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Abstract

Background: Despite being important thermal dimorphic fungi causing Paracoccidioidomycosis, the pathogenic
mechanisms that underlie the genus Paracoccidioides remain largely unknown. Microbial pathogens express
molecules that can interact with human plasminogen, a protein from blood plasma, which presents fibrinolytic
activity when activated into plasmin. Additionally, plasmin exhibits the ability of degrading extracellular matrix
components, favoring the pathogen spread to deeper tissues. Previous work from our group demonstrated that
Paracoccidioides presents enolase, as a protein able to bind and activate plasminogen, increasing the fibrinolytic
activity of the pathogen, and the potential for adhesion and invasion of the fungus to host cells. By using
proteomic analysis, we aimed to identify other proteins of Paracoccidioides with the ability of binding to
plasminogen.

Results: In the present study, we employed proteomic analysis of the secretome, in order to identify
plasminogen-binding proteins of Paracoccidioides, PbO1. Fifteen proteins were present in the fungal secretome,
presenting the ability to bind to plasminogen. Those proteins are probable targets of the fungus interaction with
the host; thus, they could contribute to the invasiveness of the fungus. For validation tests, we selected the
protein fructose 1,6-bisphosphate aldolase (FBA), described in other pathogens as a plasminogen-binding
protein. The protein FBA at the fungus surface and the recombinant FBA (rFBA) bound human plasminogen

and promoted its conversion to plasmin, potentially increasing the fibrinolytic capacity of the fungus, as
demonstrated in fibrin degradation assays. The addition of rFBA or anti-rFBA antibodies was capable of reducing
the interaction between macrophages and Paracoccidioides, possibly by blocking the binding sites for FBA.
These data reveal the possible participation of the FBA in the processes of cell adhesion and tissue invasion/
dissemination of Paracoccidioides.

Conclusions: These data indicate that Paracoccidioides is a pathogen that has several plasminogen-binding
proteins that likely play important roles in pathogen-host interaction. In this context, FBA is a protein that might
be involved somehow in the processes of invasion and spread of the fungus during infection.
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Background

The Paracoccidioides genus comprises a complex of
pathogenic fungi, classified in at least four distinct
phylogenetic lineages: S1, PS2, PS3 and Pb01-like [1-3].
These fungi are thermally dimorphic, growing at room
temperatures as mycelium, which produces infectious
conidia. The inhalation of conidia or mycelia propagules
by the human host and their differentiation to yeast cells
initiates paracoccidioidomycosis (PCM), a major health
problem in South America. This human systemic myco-
sis is considered the tenth leading cause of chronic dis-
ease mortality among infectious and parasitic diseases,
and the first among the systemic mycoses in Brazil
(51.2% of cases of deaths) [4-6].

Pathogenic microorganisms are able to penetrate and
colonize host tissues by establishing complex interac-
tions with the host molecules. Some microorganisms de-
grade extracellular matrix components (ECM) by using
proteins that subvert proteases of the host itself [7-9].
Reports have shown that pathogens can capture plas-
minogen (Plg) and its activation could substantially
augment the organism’s potential to tissue invasion and
necrosis [10-20]. In eukaryotes, Plg is converted to its
proteolytic form, plasmin, by physiological activators
such as tissue type plasminogen activator (tPA) and uro-
kinase type (uPA) [16]. Plasmin dissociates blood clots
due to its role in the degradation of fibrin polymers and
promotes the dissociation of the ECM components, which
is relevant for dissemination of pathogens [17-22].

There is a variety of Plg-binding proteins and activation
mechanisms used by pathogens. Besides the physiological
activators, molecules produced by microorganisms, can
also activate plasminogen. Studies describe various Plg-
binding and activating proteins involved in the degrad-
ation of host tissues, components of ECM, which favors
the spread and dissemination of different pathogens
[14,23-25]. In bacteria, Plg-binding and activating proteins
have been characterized [12-14,24,26-37]. Those proteins
can increase the bacteria fibrinolytic activity, which favors
tissue degradation and rapid progression of infection
[35,38,39]. The importance of Plg in fungi is indicated by
the Plg-binding properties of human pathogens, including
Candida albicans [40,41], Cryptococcus neoformans [15],
Pneumocystis carinii and Aspergillus fumigatus [42,43]
that depict proteins at surface, which make them able to
bind Plg, and improve ther infectiveness.

The high dissemination of Paracoccidioides spp. from
the site of infection to different tissues, underscores the
importance of understanding the fungi virulence factors
and their effects in human host. In a previous study de-
veloped by our group, we reported the recruitment of
Plg and its activation into plasmin, by Paracoccidioides,
Pb01, through tPA, in a process mediated by the protein
enolase [10]. The enolase of Paracoccidioides is a surface
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associated protein that promotes an increase in the
adhesion and invasion of the fungus to host cells in
in vitro models of infection [10,44,45]. The recombinant
Paracoccidioides enolase is able to adhere to some ECM
components and to the surface of macrophages, reinfor-
cing the role of this molecule in the host-pathogen inter-
action [46]. These data highlight that Plg-binding proteins
increase the potential for invasion and pathogenicity of
Paracoccidioides through the fibrinolytic activity of plas-
min. Proteins with this ability may be transported to the
surface of the fungus and secreted into the external
medium and promote plasmin formation, which also con-
tributes to the pathogen dissemination [47]. In this sense,
the enolase of Paracoccidioides is constitutively secreted
by the yeast and mycelia phases [48], and is detected in
the fungal cell wall [10].

