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Abstract

Background: Salmonella enterica is a common cause of foodborne gastroenteritis in the United States and is associated
with outbreaks in fresh produce such as cilantro. Salmonella culture-based detection methods are complex and time
consuming, and improvments to increase detection sensitivity will benefit consumers. In this study, we used 16S rRNA
sequencing to determine the microbiome of cilantro. We also investigated changes to the microbial community prior to
and after a 24-hour nonselective pre-enrichment culture step commonly used by laboratory analysts to resuscitate
microorganisms in foods suspected of contamination with pathogens. Cilantro samples were processed for Salmonella
detection according to the method in the United States Food and Drug Administration Bacteriological Analytical Manual.
Genomic DNA was extracted from culture supernatants prior to and after a 24-hour nonselective pre-enrichment step
and 454 pyrosequencing was performed on 16S rRNA amplicon libraries. A database of Enterobacteriaceae 16S rRNA
sequences was created, and used to screen the libraries for Salmonella, as some samples were known to be
culture positive. Additionally, culture positive cilantro samples were examined for the presence of Salmonella
using shotgun metagenomics on the Illumina MiSeq.

Results: Time zero uncultured samples had an abundance of Proteobacteria while the 24-hour enriched samples
were composed mostly of Gram-positive Firmicutes. Shotgun metagenomic sequencing of Salmonella culture
positive cilantro samples revealed variable degrees of Salmonella contamination among the sequenced samples.

Conclusions: Our cilantro study demonstrates the use of high-throughput sequencing to reveal the microbiome
of cilantro, and how the microbiome changes during the culture-based protocols employed by food safety
laboratories to detect foodborne pathogens. Finding that culturing the cilantro shifts the microbiome to a
predominance of Firmicutes suggests that changing our culture-based methods will improve detection sensitivity
for foodborne enteric pathogens.

Background
Cilantro, like many leafy green vegetables that are avail-
able year round and usually consumed raw, is difficult to
clean and therefore a possible vehicle for transmission of
enteropathogenic bacteria. Cilantro has been the target
of multiple recalls due to Salmonella contamination over
the last decade and in 1999 an outbreak of Salmonella
serotype Thompson was linked to cilantro used to pre-
pare salsa at restaurants in California [1–3].

The Food and Drug Administration (FDA) Bacterio-
logical Analytical Manual (BAM) method for the detection
of Salmonella in cilantro involves a 24-hour nonselective
pre-enrichment step followed by two parallel selective
24-hour enrichments in Rappaport-Vassiliadis and Tet-
rathionate Broths, and plating on differential/selective
agars (http://www.fda.gov/Food/FoodScienceResearch/
LaboratoryMethods/ucm070149.htm). Improvements to
decrease the time to detect foodborne pathogens are
economically desirable to the FDA, especially during
outbreaks when reducing exposure to contaminated
food in the general population is a primary concern.
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Recent advances in DNA sequencing technology have
reduced costs and time to results making culture inde-
pendent high-throughput sequencing technologies more
accessible to many laboratories. Shotgun metagenomic
sequencing of the microbiomes as well as 16S rRNA
amplicon studies have been used to characterize micro-
bial communities in foods to identify spoilage associated,
pathogenic, and beneficial organisms [4, 5]. For example,
a 16S rRNA amplicon study on Kimchi fermentation to
track changes in microbial diversity resulted in an in-
creased understanding of the fermentation process, which
has led to improved production methods [6]. Metage-
nomic sequencing also identified a novel fish pathogen
Kudoa septempunctata, as the causative agent of food
poisoning during a Japanese outbreak traced back to the
consumption of raw fish [7]. 16S rRNA analysis of Latin-
style and artisanal cheeses have revealed significant differ-
ences in the bacterial composition among different brands
of the same type of cheese, and identified microbes not
previously associated with particular types of cheese, re-
vealing how the raw materials and preparation methods
used during cheese fermentation can impact changes in
microflora [8, 9]. Improving our ability to quickly identify
foodborne pathogens using high-throughput sequencing
has been explored, for example, in tomato fruit and
plants, with the goal of identifying co-enriched organ-
isms when FDA BAM methods were employed [10, 11].
In this study, we utilized 16S rRNA sequencing to

characterize the changes to the cilantro microbiome
during a nonselective pre-enrichment in broth culture.
The primary goal of our cilantro study was to deter-
mine the baseline population of microbes colonizing
cilantro, and then to assess community composition
shifts during the initial culturing steps used by the FDA
BAM to detect enteric pathogens in contaminated leafy

greens. Additionally, we sought to identify Salmonella
specific 16S rRNA gene signatures in culture positive
cilantro samples using a newly developed 16S rRNA data-
base specific to Enterobacteriaceae as well as BLASTn and
MetaPhlAn analysis of shotgun metagenomes.

Results
Sequencing results
Cilantro samples were provided through the United
States Department of Agriculture Microbiological Data
Program from various distribution centers throughout
the United States from July to December 2011 and April
to October 2012 (See Additional file 1) [12]. Nine cilan-
tro samples were culture-positive for Salmonella. Thirty-
five time-zero (T0) and 56 24-hour pre-enrichment
(T24) cilantro samples were sequenced using 16S 454
pyrosequencing generating 354,019 quality filtered bac-
terial 16S rRNA gene sequences. The average number
of reads per sample was 2,860 ± 2,557 and 4,534 ± 2,526
in the T0 and T24 samples, respectively (see Additional
file 2). The non-specific amplification of 18S rRNA se-
quences resulting in excess chloroplast contaminant
associated with cilantro material (40.1 % in T0 vs. 0.4 %
in T24) caused the relatively low level of bacterial 16S
rRNA sequence reads per sample in the T0 group (see
Additional file 2).

