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Abstract

Trichoderma reesei (anamorph of Hypocrea jecoring).

biotechnology fields.

Background: The signaling second messenger cyclic AMP (CAMP) regulates many aspects of cellular function in all
organisms. Previous studies have suggested a role for cAMP in the regulation of gene expression of cellulolytic enzymes in

Methods: The effects of cAMP in T. reesei were analyzed through both activity and expression of cellulase, intracellular
cAMP level measurement, western blotting, indirect immunofluorescence and confocal microscopy.

Results: To elucidate the involvement of cAMP in the cellulase expression, we analyzed the growth of the mutant strain
Aacyl and its parental strain QM9414 in the presence of the inducers cellulose, cellobiose, lactose, or sophorose, and the
repressor glucose. Our results indicated that cAMP regulates the expression of cellulase in a carbon source-dependent
manner. The expression cel/a, and celéa genes was higher in the presence of sophorose than in the presence of cellulose,
lactose, cellobiose, or glucose. Moreover, intracellular levels of cAMP were up to four times higher in the presence of
sophorose compared to other carbon sources. Concomitantly, our immunofluorescence microscopy and western blot data
suggest that in the presence of sophorose, CAMP may regulate secretion of cellulolytic enzymes in T. reesei.

Conclusions: These results allow us to better understand the role of cCAMP and expand our knowledge on the signal
transduction pathways involved in the regulation of cellulase expression in T. reesei. Finally, our data may help develop
new strategies to improve the expression of cel7a and cel6a genes, and therefore, favor their application in several
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Background

Trichoderma reesei (anamorph of Hypocrea jecorina) is a
saprophytic fungus that has an efficient secretion system of
cellulolytic proteins involved in the degradation of cell wall
polysaccharides of plants. This fungus has an enormous
ability to both produce and secrete cellulases. This makes it
the most important industrial fungus for the production of
these enzymes, which are used for several purposes includ-
ing the production of bioethanol in the biofuel industry [1].
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The cellulolytic system of this fungus consists of at least
three different types of enzymes—i.e., exoglucanases (cello-
biohydrolases EC 3.2.1.91), endoglucanases (EC 3.2.1.4),
and B-glucosidases (EC 3.2.1.21) [2]—that act synergistically
and are coordinately expressed in specific growing condi-
tions [3, 4, 5].

In general, fungi belonging to the Trichoderma genus
have adaptive abilities to colonize different environments.
Their survival is ensured through efficient ways to detect
cellulose in the environment and secrete various cellulases
responsible for the degradation of insoluble substrates,
transportation of soluble products via the cytoplasmic
membrane, and assimilation of sugars. Furthermore, this
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fungus has the flexibility to respond to changes in the nutri-
tional composition of the environment, and thus, is able to
compete with other microorganisms [6]. Therefore, correct
interpretation of environmental stimuli, using the available
resources, ensures the success of this fungus in nature [7].

In response to an extracellular signal captured by a recep-
tor, a signaling cascade is initiated, and this signal is trans-
mitted via secondary messengers such as cyclic AMP
(cAMP). The cAMP signaling pathway is a cascade that has
crucial functions in all organisms and is highly conserved in
fungi [7]. In fungi, this messenger is involved in stress
response, sporulation, growth, virulence, mycoparasitism,
carbon and lipid metabolism as well as other functions in
response to extracellular signals [8—12]. It has been sug-
gested that induction of cellulases in T. reesei is related to a
signaling pathway involving a cAMP-dependent protein
kinase, and that, in certain circumstances the presence of
this second messenger can cause an overproduction of
some cellulases [7, 13]. However, the biosynthesis of these
cellulases is not only induced by cellulose, but also by
cellobiose, 1,5-8-lactone celobiono (an analog of cellobiose),
lactose and sophorose. On the other hand, readily
metabolizable carbon sources such as glucose, fructose, or
glycerol repress expression of cellulases [14].

The regulation of transcription of cellulolytic com-
plexes has been extensively studied, and some transcrip-
tion factors involved in this process have already been
identified [15]. However, little is known about how
signals are transmitted to these transcription factors.
True inductors, receptors, and pathways involved in the
transduction of these signals to specific transcription
factors have not been identified yet [16]. Many of these
factors are induced under the conditions for which they
are necessary, and they are degraded once they have
done their function. Therefore, it is reasonable to
assume that the activity of these transcription factors is
also regulated by modifications that occur in response to
changes in fungal culture conditions [7].

This study aimed to elucidate the involvement of cAMP
in the expression of cellulase genes cel7a and cel6a in T.
reesei using different inducers (ie., cellulose, sophorose,
lactose, and cellobiose), and a repressor (i.e., glucose). Our
results suggest that cAMP controls the expression of
cellobiohydrolases only in the presence of the inducer
sophorose and is potentially involved in the secretion
process of cellulases.