In the present study, we employed proteomic analysis
of the secretome, in order to identify Plg-binding pro-
teins of Paracoccidioides, Pb0O1. Fifteen Plg-binding pro-
teins were present in the fungal secretome. Proteins of
the glycolytic pathway, such as phosphoglycerate kinase,
glyceraldehyde-3-phosphate dehydrogenase and fructose
1,6-bisphosphate aldolase (FBA) were identified; the last
was selected for further characterization. FBA has been
described in various microorganisms as a Plg-binding
protein, but its role has not been described in thermally
dimorphic fungi. Here we show that Paracoccidioides
binds Plg via FBA, that is found at the surface and
secreted by the fungus. The protein binds human plas-
minogen (hPlg) and converts it into plasmin, in the pres-
ence of tPA. The interaction of the protein with hPlg,
promoted increased fibrinolytic capacity of the fungus,
as tested in fibrin degradation assays. The addition of re-
combinant FBA (rFBA) or anti-rFBA antibodies was cap-
able of reducing the interaction between macrophages
and Paracoccidioides, possibly by blocking the binding
sites for FBA. These data reveal the possible participation
of the FBA in the Paracoccidioides adhesion and invasion
processes. The identification of novel surface/secreted
proteins that can be involved in host-pathogen interaction
is central to understand Paracoccidioides pathogenesis.

Results and discussion

Identification of plasminogen-binding proteins of Para-
coccidioides, Pb01 yeast cells

In order to identify Plg-binding proteins in the secre-
tome of Paracoccidioides, Pb01, we obtained 2-DE gels.
The gels ran in parallel, were (i) stained with Coomassie
brilliant blue or (ii) transferred to nitrocellulose mem-
brane and reacted with Plg, in a Far-western blotting
assay, as demonstrated in Figure 1, panel B. Image ana-
lysis were produced allowing the pairing of the proteins
spots between the 2-DE gel and the membrane obtained
by Far-western blotting.
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Figure 1 Detection of plasminogen-binding proteins of Paracoccidioides, Pb01. Secreted proteins (500 ug) of Paracoccidioides, Pb01, were
subjected to 2-DE [first dimension: IEF pH range 3-11 non-linear, second dimension: 12% (w/v) SDS-PAGE)]. 2-DE gels were stained using
Coomassie brilliant blue (Panel A) or transferred to nitrocellulose membranes that were processed for Far-western blotting (Panel B). Negative
controls include a membrane not incubated with Plg (Panel C). Membrane in panel B was incubated with 35 ug/ml of hPlg, followed by the
incubation with the anti-hPlg antibody (1 pg/mL) and the reaction was developed with BCIP/NBT. To identify in the 2-DE gel, the proteins spots
that were visualized in the membrane, a pairing of proteins spots was performed, using Image master 2D Platinum software (GE Healthcare). The

pH gradient is shown above the gel, and the molecular mass protein standards (kDa) are indicated to the left of the gels.

The detected spots in the membrane (Figure 1B) were
compared to the Coomassie blue partners in order to
find their corresponding proteins spots in the 2-DE gel
(Figure 1A). Subsequently, protein spots were manually
excised of the gel, and identified by mass spectrometry.
It was possible to identify in the secretome of yeast cells,
22 protein spots, which bound Plg, as depicted in
Figure 1B. Figure 1, panel C, depicts the images of the
negative control assay, in which the membrane was not
previously incubated with Plg, indicating no cross-
reactivity of the proteins with the antibody to Plg.

Spots identified as Plg-binding proteins were cut from
the gel and subjected to tryptic digestion and mass spec-
trometry analysis. The data were used to search the
Mascot, and provided the identification of 15 proteins/
isoforms. Table 1 describes the secreted proteins of
Paracoccidioides, identified as Plg-binding molecules.
Several enzymes were detected in this category, some of
them presenting several isoforms, such as homogentisate
1,2-dioxygenase (spots 4,5), NADP-specific glutamate
dehydrogenase (spots 6,7), phosphoglycerate kinase (spots
8,16) 2-methylcitrate synthase (spots 9,10,11), FBA (spots
13,14,15) and malate dehydrogenase (spots 20,21). Thus,
the 22 protein spots identified are summed up in 15 differ-
ent proteins.

While much of the proteins described in this work are not
annotated in the database Psort (http://www.genscript.com/
psort/wolf_psorthtml) as extracellular proteins, we found
compatible data in other studies. The proteins: 2-methylcitrate
synthase, FBA, glyceraldehyde 3-phosphate dehydrogenase,
formamidase, acetyl-CoA acetyltransferase and phosphoglycer-
ate kinase were detected in the secretome of Paracoccidioides,
Pb01 yeast and mycelia [48]. Other proteins were identified in

the secretome of Paracoccidioides, Pb18: FBA, glyceraldehyde
3-phosphate dehydrogenase and phosphoglycerate kinase [49].
These data corroborate the in silico analysis performed in the
software Signal P and Secretome P, where we can observe that
most of the proteins described here are secreted by nonclassi-
cal pathways (Table 1).