Cilantro microbiome
Quantitative Insights into Microbial Ecology (QIIME)
[13] analysis of cilantro 16S rRNA gene sequences re-
vealed a microbiome (T0 cilantro samples, Fig. 1) com-
prised mainly of Proteobacteria (77 %), followed by
Bacteroidetes (12 %), Actinobacteria (6 %) and Firmi-
cutes (4 %).
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Fig. 1 Phyla representing at least 1 % of the total abundances in the cilantro microbiome (T0) and after 24-hour nonselective mBPW
pre-enrichment (T24)
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Further characterization of the microbiome at the
family level using an unsupervised hierarchical clustering
approach resulted in multiple clades of Proteobacteria
within the T0 samples (Fig. 2a). The largest clade con-
sists of Oxalobacteraceae, known colonizers of the rhizo-
sphere and roots of many plant species (Fig. 2a) [14].
Other Proteobacteria present in high abundance within
the cilantro microbiome include members of the Coma-
monadaceae and Pseudomonadaceae (Fig. 2a and b).

The effect of a 24-hour nonselective pre-enrichment
Culturing cilantro for 24-hours in a nonselective pre-
enrichment broth used for resuscitation of microorgan-
isms in foods called, modified Buffered Peptone Water
(mBPW), resulted in a dramatic shift in community
members to a predominance of Firmicutes and then
Proteobacteria (Fig. 1). Unsupervised hierarchical clus-
tering of proportional abundances at the family level
revealed multiple clades within the T24 samples, the two
largest consisting of Peptostreptococcaceae and Clostri-
diaceae, and a third comprised mainly of Planococca-
ceae all members of the Firmicutes (Fig. 2a). The
relative abundances of family level taxa were then log-
normalized prior to unsupervised hierarchical cluster-
ing of samples and taxa using a Euclidean distance
metric with complete linkage methodology. Heatmap
values, reflecting log-normalized proportions (i.e. -1 ~

10 %, −2 ~ 1 %, −3 ~ 0.1 %), show two subgroups
clearly distinguished by enrichment state (T0 or T24)
(Fig. 2b). Family members present at very low levels in
the microbiome (T0 samples), including Clostridiaceae,
Peptostreptococcaceae, and Lachnospiraceae, were highly
enriched after 24-hours (Fig. 2b). The Enterobacteriaceae,
Bacillaceae, and Paenibacillaceae also appear to increase
in abundance after pre-enrichment, and the propor-
tional abundances of the Gram-negative Bacteroidetes,
Proteobacteria, and Gram-positive Actinobacteria were
visibly decreased (Fig. 2b).
We analyzed the 16S rRNA proportional abundance

data of T0 and T24 samples using MetaStats to deter-
mine the significance of the community shifts predicted
by QIIME (Table 1) [15]. Considering taxa representing
at least 0.5 % of the total population in the cilantro
microbiome (T0 samples), the proportional abundance
of 18 of 22 taxa significantly decreased following a
24-hour nonselective pre-enrichment (Table 1a). The
exceptions were the [Exiguobacteraceae], Enterobacteri-
aceae, Paenibacillaceae, and Bacillaceae, which all had
significant increases in proportional abundance, ranging
from 1.5 to 5.0 fold changes (Table 1a). Changes in the
cilantro microbiome, induced by pre-enrichment, re-
sulted in 14 taxa being present at or above 0.5 % of
the total population (Table 1b). The proportional
abundances of Peptostreptococcaceae, Planococcaceae,

Fig. 2 Unsupervised hierarchical clustering of samples using family level profiles. Values reflect (a) proportions and (b) log-normalized proportions
(e.g. -1 ~ 10 %, −2 ~ 1 %, −3 ~ 0.1 %) to increase the weighting of low frequency members. Utilizing the log-normalized profiles, we find distinct
clustering of T0 and T24 samples. Dendrograms were generated using a Euclidean distance metric with furthest neighbor clustering
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Clostridiaceae, Lachnospiraceae, and Aeromonadaceae
significantly increased by more than a 50 % following
24-hour nonselective pre-enrichment (Table 1b). The
change in microbial community composition to a pre-
dominance of microaerophilic and anaerobic species

suggests a shift toward an oxygen-depleted environment
after 24-hours (Table 1).
The Enterobacteriaceae were also significantly enriched,

but not as dramatically as the Firmicutes family members
(Table 1). Eighteen Enterobacteriaceae family members
were identified in the T0 and T24 samples, and Serratia,
Erwinia, and Trabulsiella species were the most abundant
(see Additional file 3). Moreover, unidentified genera
make up 50 and 24 % of the Enterobacteriaceae, in the T0,
and T24 samples, respectively (see Additional file 3). It is
notable that Salmonella was not detected among the
Enterobacteriaceae using the QIIME RDP classifier [16]
trained on the GreenGenes 16S rRNA database (v13_8)
[17, 18], even in the Salmonella culture positive samples
(see Additional file 3).