Methods

Strains and growth conditions

T. reesei QM9414 (ATCC 26921) and mutant Aacyl [17]
strains were obtained from the Institute of Molecular
Biotechnology, Vienna, Austria. Strains were maintained
in MEX medium [malt extract 3 % (w/v) and agar-agar
2 % (w/v)] at 4 °C. QM9414 and Aacyl were grown in
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MEX medium at 28 °C for seven to 10 days to complete
sporulation. For gene expression assays and cellulase
activity measurements in QM9414, a suspension con-
taining approximately 10® spores/mL was inoculated in
200 mL Mandels-Andreotti medium [18] containing 1 %
(w/v) cellulose (Avicel, Sigma, St. Louis, Missouri, EUA),
or 1 % (w/v) lactose (Sigma, St. Louis, Missouri, EUA),
or 1 % (w/v) cellobiose (Serva, Heidelberg, Germany), or
2 % (w/v) glucose (Sigma, St. Louis, Missouri, EUA), or
in 20 mL of the same medium containing 1 mM sophor-
ose (Serva, Heidelberg, Germany) as the sole carbon
source. For gene expression assays in Aacyl, a suspension
containing approximately 10® spores/mL was inoculated
in 200 mL Mandels-Andreotti medium containing 1 %
(w/v) cellulose (Avicel), or in 20 mL of the same medium
containing 1 mM sophorose as the sole carbon source,
with or without 1 mM dibutyryl-cAMP (dbcAMP - Sigma,
St. Louis, Missouri, EUA). Cultures were incubated on an
orbital shaker (200 rpm) at 28 °C for 24, 48, and 72 h
using cellulose, lactose, or cellobiose; for 24 and 48 h
using glucose; and 2, 4 and 6 h, or 6, 12 and 18 h using
sophorose. For the latter, the mycelium was previously
grown in 1 % (w/v) glycerol (Sigma, St. Louis, Missouri,
EUA) for 24 h. After incubation, the mycelia were washed
with Mandels-Andreotti medium without peptone, and
transferred to 20 mL of Mandels-Andreotti medium with-
out peptone containing 1 mM sophorose. All experiments
were performed in three biological replicates. The result-
ing mycelia and supernatants were collected by filtration,
frozen and stored at —80 °C until RNA and protein extrac-
tion, as well as cellulose activity measurements were
performed.

Determination of cellulase activity

Determination of cellulase activity was performed using
Cellulose Azure® (Sigma, St. Louis, Missouri, EUA) as the
substrate. This methodology involves the release of a blue
color when cellulases are present. In these experiments,
the reaction mixture consisted of Cellulose Azure,
100 mM sodium citrate buffer pH 5.0, and samples from
culture supernatants. Reactions were performed at 55 °C
for 30 min. After this, the alcohol precipitation reagent
(APR) was added according to the manufacturer
instructions, and samples were centrifuged. Supernatant
was collected, and samples were measured using a
spectrophotometer (Spectrophotometer xMark™ Micro,
Bio-Rad, San Francisco, CA, USA) at 575 nm. A calibra-
tion curve was created using varying concentrations of
the substrate incubated at 50 °C for 4 h in 100 mM sodium
citrate buffer pH 5.0 and 15 U/mL cellulase purified from
Trichoderma reesei in the Microbiology Laboratory of Cell
Biology at the Biology Department (Faculty of
Philosophy, Sciences, and Letters of Ribeirao Preto,
University of Sao Paulo, Brazil). Activity was expressed
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as the ratio between change in growth factor absorbance
and the absorbance obtained in the standard curve, per
min, and per amount of enzyme added to the reaction.

RNA extraction

Total RNA was extracted from mycelia of each sample
using TRIzol” RNA kit (Invitrogen Life Technologies,
Carlsbad, CA, USA), according to the manufacturer in-
structions. RNA concentration was determined using
spectrophotometric optical density at 260/280 nm, and
RNA integrity was verified by electrophoresis in 1 %
agarose gels.

Quantitative real time-PCR analysis

Approximately 1 pg RNA was treated with DNAsel
(Fermentas, Waltham, Massachusetts, USA) and reverse-
transcribed to ¢DNA wusing the First Strand cDNA
kit Maxima™ Synthesis (Thermo Scientific, Waltham,
Massachusetts, USA) according to manufacturer instruc-
tions. cDNA was diluted 1:50 for real-time PCR analysis in
a Bio-Rad CFX96™ System (Bio-Rad, San Francisco, CA,
USA), using SsoFast™ EvaGreen® Supermix (Bio-Rad, San
Francisco, CA, USA) for signal detection, in accordance
with the manufacturer instructions. Primers used in this
study are listed in Table 1. The gene encoding actin was
used as a constitutive expression control [19]. The follow-
ing amplification reaction was used: 95 °C for 10 min
followed by 39 cycles at 95 °C for 10 s, 60 °C for 30 s
followed by a dissociation curve at 60 to 95 °C with an in-
crement of 0.5 °C every 10 s. Gene expression values were
calculated according to the 27**“"T method, using the
QM9414 strain grown in glucose as the reference sample
[19]. Data analysis was performed using GraphPad Prism
v5.1 software.