Some of the proteins identified in this study have also
been described in other systems as Plg-binding proteins.
In this way, acetyl-CoA acetyltransferase was identified
in the bacteria Leptospira interrogans [50]; phosphoglycer-
ate kinase was described in C. albicans [40], Streptococcus
pneumoniae [51], as well as in C. neoformans [15]. In
addition, FBA and glyceraldehyde 3-phosphate dehydro-
genase were also described as Plg-binding proteins in C.
albicans [40].

Formamidase is a highly abundant protein in Paracoc-
cidioides, as previously described by our group [52,53].
The protein gp43 also detected in our binding assays,
binds to laminin, putatively contributing to the fungus
virulence and facilitating the process of infection [54,55].

The proteomic binding assays, also allowed the identi-
fication of enolase as a Plg-binding protein. The pres-
ence of glycolytic enzymes as Plg-binding proteins is
reported in several pathogens, including bacteria and
fungi. In Paracoccidioides, enolase is present at the yeast
cells surface, where it binds and activates hPlg, presum-
ably contributing to the fungus pathogenesis [10]. Other
glycolytic enzymes, such as glyceraldehyde 3-phosphate
dehydrogenase, phosphoglycerate kinase and FBA, were
found here as Plg-binding proteins (Figure 1B, Table 1).
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH),
is a molecule that binds Plg and is present on the surface
and secretome of bacteria [56-58] and fungi [40]. In C.
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Table 1 Secreted proteins of Paracoccidioides that bind plasminogen

Spot number'  General information  Protein description pltheor/exp® MM (kDa) PMF Coverage MS/MS Matched  Psort SignalP SecretomeP  big-PI'
number (NCBI) theor/exp®  score® sequence (%)° lons score’ peptides® prediction’ Value>05" Value > 05"
1 gi|226285916 aminomethy! transferase 9.67/442 5335/4556 121 37 84 4 mito: 23.0 NO 0516 NO
2 gi|226278634 aldehyde dehydrogenase 5.92/6.94 54.69/4597 94 59 114 6 cyto: 21.5 NO 0.562 NO
3 gi|295668479 formamidase 6.10/7.13 46.14/45.71 144 44 109 5 cyto: 12.0 NO 0.565 NO
4 gi|295658700 homogentisate 1,2-dioxygenase 6.25/7.62 50.85/4551 78 35 - - cyto: 13.0 NO 0.601 NO
5 gi|295658700 homogentisate 1,2-dioxygenase 6.16/7.76 50.86/4535 76 26 89 4 cyto: 13.0 NO 0.621 NO
6 gi|295659664 NADP-specific glutamate 7.66/8.48 50.38/4535 102 53 72 4 cyto: 11.0 NO NO NO
dehydrogenase
7 gi|295659664 NADP-specific glutamate 7.17/875 5046/4545 101 56 17 2 cyto: 11.0 NO NO NO
dehydrogenase
8 gi|295669690 phosphoglycerate kinase 6.48/9.49 4531/ 4454 83 61 151 5 cyto: 25.0 NO NO NO
9 gi|295666179 2-methylcitrate synthase 9.02/9.73 5151/4500 - - 226 6 mito: 27.0 NO NO NO
10 gi|295666179 2-methylcitrate synthase 9.02/9.96 5151/ 4492 95 62 95 4 mito: 27.0 NO NO NO
1 gi|295666179 2-methylcitrate synthase 9.02/10.66 5158/4776 78 57 88 4 mito: 27.0 NO NO NO
12 gi|295658119 glyceraldehyde-3-phosphate 10.18/10.67 3392/4365 - - 93 2 cyto: 27.0 NO 0532 NO
dehydrogenase
13 gi|295671120 fructose 1,6-bisphosphate aldolase 6.09/6.41 39.72/4129 - - 154 5 cyto: 21.0 NO 0.505 NO
14 gi|295671120 fructose 1,6-bisphosphate 6.09/6.60 39.72/4129 - - 670 5 cyto: 21.0 NO 0.505 NO
aldolase
15 gi|295671120 fructose 1,6-bisphosphate aldolase 6.09/6.88 39.72/4094 - - 555 9 cyto: 21.0 NO 0.505 NO
16 gi|295669690 phosphoglycerate kinase 6.48/7.75 4531/4267 86 59 56 3 cyto: 25.0 NO NO NO
17 gi|295668707 acetyl-CoA acetyltransferase 8.98/7.88 46.65/4267 - - 102 3 mito: 24.5 NO 0.692 NO
18 gi|11496183 immunodominant antigen Gp43 7.17/8.15 4577/4242 97 43 102 4 extr: 24.0 NO 0.746 NO
19 0i[226285552 ketol-acid reductoisomerase 9.12/846 44.86/42.17 172 62 134 7 mito: 27.0 NO 0.683 NO
20 gi|295658218 malate dehydrogenase 6.36/7.18 3467/3398 73 47 69 5 cyto: 17.0 NO 0.674 NO
21 gi|295658218 malate dehydrogenase 6.36/7.85 3467/3375 129 41 344 9 cyto: 17.0 NO 0.674 NO
22 gi|226279168 2,5-diketo-D-gluconic acid reductase A 7.71/8.40 3478/3336 81 48 50 3 cyto: 20.5 0.5 NO NO

'Spots numbers indicated in Figure 1A.