Taxon diversity
The alpha diversity measured as Shannon entropy and
Faith’s whole-tree phylogenetic diversity, showed a sig-
nificant increase in species richness for T0 sample
communities relative to the T24 group (P = 0.0007 and
P = 0.0017, respectively; Mann–Whitney test) (Fig. 3a).
We observed no apparent differences in alpha-diversity
in samples grouped by known parameters such as state,
month, or collection year, nor did we see differences
between Salmonella culture positive and negative cilan-
tro samples (data not shown). Principal coordinate ana-
lysis using a Unifrac distance measure of beta-diversity
showed changes to the phylogenetic diversity of cilan-
tro, after the 24-hour nonselective pre-enrichment step,
revealed by distinct clusters for the T0 and T24 samples
(Fig. 3b) [19]. As with the alpha-diversity, no other sample
parameters (state, date of collection) documented in this
study gave rise to distinct clustering (data not shown).

Application of a Salmonella detection pipeline
One of the goals of our cilantro study was to assess the
efficiency of our initial 24-hour nonselective mBPW pre-
enrichment for Salmonella species. By default, the
QIIME implementation of the RDP classifier uses the
GreenGenes database as a training set, which contains
only three S. enterica reference sequences. Since we did
not detect Salmonella in our 16S rRNA amplicon data,
we sought to improve our assignment specificity by cre-
ating a high-quality Enterobacteriaceae specific database
(EnteroDB). The EnteroDB, consisting of full-length
reference 16S rRNA sequences, including S. enterica,
and was implemented in BLASTn-based searches for
Salmonella in our 16S datasets (see Additional file 4).
We performed sensitivity checks of the EnteroDB by

simulating variable length Salmonella specific 16S rRNA
fragments (100–500 bp) with error rates ranging from
zero to 1 %. BLASTn analysis revealed a positive correl-
ation between the size of the test fragments (the larger

Table 1 MetaStats analysis of relative abundance (>0.5 %)

%T0 %24-hour Fold change P value

a.) The most abundant members at time zero

Oxalobacteraceae 38.63 0.96 −40.21 0.0002

Pseudomonadaceae 10.62 1.36 −7.79 0.0158

Flavobacteriaceae 7.33 0.22 −33.12 0.0002

Comamonadaceae 5.03 2.43 −2.07 0.1982

Xanthomonadaceae 4.11 0.87 −4.72 0.0154

Rhizobiaceae 3.57 0.13 −27.76 0.0002

Methylobacteriaceae 3.50 0.03 −140.14 0.0002

Micrococcaceae 2.52 0.01 −176.45 0.0002

Sphingomonadaceae 2.28 0.03 −79.78 0.0002

Weeksellaceae 2.20 0.07 −33.30 0.0002

Rhodobacteraceae 2.11 0.03 −73.74 0.0002

Microbacteriaceae 2.06 0.02 −104.63 0.0002

[Exiguobacteraceae] 1.84 6.20 3.37 0.0002

Caulobacteraceae 1.58 0.03 −55.16 0.0002

Rickettsiales 1.32 0.01 −92.45 0.0002

Sphingobacteriaceae 1.29 0.08 −17.20 0.0002

Enterobacteriaceae 1.14 3.59 3.13 0.0288

Aurantimonadaceae 1.01 0.01 −93.98 0.0002

Paenibacillaceae 0.99 1.51 1.52 0.1238

Rhizobiales;Other 0.62 0.04 −14.56 0.0002

Bacillaceae 0.61 3.08 5.01 0.0002

Cytophagaceae 0.60 0.01 −111.36 0.0002

b.) The most abundant members after a 24-hour mBPW enrichment

Peptostreptococcaceae 0.01 40.79 2957.09 0.0002

Planococcaceae 0.31 19.49 62.11 0.0002

Clostridiaceae 0.03 13.54 490.93 0.0002

[Exiguobacteraceae] 1.84 6.20 3.37 0.0002

Enterobacteriaceae 1.14 3.59 3.13 0.0288

Bacillaceae 0.61 3.08 5.01 0.0002

Comamonadaceae 5.03 2.43 −2.07 0.1982

Lachnospiraceae 0.00 1.82 527.18 0.0002

Paenibacillaceae 0.99 1.51 1.52 0.1238

Clostridiales;Other 0.00 1.50 ∞ 0.0002

Pseudomonadaceae 10.62 1.36 −7.79 0.0158

Oxalobacteraceae 38.63 0.96 −40.21 0.0002

Xanthomonadaceae 4.11 0.87 −4.72 0.0154

Aeromonadaceae 0.00 0.57 164.68 0.0002
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being more sensitive) and the exclusive detection of S.
enterica (Fig. 4a). Remarkably, the 0 % error rate 500 bp
fragments had the highest diagnostic sensitivity of
97.6 % exclusive hits to S. enterica (Fig. 4a). As expected
the overall non-exclusive hits did not correlate with 16S
fragment sizes or error rates since the non-exclusive
16S rRNA fragments match 16S rRNA fragments from
Salmonella as well as other Enterobacteriaceae (Fig. 4a).
As the 16S rRNA fragment sizes increased the false
negative rate (number of 16S rRNA fragments without
an S. enterica best hit) decrease and the lowest false
negative rate for all fragment sizes (100–500 bp) was in
the 0 % error rate groups, as expected (Fig. 4a). We also
observed much lower sensitivities for S. enterica using
the RDP and UCLUST taxonomic classifiers; simulated
500 bp reads with a 0 % error rate resulted in sensitiv-
ities of only 3.82 and 7.19 % respectively [16, 20].
To evaluate the specificity of our EnteroDB, we ran-

domly simulated reads from reference E. coli 16S se-
quences (100–500 bp) with error rates ranging from 0 to
1 %. As expected, the highest false positive rates were as-
sociated with the smallest E. coli fragments, with all false
positive rates remaining below 0.2 %, regardless of the
fragment size (Fig. 4b). Interestingly, the false positive
rate of the 500 bp fragments remained relatively con-
stant, averaging 0.12 %, regardless of error rate. Further
examination identified two E. coli 16S rRNA reference
sequences closely aligned with Salmonella sequences at
the 3′ end of the 16S rRNA gene (Fig. 4b).