Extraction and measurement of cAMP

After fungal growth in Mandels-Andreotti medium, my-
celia were collected and frozen in liquid nitrogen. For
measurement of cAMP, mycelia were macerated, and
samples were transferred to polypropylene tubes and
weighed. Then, 10 volumes of 0.1 M HCI were added,
and the tubes were centrifuged at 6,000 x g for 10 min at
4 °C. The supernatant was used directly for measure-
ment of cAMP levels using the “Direct cAMP Enzyme

Table 1 Primers used in this study

No.  Code ProteinID  5—3

1 Cel6a F 72567 ACA AGA ATG CAT CGT CTC CG

2 Celéa R TGT TCC ACC CGT TGT AGT TG

3 Cel7a F 123989 CCG AGC TTG GTA GTT ACT CTG

4 Cel7aR GGT AGC CTT CTT GAC TGA GT

5 Actin F 44504 TGA GAG CGG TGG TAT CCA CG

6 Actin R GGT ACC ACC AGA CAT GAC AAT GTT
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Immunoassay” kit (Sigma, St. Louis, Missouri, EUA) ac-
cording to the manufacturer instructions. The content
of intracellular cAMP was relative to protein concentra-
tion in the same sample.

Protein extraction and western blot

Secreted proteins from QM9414 and Aacyl strains were
precipitated using 10 % tricarboxylic acid (TCA) in acet-
one, and allowed to stand at —20 °C overnight. Samples
were centrifuged at 10,000 x g for 10 min at 4 °C, and
the supernatant was removed. [(-mercaptoethanol
(0.07 %) in acetone was added, and samples were centri-
fuged at 10,000 x g for 10 min at 4 °C. This process was
repeated three times, discarding the supernatant after
each centrifugation. Then, samples were resuspended in
buffer (25 mM Tris pH 6.8, 12.5 % SDS, 50 % glycerol
and 0.05 % bromophenol blue) and heated for 5 min at
100 °C. For intracellular protein extraction [20], mycelia
grown in sophorose were used as the source [21]. Total
protein concentration was determined according to the
Bradford method using the Coomassie Plus Protein
Assay Reagent (Thermo Scientific, Waltham, Massachu-
setts, USA) at 595 nm, in a spectrophotometer (Spectro-
photometer xMark™ Micro, Bio-Rad). Subsequently, 12 pg
of protein samples (secreted and intracellular proteins)
were subjected to electrophoresis on 10 % polyacrylamide
gels. After electrophoresis, proteins were transferred to
nitrocellulose membranes (GE Healthcare) for 40 min
using a humid system (Trans-Aid ™ Blot“Turbo transfer
system, Bio-Rad) with transfer buffer (25 mM Tris,
197 mM glycine, 20 % methanol). Membranes were
blocked for 1 h at room temperature in tris-buffered saline
(TBS) containing 0.05 % Tween (TBS-Tween) and 5 %
skimmed milk. Membranes were then incubated overnight
at 4 °C with a rabbit polyclonal anti-Trichoderma viride
cellulase (CEL7A) antibody (MyBioSource) diluted 1:1000.
Membranes were then washed three times 10 min each
with TBS-Tween and incubated for 1 h with the corre-
sponding peroxidase-conjugated anti-rabbit secondary
antibody (Invitrogen). Membranes were again washed
three times 10 min each with TBS-Tween and developed
using Enhanced Chemiluminescence reagent (ECL, GE
Healthcare) according to the manufacturer instructions.
Finally, ECL membranes were photographed using
ChemiDoc™ XRS+ (BioRad) photo-documentation system.

Indirect immunofluorescence and confocal microscopy

Aliquots withdrawn from Aacyl at 6, 12, and 18 h during
culture were centrifuged at 6,000 x g and washed with
0.1 M phosphate buffered saline (PBS) at pH 7.4. After
washing, mycelia were immersed in 2 % paraformaldehyde
in PBS at room temperature and embedded in optimal
cutting temperature (OCT) compound (Tissue Tek,
Sakura Finetec, Torrence CA) in a suitable tissue mold for
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freezing. Subsequently the inclusion, mycelia were sec-
tioned on a cryostat (10 pum thick), and sections were
mounted on silanized slides kept under vacuum for 12 h
to affix the sections. Slides were then stored at —20 °C. For
confocal microscopy, slides were washed with PBS and in-
cubated with a 3 % bovine serum albumin (BSA) solution
for 1 h at room temperature to block non-specific binding.
Then, slides were incubated for 1 h at room temperature
with a rabbit polyclonal anti-Trichoderma viride cellulase
(CEL7A) antibody (MyBioSource) diluted 1:1000 in 3 %
BSA solution in PBS. Slides were then incubated with an
Alexa Fluor 488-conjugated secondary antibody (Molecu-
lar Probes, Life Technologies) diluted 1:5000 in PBS with
3 % BSA at room temperature. Slides were washed with
PBS between steps and images were acquired using a
Leica TCS SP5 confocal microscope.