2NCBI database general information number (http://www.ncbi.nlm.nih.gov/).
3lsoelectric point (theoretical/experimental).

“Molecular Mass in kDa (theoretical/experimental);

>Mascot PMF score for fragmentation data (http://www.matrixscience.com).
SSequence coverage percentage.

’Mascot MS/MS score for fragmentation data (http://www.matrixscience.com).
8Number of identified peptides (MS/MS).

Subcellular localization prediction of proteins according Psort (http://www.genscript.com/psort/wolf_psort.html).

'9Secretion prediction according to Signal P 3.0 server. The number corresponds to signal peptide probability (Score® 0.5) (http://www.cbs.dtu.dk/services/SignalP/).

"Secretion prediction according to Secretome P 1.0 server; the number corresponds to neural network that exceeded a value of 0.5 (NN-score * 0.50) (http://www.cbs.dtu.dk/services/SecretomeP/).
2GPI Modification Site Prediction of proteins according big-PI (http://mendel.imp.ac.at/gpi/gpi_server.html).

cyto: cytoplasm.
extr: extracellular.
mito: mitochondria.
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albicans, this molecule is an adhesin that participates in
the process of adherence to human cells, and binds to
ECM components [40,59-61]. In studies conducted by
our group, GAPDH is located at the surface of Paracoc-
cidioides, where could mediate the adhesion and intern-
alization of the fungus to host cells, binding to ECM
components [62].

Phosphoglycerate kinase is an adhesin in both, bacteria
[63] and fungi [15,40]. On the surface of group B
streptococcus, phosphoglycerate kinase binds the host
actin and Plg. Binding of ECM components to bacterial
proteins, including phosphoglycerate kinase, promotes
the activation of specific proteins on its surface, which
induces bacterial adhesion [63,64]. Also, proteolytic deg-
radation of ECM by phosphoglycerate kinase - recruited
plasmin activity, promotes adherence to endothelial cells
and bacterial dissemination in the host tissues [36]. In C.
neoformans, phosphoglycerate kinase localizes to the
fungal cell wall, where exhibits accessible carboxyl-
terminal lysine residues for Plg-binding [65].

FBA is cytoplasmic and also localized at the surface of
several bacteria [66,67], as well as in pathogenic fungi
[15,40] where it binds host molecules and depicts adhe-
sin function, beyond its glycolytic activity. In this work,
three isoforms of FBA were detected (Table 1, spots 13,
14 e 15). The FBA of Paracoccidioides, Pb01 was previ-
ously characterized in our laboratory [68,69]. The pro-
tein is as an antigenic molecule, reactive with sera of
PCM patients, as demonstrated [68]. Studies revealed
the role of FBA in cell adhesion and invasion [67]. The
FBA-deficient mutant of Neisseria meningitides was not
affected in its ability to grow in vitro, but depicted a
significant reduction in adhesion to human brain micro-
vascular endothelial and HEp-2 cells, suggesting partici-
pation in adhesion of meningococci to human cells [67].
In C. neoformans, analysis of the Plg-binding proteins,
allowed the identification of a FBA surface protein, that
serves as a Plg receptor [15]. So, due to the relevance of
FBA as an adhesin and a Plg-binding protein that pro-
motes the virulence of microorganisms, the protein was
selected for further investigation in Paracoccidioides.

Confirmatory assays of FBA as a plasminogen-binding
protein

We selected FBA for further analysis, since the protein
is a Plg-binding protein in several pathogens, as previ-
ously described [15,40,70]. To verify if the FBA of Para-
coccidioides also has this ability, a recombinant protein
was obtained by cloning the cDNA (GenBank Acces-
sion Number AY233454) into the expression vector
pGEX-4 T-3 (GE Healthcare) as described in Material
and Methods. The fusion protein was obtained in E.
coli. As observed in Figure 2A, the recombinant pro-
tein was purified (lane 3) and cleaved from the fusion
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Figure 2 Paracoccidioides FBA is a plasminogen-binding protein.
(A) SDS-PAGE analysis of the rFBA of Paracoccidioides. The recombinant
protein was obtained by heterologous expression in E. coli. The
bacteria total protein extract, before (lane 1), and after (lane 2) the
induction with IPTG; the recombinant protein fused to gluthatione
S-transferase (GST) (lane 3) and the purified rFBA (lane 4). (B) Far-western
analysis. Increasing concentrations of the rFBA (0.1 to 3.0 pg) were
fractionated by SDS-PAGE (12%) and transfered to a nitrocellulose
membrane that was subsequently incubated with hPLg, anti-hPlg
antibodies produced in mouse and anti-mouse immunoglobulin G
(IgG) coupled to alkaline phosphatase. The reaction was developed
using 5-Bromo-4-chloro-3-indolyl phosphate (BCIP) and Nitro Blue
Tetrazolium (NBT).

with GST by the addition of thrombin, rendering a 40-kDa
protein (lane 4). A Far-western blotting with increasing
concentrations of rFBA was obtained, and depicted in
Figure 2B. Concentrations of 0.1 pug to 3 ug of the re-
combinant protein were subjected to Far-western, dem-
onstrating a dose-dependent binding of the protein with
Plg, showing that, in fact, the FBA of Paracoccidioides
binds to the Plg.