Validation of the EnteroDB with raw Illumina MiSeq
reads of Salmonella 16S rRNA fragments from the
GenomeTrakr database resulted in diagnostic sensitiv-
ities ranging from 38 to 62 %, which increased as the
average read length of the Salmonella sequences in-
creased (Fig. 4c). Oddly, the false positive rates from
three of the 105 genomes tested were very high (24, 38,
and 29 %). Further examination of the available metadata
from GenomeTrakr revealed that two of the isolates
were S. enterica subspecies houtenae isolated from fro-
zen scad fish, one serovar 44:z4, z32:- from China, the
second serovar 43:z4,z23:- from Vietnam, and the
third un-typed S. enterica isolate originated from fro-
zen cooked snail meat (sea snails) also from Vietnam.
Adding the S. enterica subspecies houtenae genomes
to our EnteroDB will expand our diagnostic detection
to include these serovars, but as it stands our database
has a very high discriminatory power for the detection
of S. enterica subspecies enterica serovars.
Applying EnteroDB to our 16S rRNA T0 and T24

cilantro sample data resulted in only two of T24 samples
having exclusive hits to S. enterica, one culture negative
cilantro sample had a single read hit, likely a false posi-
tive. The second, a culture positive Salmonella cilantro
sample, had 25 hits. We believe the lack of 16S rRNA
Salmonella hits in the other culture positive cilantro
samples resulted from either the low sequencing depth
obtained with 454 pyrosequencing, a potential priming
bias associated with the 27F primer, because the primer

Fig. 3 a Alpha diversity measured using Shannon entropy and Faith’s whole-tree phylogenetic diversity. Both metrics indicate a significant increase in
the diversity of T0 sample communities relative to the T24 group (P < 0.002; Mann–Whitney test). b Principal coordinates analysis reveals a distinct
clustering of samples by T0/T24 status. (PCoA plots computed from unweighted UniFrac distances)
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does not perfectly match the S. enterica 16S rRNA gene,
or a combination of these factors.

Shotgun metagenomics of cilantro
To investigate the lack of positive hits to Salmonella in
our 16S rRNA gene libraries, we performed shotgun
metagenomic sequencing, on six culture-positive cilantro
samples, on the Illumina MiSeq (Table 2). The Salmonella
isolates cultured from these cilantro enrichments were

sequenced, as part of the FDA GenomeTrakr project
(http://www.ncbi.nlm.nih.gov/bioproject/186035), and
therefore, could be used in BLASTn analyses against the
shotgun metagenomes (Table 2). Since no quantitative
data were available to estimate Salmonella contamination
levels in the cilantro samples, three multiplexing strategies
were employed using the Illumina 500-cycle v2 chemistry,
to evaluate the effect of multiplexing on our ability to
detect Salmonella.
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represents the percentage of 16S fragments without a Salmonella best alignment (right axis). b Specificity testing of the Enterobacteriaceae
database. 16S rRNA fragments specific to E. coli were randomly fragmented to sizes ranging from 100 to 500 bp and random errors were introduced.
Fragments were searched against the Enterobacteriaceae database using BLASTn. c Validation of the Enterobacteriaceae database using BLASTn
analysis of raw Illumina MiSeq reads from 105 S. enterica 16S rRNA genes to the EnteroDB. The S. enterica non-exclusive plot (green) represents the
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Table 2 Percent hits for BLASTn and MetaPhlAn analysis of cilantro shotgun metagenomes to Salmonella

Cilantro sample FL8Ka MI2Ja NY7Ja MI6Fb,f NY3Fc OH6Fc,f

Time point T0d, T24e, T0 T24 T0 T24 S2_T24 S3_T24 T24 S1_T24 S2_T24 S3_T24

No. of samples in MiSeq run 1 1 6 6 6 6 2 2 1 6 6 6

Total reads 2,566,734 9,146,885 1,212,903 2,009,022 683,454 1,767,923 5,450,586 4,990,831 10,622,374 3,347,897 2,082,712 1,988,350

BLASTng

SalC 102 (Newport) (%) 2.383 16.135 0.008 1.042 0.029 0.145 3.959 1.377 0.227 0.128 0.084 0.183

SalC 13 (Newport) (%) 2.347 15.779 0.008 1.016 0.028 0.144 4.099 1.419 0.228 0.126 0.082 0.183

SalC 77 (Tennessee) (%) 1.785 11.994 0.008 0.788 0.024 0.139 3.061 1.077 0.215 0.110 0.074 0.214

SalC AVG (%) 2.172 14.636 0.008 0.949 0.027 0.143 3.706 1.291 0.223 0.121 0.080 0.193