Analytical methods

Biomass was determined by gravimetric analysis for gly-
cerol culture. After 24 h of culture, mycelia was filtrated
on filter paper and incubated at 70 °C for 3 h and then
weighed. For cellulose culture, biomass was indirectly
measured by the amount of intracellular protein quan-
tified by the Quick Start Bradford protein assay kit
(Bio-Rad) with bovine serum albumin (BSA) as a standard.

Results
Analysis of the expression of the cellobiohydrolases cel7a
and cel6a and cellulase activity using different carbon
sources
To guarantee comparisons between strains, we first ex-
amined the growth pattern of strains on cellulose and
glycerol. No significant difference in growth between
Aacyl mutant strain and the parental QM9414 as in cel-
lulose as in glycerol was observed [see Additional file 1].
Expression of the two most expressed cellulase genes in
T. reesei (cel7a and cel6a) was analyzed after growing
the QM9414 strain in different carbon sources, as de-
scribed in the Methods section. As shown in Fig. 1, cel7a
and cel6a expression increased when the fungus was
grown in cellulose, sophorose, or lactose. Using cellu-
lose, cel7a expression increased 10-fold at 48 and 72 h
(Fig. 1a). Regarding sophorose and lactose, the highest
cel7a expression (30-fold) was observed after 6 and 48 h,
respectively. The expression profile of cellobiohydrolase
celéa was similar to that of cel7a, with the highest ex-
pression levels in sophorose at 6 h (80-fold) and lactose
at 48 h (90-fold) (Fig. 1b). As expected, neither ce/7a nor
celéa showed detectable expression levels in glucose.
Interestingly, no expression of cel7a and cel6a was ob-
served in cellobiose.

Similar to qPCR-RT results, the QM9414 strain exhib-
ited higher cellulolytic activity in cultures with cellulose,
sophorose, and lactose (Fig. 2). However, different to
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Fig. 1 Gene expression levels of cel7a (a) and cel6a (b). T. reesei
QM9414 strain was grown in cellulose, lactose, or cellobiose for 24,
48, and 72 h, in glucose for 24, and 48 h, and in sophorose for 2, 4,
and 6 h. The absolute expression of the genes was calculated using
actin gene as an endogenous control

what was observed in the expression analysis, which
showed an increase of cel7a and cel6a expression after
6 h, cellulolytic activity in sophorose increased mainly at
2 h in culture (24.5 U/mL). A similar pattern was ob-
served growing QM9414 in lactose, where cellulolytic
activity reached high levels at 72 h (22.5 U/mL). Cellulo-
lytic activity in cellulose was higher at 48 and 72 h (24.5
U/mL and 20.7 U/mL, respectively). On the contrary,
hydrolytic activity in glucose was lower than in other
carbon sources, being 6, 5, and 4.8 times lower than in
cellulose, sophorose, lactose and cellobiose, respectively.
Interestingly, our results showed no correlation between
the expression profile and cellulolytic activity in cellobi-
ose. The cellulolytic activity showed a steady increase
from 24 h and a maximum at 72 h (19.8 U/mL) (Fig. 2).
This result may be explained from the fact that the
azure-Cellulose” method detects total cellulolytic activity
without distinguishing specific cellulases.
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Fig. 2 Total cellulolytic activity in different carbon sources. T. reesei
QM9414 strain was grown in cellulose, lactose, or cellobiose for 24,
48, and 72 h, in glucose for 24, and 48 h, and in sophorose for 2, 4,
and 6 h. Activity was measured using the azure-Cellulose method
and is expressed as the ratio between growth factor and the absorbance
obtained in the standard curve equation, per minute, and per amount of
enzyme added to the reaction

Intracellular cAMP levels are regulated according to the
carbon source

We found that cellobiohydrolase gene expression and
cellulolytic activity profile varied depending on the car-
bon source used in the experiments of induction. Previ-
ous studies have suggested that intracellular levels of
cAMP may regulate both expression of cellulase genes
and activity of the enzyme. To address this, we mea-
sured intracellular levels of cAMP in mycelia from the
QM9414 strain grown in cellulose, sophorose, lactose,
cellobiose, and glucose.