Detection of FBA at the Paracoccidioides surface

In order to determine the localization of the FBA in
Paracoccidioides, Pb01, we performed a western blotting
with cellular fractions of Paracoccidioides and polyclonal
antibodies raised in mice to the recombinant protein. As
shown in Figure 3A, the FBA is present in the cyto-
plasm, secretome and cell wall (fractions 1 and 2). The
fraction 1 contains proteins associated with the cell sur-
face by non-covalent bonds or by disulfide bridges, as
described [71,72]. The fraction 2 represents cell wall
proteins sensitive to treatment with alkali (ASL-CWPs),
including cell wall proteins with internal repeats (PIR-
CWDPs). Fraction 3 represents proteins with glycosyl-
phosphatidylinositol (GPI) anchors linked to the wall
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Figure 3 Detection of FBA in Paracoccidioides. (A) Western blotting analysis. Different protein samples (15 pg) of Paracoccidioides comprehending
the soluble and secreted proteins, cell wall fractions 1, 2 and 3 were obtained by sequential treatments as described in Materials and Methods. For
negative and positive controls, we employed 3 g of samples of bovine serum albumin (BSA) and the rFBA, respectively. The immunoblot was probed
with the polyclonal antibodies directed to the rFBA. (B) Immunoelectron microscopy. Panel 1 - Transmission electron microscopy of Paracoccidioides
yeast cells showing the cell wall (w), intracytoplasmic vacuoles (v), nucleus (n) and mitochondria (m). Panel 2 - Gold particles are observed in the
cytoplasm region (arrows) and vesicles in release process (arrowheads). * corresponds to the region which has been expanded from panel 2. Panels 3

(Panel 2), 0.5 um (Panel 3), 1.0 um (Panel 4) and 0.5 um (Zoom panel).

and 4 - Negative controls with anti-rabbit-igG-Au-conjugated and rabbit non immune sera, respectively. The bars indicate: 1.0 um (Panel 1), 1.0 ym

(GPI-CWPs) [73,74], but rFBA was not detected in this
fraction. Furthermore, the immunoelectron micros-
copy analysis revealed the presence of FBA in the cyto-
plasm, in vesicles in releasing process and at the cell
surface, as depicted in Figure 3B, panel 2. The release
of vesicles to the external environment is used by many
pathogens to increase their invasive potential. Vesicles
contain many virulence factors, including molecules
that bind to and activate Plg [27,70,75]. The presence
of FBA at the surface and vesicle of the fungus can
allow the capture of hPlg and plasmin generation,

forming a highly fibrinolytic layer around the fungal
cell. These data suggest that FBA, can somehow influ-
ence fibrinolytic activity of yeast cells. Cell wall and se-
creted proteins, may participate in the process.

Paracoccidioides and rFBA bind and activate plasminogen,
promoting fibrinolytic activity

We next investigated whether the capture of Plg by
FBA, favors the generation of plasmin. Previous work
from our group have demonstrated that yeast cells of
Paracoccidioides bind to Plg [10]. As described in
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Materials and Methods the test was performed by fix-
ation of yeast cells or the rFBA, followed by incubations
with hPlg and tPA. In the presence of tPA, the yeast cells
and the rFBA were able to generate plasmin. This ability
was inhibited by the lysine analogue (¢ACA), which
competes for the binding sites of Plg (Figure 4A). Com-
petition experiments were developed by adding increas-
ing concentrations of €ACA, which inhibits plasmin
generation in a dose dependent manner (Figure 4B).
These data suggest that yeast cells, as well as the recom-
binant protein bind hPlg, converting into plasmin in the
presence of tPA.

Fibrinogen is a major substrate of plasmin in vivo and
for that, we examined plasmin activity in jellified matri-
ces containing fibrinogen (Figure 4C). Fibrin degradation
tests were performed in triplicate (data not shown),
where yeast cells were incubated in the presence of hPlg
and tPA. It was observed the formation of hydrolysis
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haloes within the jellified-fibrin-containing matrix (Fig-
ure 4C, panel 3). In an attempt to block the receptor of
plasminogen on the surface of the fungus, yeast cells
were incubated with anti-rFBA polyclonal antibodies
(Figure 4C, panel 4). A decrease in the hydrolysis halo
comparing the panels 3 to 4, can be observed. The
addition of protease inhibitors resulted in no halo forma-
tion, due to inactivation of plasmin activity (Figure 4C,
panels 5 and 6). Negative controls are presented in panels
1 and 2, whereas positive control is presented in panel 7.
Thus, we can conclude that FBA of Paracoccidioides may
have an important role in the host tissues invasion by the
fungus, besides participating in metabolic processes. Cor-
roborating other studies on this subject, the secondary
role of this protein makes it an important virulence factor.
By capturing and activating Plg, FBA can promote the
spread of the fungus, certainly by matrix degradation, pav-
ing the way for infection toward internal organs.
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Figure 4 Plasminogen-binding and activation and fibrin degradation assays. (A) Paracoccidioides yeast cells and the rFBA were incubated
with hPIg in the presence or absence of tPA and eACA. We used a plasmin substrate (D-valyl-L-lysyl-p-nitroaniline hydrochloride) (Sigma-Aldrich)
to dose the amidolytic activity of the reaction of converting plasminogen into plasmin. (B) In competition experiments we added to the wells
increasing concentrations of eACA (50 mM to 1 M), followed by the addition of hPIg. Experiments were performed in triplicate as described in
Materials and Methods. The error bars indicate the standard deviations between the results. *: results significantly different from control, at a

p value < 0.05. (C) The fibrinolytic activity of Paracoccidioides was analysed by the observation of clear hydrolysis haloes within the opaque
jellified-fibrin-containing matrix. Panel 1: Paracoccidioides yeast cells in the absence of hPlg; 2: the fungus after binding to hPIg; 3: Similar to