MetaPhlAn

S. enterica (%) 4.870 13.658 0.000 0.000 0.000 0.000 4.282 1.790 0.000 0.000 0.000 0.000

Salmonella_unclassified (%) 14.626 34.269 0.000 7.770 0.000 0.000 15.717 6.490 0.000 0.000 0.000 0.448
aCilantro sample culture positive for SalC 102
bCilantro samples culture positive for SalC 13
cCilantro samples culture positive for SalC 77
dT0 = time zero
eT24 = 24-hour
fSubsets of a single cilantro samples are indicated by S1 S2 and S3
gBolded numbers indicate results with S. enterica isolate cultured from the cilantro
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MetaPhlAn analysis of cilantro microbiome content,
and BLASTn analysis using the S. enterica isolates cul-
tured from the cilantro, to estimate the relative abundance
of Salmonella, revealed variable levels of Salmonella con-
tamination in the cilantro metagenomes, even after the
24-hour nonselective mBPW pre-enrichment. For ex-
ample, two MiSeq runs included single samples, FL8K T0
and FL8K T24, and their metagenomes had the highest
relative abundances of S. enterica in all of the samples
tested, with 2 and 16 % BLASTn hits to the S. enterica
Newport isolate cultured from the cilantro, respectively
(Table 2). In contrast, the NY3F T24 pre-enrichment cil-
antro metagenome contained a much lower number of
hits to Salmonella, with only 0.215 % of the reads map-
ping to S. enterica Tennessee, despite being a single
sample run on the MiSeq. Additionally, the NY3F
T24 24-hour pre-enrichment metagenome contained a
higher number of sequence reads (10,622,374) than the
FL8K T24 24-hour pre-enrichment metagenome
(9,146,885) (Table 2). Finally, the BLASTn hits to S.
enterica Newport in the uncultured sample, FL8K T0,
with 2,566,734 reads, are 10 times higher than the
BLASTn hits in the 24-hour pre-enrichment cultured
sample, NY3F T24, with 10,622,374 reads, corroborat-
ing a difference in contamination levels (Table 2).
A third MiSeq run consisted of two T24 samples,

MI6F_S2 and MI6F_S3. The BLASTn hits to S. enterica
in MI6F_S2 and MI6F_S3 were higher than the BLASTn
hits in the single sample NY3F T24 run, even though
the run consisted of two samples. Additionally, MI6F_S2
and MI6F_S3 both had lower numbers of sequence reads
(5,450,586 and 4,990,831) than the single sample NY3F
T24 run (10,622,374) (Table 2).
The MI2J, NY7J, and OH6F cilantro samples were mul-

tiplexed at six samples per MiSeq run, and, except for
MI2J T24, which had 1 % hits to S. enterica, the BLASTn
percentage hits to S. enterica were negligible (Table 2).
The variability in Salmonella contamination levels,

even after a 24-hour nonselective pre-enrichment, pre-
sents a challenge for detecting Salmonella amidst the
complex background microflora present in cilantro,
even in individually sequenced metagenomes. Addition-
ally, multiplexing six samples together appears to have
had a negative impact on our ability to detect Salmonella,
although in one metagenome, MI2J T24, we did identify
1 % of the sequence reads as S. enterica Newport (Table 2).
It is notable that the MI2J T24 metagenome (2,009,022
reads), had less than half as many reads as MI6F S3_T24
(4,990,831 reads), and yet both metagenomes had ~1 %
hits to S. enterica supporting our conclusion that sequencing
depth and levels of contamination contribute to our ability
to detect Salmonella in cilantro metagenomes (Table 2).
Analysis of the cilantro shotgun metagenomes using

MetaPhlAn, with clade specific marker genes to classify

genomic reads, resulted in a similar outcome to the
BLASTn analysis, with respect to levels of S. enterica
(Table 2). The FL8K, MI2J, and MI6F samples returned
the highest percentage of hits to S. enterica (Table 2).
MetaPhlAn also identified unclassified hits to Salmonella,
representing microbial reads belonging to clades with no
sequenced genomes with Salmonella as their closest an-
cestor, at higher percentages than either BLASTn or
MetaPhlAn at the species level; a surprising result con-
sidering that we used genomes of the isolates cultured
directly from the cilantro for the BLASTn analysis
(Table 2) [21].

Discussion
Culture-independent methods have shown the microbial
diversity of many plants to be far greater than previously
estimated by culture-based methods. 16S rRNA sequen-
cing in particular has revealed Proteobacteria (specific-
ally α- and γ−) as the dominant phyllosphere inhabitants
followed by β-Proteobacteria and Firmicutes depending
on the type of plant [22–25]. Our results, similar to
other 16S rRNA sequencing studies of fresh produce,
revealed a potential core phyllosphere for cilantro con-
sisting mainly of Proteobacteria, Bacteroidetes, Actino-
bacteria, and Firmicutes [26, 27].
Finding that a 24-hour nonselective pre-enrichment of

cilantro in mBPW shifts the microbial community to a
predominance of Bacillales and Clostridiales, was sur-
prising since our goal is to enrich for Enterobacteriales,
specifically Salmonella. On average, Bacillales and Clos-
tridiales were 5-fold and 753-fold more abundant in the
T24 16S rRNA cilantro samples than in the T0 samples
(Table 1). Despite very low frequencies in the initial
state, the Bacillales and Clostridiales orders proliferate
significantly to represent over 85 % of the T24 16S rRNA
reads suggesting that our pre-enrichment process results
in a low oxygen environment favoring the resuscitation
of Gram-positive bacteria (Table 1).
Since our enrichment protocol is designed to recover

