 24 h resulted in de-
phosphorylation of PDK-1. This study is the first to

describe conditions that result in dephosphorylation
of the PDK-1 activation loop in response to a bio-
logical stimulus. PDK-1 is pivotal in cellular functions
such as proliferation, cell cycle entry, cell survival, and
cytoskeletal rearrangements [22, 49].

Molecular events that initiate H. pylori-induced gastric
cancer are not clearly known. Altered cell signaling
mechanisms that affect cell growth and differentiation
of the gastric epithelium have been suggested to be
the underlying cause of gastric cancer [50]. Our data
suggest that an uncharacterized H. pylori protein is
required for an intracellular mammalian phosphatase
to dephosphorylate PDK-1. Evidence for this comes
from experiments with heat-killed H. pylori that do
not alter the phosphorylation state of PDK-1 (Fig. 3a)
and from experiments where purified recombinant
Hisg-PDK-1 was not dephosphorylated upon incuba-
tion with H. pylori lysates (Fig. 3b). Further, use of
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the Src kinase inhibitor PP2 indicated that dephos-
phorylation of PDK-1 was independent of Src activity
(Fig. 3c). Together, these results suggest that a host factor
mediates PDK-1 dephosphorylation in response to infec-
tion with H. pylori.

We also found that H. pylori dephosphorylation al-
tered the phosphorylation status and protein stability of
the PDK-1 substrate, Akt. Our observation of H. pylori
dephosphorylation of Akt is not in disagreement with
previously published studies that show H. pylori activate
Akt [51, 52]. This is primarily due to the difference is
the time point selected for infection. Indeed, using gas-
tric epithelial cells Nagy et al. [51] demonstrated in a
very elegant study that H. pylori induction of Akt activa-
tion was dependent on time. The highest activation was
at 2 h post infection with H. pylori and by 24 h, the time
used in these studies, induction of Akt activation was
very low [51]. All these studies to date, including our
present study, report that H. pylori infection regulates
Akt activity.

Severity and progression of H. pylori disease has been
linked to H. pylori virulence factors [7, 8]. We showed
dephosphorylation of PDK-1 occurred in the presence of
H. pylori lacking the virulence factor, cagE. Although
there was a statistically significant difference in the amount
of phosphate detected at Ser 241 in PDK-1 between cells
incubated with wild type SD4 and SD4 cagE- mutant
(Fig. 4b), a majority (>80 %) of phosphate was removed
under both conditions. This suggests that an intact T4SS
played only a limited role in this process.

H. pylori dephosphorylation of PDK-1 and subsequent
dephosphorylation of its substrates, including Akt, which
regulates cell survival may therefore result in an imbal-
ance between proliferation and apoptosis. The process of
H. pylori-related apoptosis in involvement of gastric
cancer remains controversial. While there is a consensus
that increased cell proliferation favors tumorigenesis, the
process that leads to the increased cell proliferation is
contradictory. Some studies using animal models have
reported induction of apoptosis by H. pylori during the
early stages of infection followed later by increased cell
proliferation, which correlates well with what has been
observed in humans infected with H. pylori [53, 54].
Opverall, implications from our present study agree with
the observation that there is an initial induction of apop-
tosis during the early infection with H. pylori, which
leads to compensatory heightened cell proliferation as-
sociated with the development of gastric cancer. The
assumption that reduced PDK-1 phosphorylation is
associated with H. pylori-induced apoptosis could
be proven during the course of H. pylori infection.
Hence, further investigation is required to better under-
stand how PDK-1 activity changes during Helicobacter
disease. Nonetheless, our findings clearly demonstrate that
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H. pylori regulates PDK-1 phosphorylation at the activation
loop serine, which is key for enzyme function. Although
we cannot draw direct conclusions that PDK-1 dephos-
phorylation plays a role in H. pylori-induced gastric cancer,
we show that incubation with H. pylori resulted in dephos-
phorylates PDK-1 protein. PDK-1 dephosphorylation is
associated with induction of apoptosis [55-58]. Further,
apoptosis affects the rate of new cell proliferation
thereby disrupting the balance between these cellular
events, a process implicated in H. pylori-associated car-
cinogenesis [59-62]. Our data provide information on
cellular responses that mediate H. pylori infection in
gastric epithelial cells.

Conclusions

Our study provides evidence that H. pylori dephosphory-
lates PDK-1, which alters phosphorylation and stability
of the anti-apoptotic PDK-1 substrate, Akt. We show
that activation loop phosphorylation of PDK-1, which
plays a central role in cell survival signaling pathways, is
dysregulated in response to H. pylori infection. This dys-
regulation could modify signaling responses of the host
including altered rates of apoptosis and cell proliferation,
which may contribute to H. pylori-induced gastric car-
cinogenesis. Imbalance between apoptosis and cell prolif-
eration in gastric mucosal epithelia has been implicated in
H. pylori-associated gastric carcinogenesis [60-62]. Des-
pite testing for logical H. pylori and host proteins, the host
protein directly involved in PDK-1 dephosphorylation re-
mains unknown. Our present results allow us to propose
that dephosphorylation of host PDK-1 may represent one
of the important mechanisms by which H. pylori induces
the development of gastric cancer.
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