Our results showed that intracellular levels of cAMP
were modulated in a carbon source-dependent manner.
As shown in Fig. 3, cAMP concentration (229.8 pmol/mg)
at 4 h was at least 4 times higher in the presence of
sophorose than in the presence of other carbon sources.
In cellulose, the highest cAMP concentration was quanti-
fied after 24 h cultivation (61.7 pmol/mg). This value was
3 times higher than the maximum levels found in glucose
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Fig. 3 Intracellular cAMP content. T. reesei QM9414 strain was grown
in cellulose, lactose, or cellobiose for 24, 48, and 72 h, in glucose for
24, and 48 h, and in sophorose for 2, 4, and 6 h
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(19.13 pmol/mg) at 48 h and 2.5 times higher than with
cellobiose (22.5 pmol/mg) at 24 h (Fig. 3). Concomitantly,
lower levels of cCAMP were detected in lactose and cellu-
lose at 48 and 72 h, and cellobiose at 48 and 72 h.
Altogether, our findings showed that in a similar manner
to cellobiohydrolase expression and cellulolytic activity,
intracellular levels of cAMP are also dependent on the in-
ducer. This suggests a regulatory role of cAMP in the con-
trol of cellulase expression only in the presence of
sophorose, since expression levels of cel7a and cel6a were
increased in both lactose and cellulose. On the other hand,
intracellular concentration of cAMP did not exhibit the
same profile regarding carbon sources.

Analysis cel7a and cel6a expression in the Aacy1 mutant
strain

The expression profile of the two most abundant cello-
biohydrolases in the parental lineage QM9414 was dir-
ectly regulated in response to four different inducers.
Here we showed that the increased expression of cel7a
and cel6a correlates with high intracellular levels of
cAMP in the presence of sophorose. Then, we wanted to
assess how cAMP regulates cellulase expression in T.
reesei, and whether the effects of this secondary messen-
ger are determined by the carbon source. To assess this,
we used the Aacyl mutant strain, which features a dele-
tion in the adenylate cyclase gene, and dbcAMP (dibu-
tyryl-cAMP) in the induction medium. Growth of the
Aacyl mutant strain was assessed in cellulose and
sophorose at 72 and 6 h, respectively, which were the
time points and carbon sources that showed the highest
expression of cellobiohydrolases.

Figure 4 shows that in the presence of sophorose and
dbcAMP, expression of the cellobiohydrolases cel7a
(Fig. 4a) and cel6a (Fig. 4b) was significantly increased
relative to cellulose, either in the presence or absence of
dbcAMP. Interestingly, dbcAMP effects were mainly evi-
dent in the presence of the most potent inducer of cellu-
lase expression (i.e., sophorose) than in cellulose at the
same concentration. As a result of the abolition of adenyl-
ate cyclase expression in the Aacyl mutant strain, the only
source of cCAMP in the induction medium was dbcAMP.
Therefore, supplementation with exogenous cAMP en-
hanced the expression of cellobiohydrolases in the Aacyl
strain, suggesting an essential effect of cCAMP in the regu-
lation of cellulase gene expression in 7. reesei.

Detection of total cellulase in mycelia and secretome of
Aacy1 and QM9414

The cAMP signal transduction pathway controls a wide
variety of processes in fungi. In the Aacyl mutant strain
processes such as carbon metabolism, conidiation, mat-
ing, phototropism, and synthesis and secretion of pro-
teins may be disturbed because of adenylate cyclase
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deletion. Using western blot and indirect immunofluor-
escence microscopy approaches we assessed cellulase
content in the mycelia (intracellular protein) and in the
secretome of QM9414 and Aacyl strains.

Our immunofluorescence results revealed that
dbcAMP strongly influenced cellulase expression in the
Aacyl mutant strain (Fig. 5). Addition of dbcAMP pro-
moted an increase in cellulase expression at 6 h in in-
duction medium with sophorose. Similar results were
also observed at 12 and 18 h (Data not shown), with the
same increase in cellulase expression. We observed an
accumulation of cellulases in the hyphal tip (Fig. 5,
dashed squares), when dbcAMP was added. These re-
sults, together with the qRT-PCR and activity analyses,
suggest that dbcAMP directly controls expression and
secretion of cellulase in 7. reesei.

We found no correlation between expression level of
cellobiohydrolases and activity in at 6 h of incubation in
the presence of sophorose. On the other hand, the im-
munofluorescence analysis showed that at 6 h in the
presence of dbcAMP there are increased of cellulase ex-
pression. So, we asked if occurs a retention of cellulases
in the mycelium. Our western blotting results showed a
detection of an approximately band of 59-68 kDa (rela-
tive to CEL7A), and we observed a lower content of
CEL7A in the secretome of Aacyl strain in the absence
of dbcAMP (Fig. 6a, upper panel). The addition of
dbcAMPC increased the content of CEL7A in the secre-
tome. The differences were more evident at 12 h and
18 h, being the higher expression of CEL7A reached
always in the presence of dbcAMP. The detection of
CEL7A in the mycelium of Aacyl (Fig. 6b, upper panel)
revealed an elevated content of this cellulase at 6 h in
the absence of dbcAMP, justifying the lower detection in