members of the Enterobacteriales, and the Clostridiales
showed a relatively high abundance in 24-hour samples,
we examined the data at the genus level to determine
the predominant members. QIIME identified the ma-
jority of Clostridium as Peptostreptococcaceae followed
by the Clostridiaceae and Lachnospiraceae (Fig. 5). The
classification of Clostridium has been hampered because
historical methods relied on phenotypic characteristics
such as Gram-positive staining, anaerobic respiration, and
sporulation, to the extent that 16S rRNA taxonomy has
exposed the misclassification of 52 % of the species
[28–30]. The Clostridium species within the Clostridia-
ceae family represent the genus Clostridium sensu
stricto, and Clostridium species within the Lachnospira-
ceae and Peptostreptococcaceae have been proposed to
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fall outside of the Clostridium genus [30]. The taxo-
nomic uncertainty in the Clostridium species has re-
sulted in the use of brackets to distinguish questionable
assignments in the NCBI and SILVA taxonomy data-
bases i.e. [Clostridium] [28].
In the 24-hour16S rRNA cilantro samples, the major-

ity of the Clostridium OTUs were classified as Peptos-
treptococcaceae (327) representing 33 % of the total
hits to [Clostridium] and 3 % (33) to Clostridium sug-
gesting a misidentification of taxa within this group
(Fig. 5). The remaining Clostridium OTUs were distrib-
uted between the Clostridiaceae present at (71) 7 % and
the Lachnospiraceae present at less than 1 %. The
higher proportional abundances of facultative anaerobic
Peptostreptococcaceae family members, and lower pro-
portional abundances of Clostridiaceae (mostly obligate
anaerobes), matches our expectation of higher abun-
dances of aerobic microorganisms [31]. However, it is
noteworthy that 7 % of the taxa represent potentially
obligate anaerobes (Fig. 5). A tomato phyllosphere study,
using a universal pre-enrichment broth recommended in
the BAM method for detection of Salmonella in tomato,
showed a similar enrichment bias [10]. Overall, this
finding suggests that increasing the levels of oxygen in
our 24-hour nonselective cilantro pre-enrichments will
reduce the Firmicutes taxa and improve the recovery of
Proteobacteria.
In this study, we focused first on determining the

microbiome of cilantro and then looked at the changes
induced by culturing, concentrating on the first step of

the FDA BAM method for the detection of Salmonella
in leafy greens. Soil microorganisms most likely contrib-
ute to the diversity observed in the cilantro microbiome
since we commonly observed soil contamination in the
cilantro samples received. Cilantro is either hand har-
vested and sold in bundles at retail outlets, or mechan-
ically harvested for distribution in bulk to food service
and processing facilities (http://anrcatalog.ucdavis.edu/
Details.aspx?itemNo=7236). Hand harvested products
are cut just below the soil, or 1.5–2 in. above the
crown, secured in bunches by rubber bands or twist
ties, packaged in 10 lb boxes, and cooled (0.6–1.7C) at
storage facilities, until it is shipped to distribution cen-
ters. Mechanically harvested cilantro is conveyed in
shallow bins or totes, and is packed in plastic bags of
various sizes for use in food service. The point within
the distribution process for the cilantro samples used in
this study was not available to us. However, the way
that they were packaged indicated that, of the 365 sam-
ples received, 89 % (326) were packaged with twist ties
(14 from Mexico) indicating that they were hand har-
vested, and 6 % (21) were in restaurant ready plastic
bags likely prepared for food service industry. In
addition, 2 % (8) of the cilantro samples had organic
labels, and 3 % (10) were harvested with roots still at-
tached. We did not rinse or remove soil contamination
from the cilantro samples, since they represent the
cilantro sold at grocery store, and therefore, can sur-
mise that soil microflora contributed to the higher than
expected proportional abundances of Firmicutes in our
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Fig. 5 The percentage of hits to members of the Clostridiales and Bacillales orders in cilantro samples enriched for 24-hours in mBPW
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cilantro data. Studies on the tomato phyllosphere dem-
onstrated a gradient of microbial diversity from the bot-
tom to the top of the plant, with the parts closest to
soil having the highest diversity, and Firmicutes signifi-
cantly co-enriched during an overnight incubation in
broth culture [10, 27].
The low abundance of Salmonella detection in the

cilantro 24-hour pre-enrichments, indicative of very
low contamination levels, were unexpected, especially
in the culture positive samples, prompting us to create
a 16S rRNA database specific to Enterobacteriaceae.
The result of only two of the 16S rRNA samples testing
positive for Salmonella with the EnteroDB was even
more unexpected, and likely due to sequence depth
limitations inherent to multiplexing 20–22 samples in
the 16S rRNA sequencing runs using 454 pyrosequenc-
ing. Our laboratory did not have an Illumina MiSeq
during the 16S rRNA portion of our cilantro study.
However, when the technology became available, we ex-
amined a set of cilantro samples using a shotgun meta-
genomic approach to determine if Salmonella detection
was possible. The culture based portion of this study,
revealing contamination of cilantro with Salmonella,
was not quantitative, and, therefore, gave us no indica-
tion of the concentration of Salmonella in the cilantro
samples [12]. Overall, our 16S rRNA and shotgun
metagenomic findings show the high sensitivity of the
FDA BAM culture method for the detection of Salmon-
ella, amidst a complex background microflora, and yet
in some of the Salmonella culture positive metagen-
omes we were unable to detect Salmonella sequences
using BLASTn and MetaPhlAn. Additionally, our re-
sults indicate that pathogen-spiking studies will add
precision to our detection capabilities when comparing
16S rRNA and shotgun metagenomic data for enrich-
ment efficiencies and biases.
Database limitations indicated by the relatively low

levels of Salmonella detection when implementing the
EnteroDB against the RDP or UCLUST taxonomy classi-
fiers, only 3.82 and 7.19 % positive hits respectively, also
contribute to false negative results. Therefore, pathogen
specific databases will improve taxonomic classification
of organisms in complex matrices. The lack of Salmon-
ella detection is also due to low primer specificity. The
primers used in for 16S rRNA amplification successfully
established baseline microbial characterizations in to-
mato and cheese 16S rRNA surveys, even though the
27F forward primer is missing nucleotide degeneracies
commonly used to increase the diversity in the detection
capability of PCR [8, 27, 32]. Perhaps incorporating nu-
cleotide degeneracies into our 27F primer would have
reduced potential amplification bias in our PCR resulting
in higher abundances of Enterobacteriaceae such as
Salmonella [32].