1 and 2, but reflecting the presence of tPA. The fungus was incubated in the presence of hPlg and tPA, with the addition of anti-rFBA (panel 4)
and proteases inhibitors, aprotinin and PMSF (panels 5 and 6). Controls consisting of plasminogen and tPA (panel 7).
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rFBA influences the interaction of Paracoccidioides with
macrophages

The rFBA of Paracoccidioides behaved as an adhesin in
a binding assay between ]774 and rFBA. Macrophages
were able to bind/internalize the rFBA after 5 h incuba-
tion (Figure 5A, line 2). Control is depicted in Figure 5A,
line 1, in which no reaction was obtained in macrophages
not incubated with rFBA. Positive (rFBA, Figure 5A, line
3) and negative (BSA, Figure 5A, line 4) controls, are
depicted. Next, we investigated the putative role of FBA in
the interaction between Paracoccidioides and macro-
phages. Data represent the percentage of CFUs recovered
from infected macrophages, in relation to the control
(Figure 5B). The results show that infection of J774 by
Paracoccidioides was reduced by 79% when the macro-
phages were pre incubated with rFBA, and 86% when
the yeast cells were pre incubated with anti-rFBA anti-
bodies. The data strongly suggest a role for the FBA in
the infective process in macrophages.

A

<— 40 kDa

CFU (%)

1774+
(PbO1 + Ab)

1778+ 1778+
(PbO1 + Plg) [(PbO1 + Ab) + Plg]

(1774 + rFBA)
+Pb01

Figure 5 Paracoccidioides adhesion/internalization by
macrophage: Effects of plasminogen and FBA. (A) Western
blotting analysis of binding of J774 macrophages and rFBA.
Macrophages were incubated with 50 ug rFBA (line 2). Additionally
controls were performed with 5 pg of rFBA for the positive control
(line 3), and 5 pg of BSA for negative control (line 4). Line 1 depicts
macrophages, without incubation with the rFBA. The immunoblot
was probed with the polyclonal antibodies directed to the rFBA.
(B) Macrophages were or not pre-incubated with the rFBA (50 ug)
for 1 h, before infection. Yeast cells (Pb01) were or not treated with
the antibodies to the rFBA (Ab, 1:1000 diluted), with hPlg (50 pg)
and tPA (50 ng), for 1 h, or with the antibodies to the rFBA (Ab,
1:1000 diluted) and subsequently with Plg (50 pg), and tPA (50 ng),
for 1 h. Macrophages were incubated with the yeast cells above for
12 h at 36°C. * : results significantly different from control, at a
p value < 0.05.
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Similar experiments with other proteins such as glyc-
eraldehyde 3-phosphate dehydrogenase and triose phos-
phate isomerase, that promoted reduced interaction of
Paracoccidioides with pneumocytes and Vero cells, were
reported [62,76]. Regarding to Plg, the pre-incubation
with Paracoccidioides, in the presence of tPA, promoted
increased macrophage infection (Figure 5B). The addition
of the antibodies to rFBA and Plg, prompted inhibited the
macrophage infection. This data is consistent with the role
of FBA in activating Plg to plasmin, as previously demon-
strated in Figure 4C. Our data suggest that binding of the
EBA to Plg, may increase the virulence of this pathogen.

Conclusions

Many microorganisms express proteins that are able to
subvert the host proteases and use them in their favor.
Once activated to plasmin, Plg acquires fibrinolytic ac-
tivity. Pathogens able to capture Plg can increase their
potential for dissemination in the host tissues. This work
identified several secreted proteins of Paracoccidioides
with ability to bind to hPlg. These proteins are probable
targets of the interaction of the fungus with the host,
probable acting as mediators of plasmin formation,
which may contribute to the invasion of the fungus in
the host tissues. The FBA, was detected at the Paracocci-
dioides surface and secretory vesicles, in addition to the
conventional cytoplasmatic localization. The protein can
bind to hPlg, converting it to plasmin in the presence of
tPA. This interaction promoted increased fibrinolytic
capacity of the fungus, as demonstrated in fibrin degrad-
ation assay. Moreover, we demonstrated that FBA adhered
to macrophages and contribute in some way to the inter-
action of the fungus with these defense cells. These data
suggest that FBA is a Plg-binding protein, and may be im-
portant virulence factor involved in the process of adhe-
sion, invasion and spread of the fungus.

Methods

Strains and media

Paracoccidioides, Pb01 (ATCC MYA-826) was used in
all experiments. The yeast phase was maintained in vitro
by sub culturing at 36°C during 7 days in Fava Netto’s
solid medium [1% (w/v) peptone, 0.5% (w/v) yeast extract,
0.3% (w/v) proteose peptone, 0.5% (w/v) beef extract, 0.5%
(w/v) NaCl, 4% (w/v) glucose, 1.2% (w/v) agar, pH 7.2].