the secretome. In the same way, the addition of dbcAMP
at 6 h induced a high secretion of CEL7A as demon-
strated by the decreased of protein in the mycelium
(Fig. 6b, upper panel). In addition, we observed that the
content of CEL7A in the mycelium at 12 h and 18 h
were higher than at 6 h, but the content of protein in
the secretome remain increased at 12 h and 18 h relative
to mycelium. In the Aacyl strain the expression of cellu-
lase was higher after 6 h of cultivation, being the content
of CEL7A maximum at 18 h. Oppositely, in the secre-
tome of QM9414, the maximum content of CEL7A was
detectable at 12 h in the absence of dbcAMP (Fig. 6a,
lower panel). Moreover, we demonstrated a lower con-
tent of cellulase in the mycelium of QM9414 at 6 h,
12 h and 18 h compare to Aacyl mutant strain (Fig. 6b).
So, the analysis of secretome and mycelium protein con-
tent revealed that addition of dbcAMP alters the pattern
of CEL7A secretion in 7. reesei. The content of CEL7A
in the presence of dbcAMP had no change in the secre-
tome, but comparing the protein content in the myce-
lium in the absence and in the presence of dbcAMP, we
observed the accumulation of protein in the mycelium
after addition of dbcAMP mainly at 6 h and 12 h (Fig. 6b,
lower panel). Our findings suggest that cAMP may regu-
late the expression, and secretion of cellobiohydrolases
in T. reesei in the presence of the inducer sophorose.

Discussion

In T. reesei, it is well established that expression of
cellulases is carbon source-dependent [12]. Our group
has described the influence of different carbon
sources in the regulation of cellulase gene expression
[22, 4]. Although various studies have discussed that
cellulase genes are dependent on induction, little is
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used to detect cell nuclei. Images were acquired on a Leica TCS SP5 confocal microscope. Lens 40x, and zoom 3.8

+ dbcAMP

known about the nature of the inducer, and the sig-
naling pathways controlling cellulase gene expression
in this fungus [16].

In T. reesei the only well characterized signal transduc-
tion cascades are: a light-modulated cellulase production
(G protein-mediated, Gnal and Gna3), a PAS/LOV
domain protein ENVOY and cAMP-dependent protein
kinase A signaling [7, 17, 18, 23], regulation of sexual de-
velopment [24], and cellulose- and cAMP-independent
modulation of cellulase production mediated by Ras
GTPase [25]. Recently, Wang et al. [26, 27] described the
role of MAPK signaling in the regulation of both expres-
sion and activity of cellulases in T. reesei.

The cyclic AMP (cAMP) pathway is a central signaling
cascade with crucial functions in all organisms. In Sac-
charomyces cerevisiae, nutrient sensing and pseudohy-
phal differentiation in response to nitrogen-limiting
conditions is controlled by this pathway [28-30]. In the
fission yeast, Schizosaccharomyces pombe, cAMP medi-
ates the effect of glucose and gluconeogenesis in spore
germination, and regulates mating in response to either
glucose or nitrogen deprivation [31, 32]. In filamentous
fungi such as Neurospora crassa and Aspergillus species,
cAMP controls hyphal growth polarity and morphogen-
esis, conidiation, and spore germination [33-36]. Fur-
thermore, as a secondary messenger, cCAMP is involved
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Fig. 6 Analysis of cellulase expression in 4acyl and QM9414 strains. Fungi were grown in sophorose for 6, 12, and 18 h in the presence or
absence of dibutyryl-cAMP (dbcAMP). a Expression of CEL7A in the secretome of the dacyl mutant strain (upper panel) and QM9414 parental
strain (lower panel) in the presence or absence of dbcAMP. b Expression of CEL7A in the mycelium of the dacyl mutant strain (upper panel) and
QM9414 parental strain (lower panel) in the presence or absence of dbcAMP

in stress response, carbon and lipid metabolism, sporula-
tion, development, virulence, mating, mycoparasitism,
and other responses to extracellular signals [8-12, 37].

Previous studies in 7. reesei have suggested that cAMP
signaling regulates cellulase gene expression [13]. Sestak
and Farkas (1993) [13] showed that addition of cAMP
can double the efficacy of sophorose in the induction of
endoglucanase formation. In another filamentous fun-
gus, Cryptococcus albidus, cAMP was shown to be im-
portant for xylanase production [38]. According to Tisch
and Schmoll [7], the most important role of cAMP is to
activate cAMP-dependent protein kinase A (PKA),
which in turn initiates a phosphorylation cascade and
activates/inactivates further target genes. Schuster et al.
(2012) [17] showed that both adenylate cyclase (ACY1)
and PKA (catalytic subunit, PKAC1) were important fac-
tors in cellulase gene expression in T. reesei. However,
the mechanisms related to the impact on cellulase gene
expression remain unclear.