The factors influencing the survival of animal patho-
gens such as S. enterica in plant and agricultural produc-
tion environments remain unclear. A number of studies
have demonstrated an enhanced fitness of Salmonella
on cilantro, tomato, and other fruits and vegetables, in
the presence of the soft rot producing pathogens such as
Dickeya dadantii, and Xanthomonas perforans [33–35].
Growth rates of S. enterica were higher upon co-infection
of plant tissues with soft rot producing plant pathogens
due to the release of beneficial nutrients [33]. Another
study found increased S. enterica fitness on cilantro and
lettuce leaves when the leaves were pre-colonized with
Pseudomonas syringae or Erwinia herbicola, but not
when S. enterica alone colonized the leaves, suggesting
a mutualistic cohabitation with natural plant epiphytes
may be required for long term survival [36]. Consider-
ing these findings, we analyzed our T0 16S rRNA data
using MetaStats and found evidence of a significant
depletion of Gammaproteobacteria in T0 S. enterica
culture positive samples relative to T0 culture negative
samples (P = 0. 015) (see Additional file 5). However,
since six of the seven T0 Salmonella culture positive
16S rRNA libraries contained less than 1000 16S
rRNA reads, it is difficult to draw a sound conclusion.
Additionally, other taxonomic members of the cilantro
phyllosphere and environmental factors may contrib-
ute to the fitness and persistence Salmonella.

Conclusion
In conclusion, we have characterized the microbiome of
cilantro using 454 pyrosequencing of 16S rRNA genes
and described the transition of the microbial community
after a 24-hour nonselective pre-enrichment step. Our
approach has revealed a substantial shift in microbial
community structure during a 24-hour nonselective
pre-enrichment step that seems to favor members of the
Firmicutes. Whole genome shotgun metagenomic ana-
lysis of Salmonella culture positive cilantro samples
revealed variable levels of Salmonella contamination em-
phasizing the need for controlled spike studies in order to
predict the shifts in abundances of Salmonella during the
nonselective and selective enrichment steps used in the
FDA BAM. Future work to improve the utility of 16S rRNA
and shotgun metagenomic sequencing, and analysis, for the
detection of Salmonella are underway. Considering the
importance of identifying foodborne pathogens during out-
breaks, this study demonstrates the use of high-throughput
sequencing to understand the enrichment and identifica-
tion pathogens in a leafy green commodity.

Methods
Cilantro sample collection
Cilantro samples were processed using a modified FDA
BAM method. Briefly 100 g samples of cilantro were
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aseptically combined with 500 ml of mBPW in sterile
whirlpak bags (Nasco, Fort Atkinson, WI), gently mas-
saged for 2 min and a 1 ml aliquot was removed prior
to and after a 24-hour static incubation at 37 °C. Nine
cilantro samples were culture positive for Salmonella.
Genomic DNA was prepared using the Nuclisens® easy-
MAG® with the following conditions: 1.0 ml aliquots
were processed using Protocol B, D 2.0.0, with an
elution volume of 70 μl (Biomerieux, Durham, NC).

16S rRNA sequencing
16S rRNA amplicon sequencing on the Roche GS FLX
Titanium 454 pyrosequencing platform (454 Life
Sciences, a Roche company, Branford, CT 06405) was
performed on 91 samples. Amplicons spanning the
V1-V3 regions of the 16S rRNA gene, were generated
with Roche Fusion Primer A 27F (5′ CGT ATC GCC
TCC CTC GCG CCA TCAG ACG AGT GCG T AGA
GTT TGA TCC TGG CTC AG 3′), with MIDs (multi-
plex identifiers) 1 – 22, and Roche Fusion Primer B,
533R (5′ CTA TGC GCC TTG CCA GCC CGC
TCAG TTA CCG CGG CTG CTG GCA C 3′), with
no MIDS. Emulsion PCR of amplicon libraries was
carried out using the Lib-A MV kit (Roche) and sam-
ples were multiplexed (20–22 samples) in five medium
regions of a PicoTiterPlate.

Whole genome shotgun sequencing
Shotgun metagenomes of cilantro were prepared using
the Illumina Nextera sample processing kit and se-
quenced on a MiSeq (Illumina Inc., San Diego, CA).
Briefly, 50 ng of genomic DNA were fragmented and
tagmented and unique indexes were added using
reduced-cycle PCR amplification. Amplicon libraries
were size selected using Agencourt AMPure XP beads
(Beckman Coulter, Brea, CA) to an average library size of
500 bp, and quantified using the Qubit 3.0 Fluorometer
(Life Technologies, Carlsbad, CA). Library quality was
verified on the Agilent Technologies 2100 Bioanalyzer
(Agilent Technologies, Inc., Santa Clara, CA) using the
High Sensitivity DNA chip kit. Size selected libraries were
normalized to 2nM, pooled in equal volumes and run on
a 500-cycle MiSeq Reagent Kit v2 (Illumina Inc., San
Diego, CA). Seven of the metagenomes (MI2J T0, MI2J
T24, NY7J T0, NY7J T24, OH6F S1_T24, OH6F S2_T24,
and OH6F S3_T24) along with five samples that were not
part of this study, were multiplexed into two MiSeq
runs, consisting of six samples each (Table 2). Two
metagenomes (MI6F S2_T24 and MI6F S3_T24) were
sequenced together in a single MiSeq run, and the
remaining three metagenomes (FL8K T0, FL8K T24,
and NY3F T24) were sequenced individually (Table 2).