Preparation of Paracoccidioides protein fractions

To obtain the secreted proteins, the yeast cells of Para-
coccidioides, Pb01 were inoculated in Fava Netto’s liquid
medium and cultured at 36°C for 24 h with shaking at
200 rpm, as previously described [48]. The proportion of
cells used to obtain the inoculum was 2.5 g wet weight
of yeast cells per 50 mL of liquid medium, or 50 mg/mL.
After the incubation for 24 h, microscopic analysis was
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performed to check fungal viability, followed by cells
centrifugation at 10,000 x g, for 30 min at 4°C. The
supernatant was used for obtain the secreted proteins
[48]. The culture supernatant was sequentially filtered
through 0.45 mm-pore and 0.22 mm-pore membrane fil-
ters. Culture filtrates were concentrated and subse-
quently washed three times with ultrapure water via
centrifugation 10,000 x g through a 10-kDa molecular
weight cut off membrane (Amicon ultra centrifugal filter,
Millipore, Bedford, MA, USA). The obtained pellet,
which contains the yeast cells, was used to the extraction
of Paracoccidioides soluble [77] and cell wall proteins.
Briefly, yeast cells were washed five times with 10 mM
Tris—HCI, pH 8.5, 2 mM CaCl, added of the 1:1000 pro-
tease inhibitor phenyl methyl sulfonyl fluoride (PMSF)
and centrifuged at 10,000 x g for 30 min at 4°C. The
cells were frozen in liquid nitrogen and disrupted by ma-
ceration. Subsequently, the precipitate was resuspended
in lysis buffer (20 mM Tris—HCI pH 8.8; 2 mM CacCl,)
added of the protease inhibitor PMSF (1:1000) and glass
beads; the mixture was agitated for 1 h. After centrifuga-
tion 10,000 x g for 30 min at 4°C, the supernatant and
pellet were used to obtain the Paracoccidioides soluble
and cell wall proteins, respectively. The cell wall proteins
were extracted by sequential treatments according to the
type of connection that these proteins establish with
other cell wall components, as previously described, with
some modifications [10,71,74,78]. Briefly, the pellet was
washed 5 times as following: with cold sterile distilled
water, with 5% (w/v) NaCl, with 2% (w/v) NaCl and with
1% (w/v) NaCl. After the washes, the pellet was treated
with extraction buffer [50 mM TrisHCI, pH 7.8, 2% (w/v)
SDS, 100 mM EDTA and 40 mM B-mercaptoethanol] for
10 min at 100°C. The supernatant from centrifugation
constitutes the first fraction (Fraction 1). The pellet resist-
ant to extraction with SDS was washed 5 times with 0.1 M
sodium acetate pH 5.5. The obtained solution was centri-
fuged at 10,000 x g for 30 min at 4°C and the pellet was
treated with 30 mM NaOH for 24 h at 4°C, to obtain the
second fraction, that after centrifugation at 10,000 x g for
30 min at 4°C, constituted the fraction 2. The pellet was
treated with pyridine-hydrogenated fluoride (HEF-pyridine)
on ice for 24 h to give the third fraction (Fraction 3).

All the obtained protein extracts described above were
concentrated and washed three times with ultrapure water
via centrifugation through a 10 kDa molecular weight cut
off in ultracel regenerated membrane (Amicon ultra cen-
trifugal filter, Millipore, Bedford, MA, USA). The protein
concentrations were determined by the Bradford assay
using bovine serum albumin as standard [79].

Two-dimensional gel electrophoresis
Two-dimensional fractionation (2-DE) of secreted pro-
teins was performed, as described [77,80]. The 2-DE gels
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were obtained in duplicates, using 500 pg of proteins, for
each one. The samples were treated with the commercial
system of purification 2D Clean-up Kit (GE Healthcare,
Uppsala, Sweden) for removing interferences according to
the manufacturer’s instructions, before protein isoelectric
focusing. Proteins samples were treated with 250 pL of
buffer containing 7 M urea, 2 M thiourea, 130 mM 3- [(3-
cholamidopropyl) dimethylammonio]-1-propanesulfonate
(CHAPS), 0.002% (w/v) dithiothreitol (DTT), ampholyte-
containing buffer (IPG buffer, GE Healthcare), and trace
amounts of bromophenol blue. Then the samples were
loaded onto a 13 cm Immobiline™ DryStrip gel (GE
Healthcare) with a pH range of 3-11 for separation of
proteins according to their isoelectric points (pI) with an
electric current of 50 pA / strip at 20°C. In order to per-
form the first separation of secreted proteins, isoelectric
focusing was conducted as following: 30 V for 14 h, 250 V
for 1 h (step), 1 kV for 1 h (step), 2 kV for 1 h (step), 5 kV
for 3 h (gradient), 8 kV for 8 h (gradient) and 8 kV for 1 h
(step). Strips were reduced with 18 mM DTT (dithiothrei-
tol) and alkylated with 135 mM iodoacetamide in equili-
bration buffer [50 mM Tris—HCI pH 8.8, 6 M urea, 30%
(v/v) glycerol, 2% (w/v) sodium dodecyl sulfate (SDS) and
0.002% (w/v) bromophenol blue] during 40 min. The sec-
ond dimension was performed in 12% polyacrylamide gel
electrophoresis under denaturing conditions (SDS-PAGE)
in running buffer [25 mM Tris—HCl, 192 mM glycine,
0.1% (w/v) SDS], using a vertical system (GE Healthcare)
at 12°C during 1 h at 150 V, and after at 250 V. Two gels
were stained by Commassie brilliant blue (Plus One
Coomassie Tablets Phast Gel Blue R-350, GE Healthcare)
according to manufacturer’s instructions to visualize the
proteins.