In the present study, we showed that the effect of
cAMP in the regulation of cellulase gene expression in
T. reesei was carbon source-dependent and that the role
of this secondary messenger is more evident in the pres-
ence of sophorose. This sugar is formed by transglycosy-
lation of cellobiose during cellulose hydrolysis [39], and
it is thought to be the natural inducer of cellulase forma-
tion, being its presence in culture fluids of T. reesei com-
monly described [40-42]. Moreover, this disaccharide
has a dual role in T. reesei in B-glucosidase repression
and cellulase induction [16]. The efficiency of sophorose
and other disaccharides such as lactose in the induction
of cellulase has also been observed in Trichoderma vir-
ide, Pseudomonas fluorescens var. cellulosa, Acremonium
cellulolyticus, Penicillium echinulatum [41, 43-45].
Interestingly, our results showed a low expression of cellu-
lase genes in the presence of cellobiose. This may be ex-
plained by the fast hydrolysis of this sugar by -glucosidase
activity, which converts cellobiose to glucose, a carbon
source repressor of cellulase synthesis [46, 47]. Altogether,

our results suggest an intriguing mechanism by which the
fungus identifies the available carbon source in the culture
medium and controls the full transcription machinery
of genes responsible for carbon source metabolism. In
addition, our results highlight the role of cAMP as a
sophorose sensor.

Our qRT-PCR results showed that expression of cello-
biohydrolases cel7a and cel6a increased in the presence
of cellulose, sophorose, and lactose. However, in the
presence of sophorose, addition of dbcAMP induced an
increase of 5- and 7.8-fold in the expression of cel7a and
cel6a, respectively. As observed, the expression of cel6a
was more sensitive to intracellular levels of cAMP than
cel7a. Interestingly, the high expression levels of cel7a
and cel6a correlated with high intracellular cAMP levels.
The influence of cAMP in the regulation of cellulase ex-
pression has been shown in important fungi such as 7ri-
choderma, Penicillium, and Aspergillus spp., which have
biotechnological interest [41, 45]. Furthermore, Hu et al.
[48], in a study in Penicillium decumbens, showed the ef-
fect of PGA3, a group III G-protein a subunit, on the
expression of amylases and cellulases. Deletion of pga3
resulted in impaired amylase production, and signifi-
cantly decreased transcription of the major amylase gene
amyl5A. Moreover, supplementation with exogenous
cAMP or its analog dbcAMP restored amylase produc-
tion in the Apga3 strain, suggesting an essential role for
PGA3 in amylase synthesis by controlling cAMP levels.
Conversely, transcription of the cellulase gene cel7A-2
increased in the Apga3 strain, although cellulase activity
in the medium was not affected. Dong et al. [49] showed
that exogenous cAMP could increase cellulase synthesis
under derepression conditions. Nevertheless, cCAMP has
an ambiguous role in the regulation of cellulase expression
because at lower concentrations increases cellulolytic ac-
tivity, while high levels of cAMP repress cellulase synthe-
sis. Interestingly, Herrera-Herrera et al. [50] showed
that in Cellulomonas flavigena, an actinobacteria with
special interest for its ability to degrade cellulose and
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hemicellulose, addition of exogenous cAMP in repres-
sor culture medium decreased catabolite repression,
while supplementation enhanced cellobiohydrolase
production. Similarly, Rizzati et al. [51] showed in As-
pergillus phoenicis that repression of xylanase expres-
sion by glucose was partially reversed by addition of
cAMP or dbcAMP.

In our experiments using cellulose, we showed that
expression of cel7a and cel6a in the Aacyl strain were
6- and 7.3-fold higher with addition of dbcAMP. This
increase may be explained because degradation of cellu-
lose releases inducer disaccharides such as sophorose,
which in turn may active the expression of cellulolytic
enzymes. This result corroborates our hypothesis that
cAMP affects the expression of cellobiohydrolase, and
that this regulation seems to be dependent on the type
of carbon source, since changes in transcription of re-
lated genes were observed in both cellulose and sophor-
ose, using the same concentration of dbcAMP. Hu et al.
[48] described a different regulation in P. decumbens, in
which expression of amylases and cellulases seemed to be
independent of the carbon source. Taken together, our re-
sults suggest that the signaling pathway in response to
sophorose involves a cAMP-dependent protein kinase that
may control the expression of cellulolytic enzymes in the
presence of easily metabolizable disaccharides, and that is
also involved in the early stage of carbon sensing.