16S sequence analysis
Raw reads generated by the Roche/454 platform were
initially filtered for length (≥150 bp) and quality using
the QIIME platform, requiring a maximum homopoly-
mer run of 8 nucleotides and an average Phred quality
score of 25 [13]. The resulting high-quality sequence set
was also trimmed of forward and reverse primer se-
quences and split by sample membership according to
5′ multiplex identifiers (MIDs). Sequences were then
screened for chimeras using USEARCH (de novo
mode) [20, 37], and subsequently assessed for contam-
inant chloroplast sequences with the RDP classifier
[16–18, 20, 37].
Passing sequences were clustered into Operational

Taxonomic Units (OTUs) (de novo) by UCLUST using a
97 % similarity threshold [20]. Representative sequences
(defined as the most abundant sequence) from each
OTU were assigned a taxonomic lineage using the RDP
classifier [16] trained on the GreenGenes 16S rRNA
database (v13_8) with a minimum threshold of 0.50
[17, 18]. Representatives were further aligned to a tem-
plate multiple sequence alignment using PYNAST [38],
which was then filtered for columns with excessive gap
content and used to construct a phylogenetic tree with
FastTree2 [38, 39].
The resulting OTUs were then evaluated for alpha and

beta-diversity in QIIME. Alpha diversity measures in-
cluded Shannon entropy and Faith’s whole-tree diversity.
OTU counts were rarefied to 1000 sequences per sample
prior to downstream statistical analysis. MetaStats (set
to 5000 permutations for the nonparametric t-test) was
employed for differential abundance analysis, and p-
values were adjusted using the false discovery rate
(FDR) [15].

MiSeq shotgun sequence analysis
Raw whole genome shotgun paired reads were quality
filtered and trimmed using CLC bio Workbench v6.0.4
(CLC Bio, QIAGEN, Germantown, MD) with an average
Phred score of 25, allowing two ambiguities per read
and removing any read less than 75 bp. Trimmed reads
were merged with a mismatch cost of 2, a gap cost of 3,
and a minimum score of 8. The merged (read 1/read 2)
Illumina dataset was then combined with the read 1 se-
quences that passed the quality filtering, but did not
merge with their read 2 paired sequence. High-quality
sequences were analyzed for clade specific marker genes
using Metaphlan [21] with Bowtie2 for alignments
(‘very-sensitive’ mode) [21, 40]. For improved sensitivity,
the nucleotide sequences were also searched using the
(BLASTn) for high-identity alignments to a custom
database of S. enterica strains isolated from cilantro
samples. Alignments to S. enterica with at least 98 %
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identity and at least 95 % coverage of the query se-
quence were aggregated per sample.

Salmonella detection pipeline
To perform species-level assignments of 16S rRNA se-
quences to S. enterica, we first developed a comprehen-
sive database of all Enterobacteriaceae species available
in the Silva database (v111) [41]. Multiple rounds of
clustering and refinement were performed to identify
poor quality sequences and mis-annotated species. The
database was augmented with 25 additional S. enterica
reference 16S rRNA sequences from cultured isolates
associated with cilantro. A final round of refinement was
performed through phylogenetic analysis of all sequences
(MUSCLE for multiple alignments, FastTree2 for tree
construction) [39, 42].
The final database contains 2804 sequences from 189

unique species within Enterobacteriaceae, including 144
from S. enterica reflecting 28 unique serovars. Using this
database, we designed an efficient Salmonella detection
pipeline based on the parallel_blast.py tool implemented
in QIIME [13]. The pipeline performs local heuristic
alignment of 16S rRNA amplicon sequences to the data-
base and collates all alignments with the highest overall
bit score. Sequences exclusively matching S. enterica
with at least 98.5 % identity along at least 97 % of their
length are classified as S. enterica.
We evaluated our sensitivity and specificity by simu-

lating noisy reads from S. enterica and E. coli 16S rRNA
genes with variable lengths (100–500 bp) and error
rates up to 1 %. All typed reference sequences available
in the RDP 16S rRNA database (n = 9244) were also ex-
tracted to test for sensitivity/specificity [43]. We further
validated our approach using raw Illumina MiSeq 16S
rRNA sequence data from 105 S. enterica isolates de-
posited by the FDA GenomeTrakr project. Validation of
the sensitivity and specificity of the Enterobacteriaceae
Database (EnteroDB) was implemented by BLASTn
comparison against a set of raw 16S rRNA sequence
reads extracted from the FDA GenomeTrakr database
(http://www.ncbi.nlm.nih.gov/bioproject/183844) specific
to Salmonella. Bowtie2 was employed to extract 16S
rRNA fragments from each sample as a positive control
dataset [40]. For comparison of assignment performance,
the RDP classifier and UCLUST_ref were run using de-
fault settings in QIIME [13, 16].

Sequencing data
The raw 454 and shotgun metagenomic data are
uploaded to NCBI SRA. The Bioproject accession
number is PRJNA260637. The EnteroDB is available
upon request.
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