Our results revealed that the Aacyl mutant strain
showed a high expression of cellobiohydrolases in the
presence of both cellulose and sophorose. As discussed
above, this expression increased with supplementation of
exogenous cAMP. This finding suggests that cAMP is
not essential for cellulase expression, and that alternative
pathways may interact with cAMP-dependent signaling
to control expression of cellulolytic enzymes. In this re-
gard, Schmoll et al. [18] showed that in T. reesei intra-
cellular cAMP levels were positively correlated with
cellulase expression in the presence of light. Further-
more, sensing of environmental signals mediated by G-
protein coupled receptors (GNA1 and GNA3) modulates
considerably cellulase transcript levels, and the extent of
this adjustment is dependent on light status. The critical
light regulator ENVOY in T. reesei [52], is a small pro-
tein that contains a single PAS/LOV domain. The ex-
pression of the envl gene is very low in darkness, but
upon illumination the abundance of its transcript in-
creases up to 500-fold. Recently, Tisch et al. [7] reported
that ENVOY is involved in signal transduction via G-
proteins, acting positively in the feedback of gnal and in
the cAMP/protein kinase A pathway, controlling the
function of the corresponding phosphodiesterase, al-
though the mechanism is still unclear. In T. atroviride, a
GPCR (GPR-1) that activates heterotrimeric G-proteins
senses different carbon sources, and the Goa proteins
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(tgal or tga3) can activate adenylate cyclase that in turn
may control intracellular levels of cAMP [53]. Thus, our
results obtained in the Aacy! strain provide evidence of
the existence of a cAMP-independent pathway that con-
trols cellulase expression, and may involve a receptor
that senses different carbon sources; the effects of this
sensing are more evident in the presence of disaccha-
rides such as sophorose. These results are also in agree-
ment with other studies [13, 54, 55], which showed that
cAMP may be an important signal for the regulation of
cellulase formation, but not the only one.

The effect of cCAMP on the regulation of cellulase ex-
pression in 7. reesei was also revealed in our compara-
tive analysis of immunofluorescence and western blot.
Immunofluorescence data clearly showed that supple-
mentation with exogenous cAMP controls expression of
cel7a in sophorose induction. In addition, we observed
that in the Aacyl mutant strain there is a delay in the se-
cretion of cellobiohydrolase CEL7A compared to the
parental QM9414. Kinetic studies have shown that se-
cretion is not faster in 7. reesei than in other species.
However, a good secretion capability depends on the
capacity of the secretion machinery [56]. Altogether, our
results suggest an involvement of intracellular cAMP
levels in the regulation of cellulase secretion.

Filamentous fungi such as 7. reesei and A. niger, pro-
duce large amounts of extracellular cellulolytic enzymes,
while some strains mostly produce them in a multi-
enzyme complex called cellulosome, which is associated
with the degrading cell wall [57-61]. Usually, a typical
secretory pathway in a cell is composed of at least two
components, endoplasmic reticulum and Golgi appar-
atus, and two endomembrane systems, one for incom-
ing, and another for outgoing traffic [62]. On the other
hand, secretion of cellulase suggests the existence of
three different mechanisms based on their subcellular
location: a specific secretory pathway independent of
cellulose, a secretory pathway, which is induced by cellu-
lose, and a process that occurs irrespective of the carbon
source [63].

Cellulase secretion needs to be induced, and this
process involves the synthesis of new proteins for con-
structing secretory pathways. In A. niger, de Oliveira et
al. [64] described the induction of 254 different pre-
dicted proteins related to the secretory pathway. Inter-
estingly, the induction of proteins seemed to be carbon
source-dependent. Similarly, studies in Clostridium ther-
mocellum showed that endoglucanase activity was regu-
lated by carbon source [65-68]. In A. nidulans, non-
essential protein kinases and phosphatases were involved
in the sensing of carbon and/or energetic status, and in
the regulation of hydrolytic enzyme production [69]. As
discussed above, cAMP controls a wide range of pro-
cesses in the cell, including activity of kinase proteins.
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The Aacyl strain exhibited an increase in the cellobiohy-
drolase expression. Interestingly, upregulation of cel7a
and cel6a was more evident and the intracellular cAMP
content was higher in the presence of sophorose than in
the presence of other carbon sources tested. Further-
more, secretion of CEL7A was altered compared to the
QM9414 parental strain. These results suggest that
sophorose may be sensed by a different signaling path-
way in the Aacyl mutant strain, and that mutation of
the acyl gene may alter the pattern of cellulases secre-
tion in this strain. However, additional studies will be
needed to identify potential kinase proteins involved in
this process in T. reesei.

Conclusions

The present study contributes to a better understanding
of the role of cAMP signaling pathway in the regulation
of cellulase expression in T. reesei. Our results showed
that cAMP effects are carbon source-dependent, with
regulation of cellobiohydrolases more evidently affected
in the presence of sophorose. Interestingly, cellulase se-
cretion was altered in the Aacyl mutant strain, in which
cAMP synthesis is disrupted. Moreover, our study is the
first report discussing a potential role for cAMP in the
regulation of cellulase secretion in T. reesei. These re-
sults suggest that cAMP is an important signaling path-
way involved in cellulase expression in T. reesei, but only
in the presence of sophorose. These findings contribute
to the understanding of the molecular mechanisms in-
volved in the regulation of the processes of cellulolytic
enzyme synthesis and secretion.
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Additional file 1: Figure S1. Growth profiles of T. reesei QM9414 and
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are represented from three biological replicates. No significant difference
was showed in growth between Aacyl mutant strain and the parental
QM9414 (PDF 117 kb)
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