Far-western

For the Far-western experiments, the 2-DE gels were
produced in duplicates. The secreted proteins, after one
or two-dimensional fractionation, were transferred to
nitrocellulose membranes for ligand binding with Plg, to
identify Plg-binding receptors. The results were com-
pared to the protein pattern of the Coomassie blue
stained counterpart. The membranes were incubated in
blocking buffer [0.1% (v/v) Tween 20, 5% (w/v) skimmed
powder milk, in 10 mM PBS (0.14 M NaCl, 2.7 mM
KCl, 10 mM Na,HPO,, 1.8 mM KH,PO,, pH 7.3)] for
1 h at room temperature. Subsequently, the membranes
were washed three times with PBS containing 0.05% (v/v)
Tween 20 (PBS-T) and, except for the negative control,
the membranes were incubated with 35 pg/mL of hPlg
(Sigma-Aldrich) diluted in blocking buffer, for 1 h under
shaking, as described [10]. Subsequently, the membranes
were washed three times with PBS-T and incubated with
1 pg/mL anti-human plasminogen (Anti-hPlg) produced
in mice (Sigma-Aldrich) diluted 1:100 in blocking buffer.
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After three washes in PBS-T, the membranes were incu-
bated with the secondary antibody (anti-mouse IgG
coupled to alkaline phosphatase) (Sigma-Aldrich) di-
luted 1:5000 in blocking buffer, for 1 h. After that, the
membranes were washed and the reaction was devel-
oped wusing 5-Bromo-4-chloro-3-indolyl phosphate
(BCIP) and Nitro Blue Tetrazolium (NBT).

Expression of the rFBA by Escherichia coli, purification of
the recombinant protein and polyclonal antibodies
production

The cDNA that encodes FBA of Paracoccidioides, Pb01
(GenBank Accession Number AY233454) was previously
obtained [69]. Oligonucleotide primers were designed:
sense S (5-GAATTCCATGGGCGTGAAAGACA-3’) and
antisense AT (5-GCGGCCGCCTACAACTGGTTAGA
A-3’) in order to obtain the cDNA. The ¢cDNA product
obtained by RT-PCR was cloned into the expression vec-
tor pGEX-4 T-3 (GE Healthcare) and transformed into
Escherichia coli XL1 blue competent cells. Bacterial cells
were grown in Luria-Bertani (LB) medium supplemented
with 100 pg/ml ampicillin under agitation at 37°C until
the OD reaches an absorbance of 0.6 at a wavelength of
600 nm. The reagent Isopropyl-B-D-thiogalactopyranoside
(IPTG) was added to the growing culture to a final con-
centration of 0.1 mM. After 16 h incubation at 15°C, the
bacterial cells were harvested by centrifugation at
10,000 x g for 10 min and resuspended in PBS. Soluble
proteins were obtained by sonication, followed by centri-
fugation at 10,000 x g during 10 min. FBA linked to GST
(glutathione-S-transferase) was affinity purified using
glutathione Sepharose 4B resin (GE Healthcare). The resin
was washed 10 times in PBS and the GST was cleaved by
addition of thrombin (50 U/ml) (Sigma-Aldrich). The pur-
ity and size of the recombinant protein were assessed by
SDS-PAGE followed by staining with Coomassie Blue.
The rFBA was used for production of polyclonal anti-
bodies in mice. The purified protein (300 pg) was injected
into mice along with Freund’s adjuvant three times at in-
tervals of 15 days. Serum containing polyclonal antibodies
was collected and stored at —20°C.

Western blotting

For western blotting analysis, the Paracoccidioides pro-
tein samples were probed using polyclonal antibodies
produced to the rFBA. Protein samples were loaded onto
a 12% SDS-PAGE gel and separated by electrophoresis.
The gels were run at 150 V for approximately 2 h and
the proteins were transferred to nitrocellulose mem-
branes at 30 V for 16 h in a buffer containing 25 mM
Tris—-HCl (pH 8.8), 190 mM glycine and 20% (v/v)
methanol. The gels were stained with Ponceau red to
verify complete protein transfer. Next, each membrane
was incubated in blocking buffer [1X PBS, 1.4 mM
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KH,PO,, 8 mM Na,HPO,, 140 mM NacCl, 2.7 mM KCI
(pH 7.3), 5% (w/v) nonfat dried milk and 0.1% (v/v)
Tween 20] for 2 h. The membranes were washed with
PBS-T, and incubated with anti-rFBA polyclonal anti-
bodies (1:1000), followed by washing in blocking buffer
three times, during 15 min each wash. The membranes
were incubated with the secondary antibody anti-mouse
immunoglobulin G (IgG) coupled to alkaline phosphatase
(Sigma Aldrich) diluted 1:5000 in blocking buffer, for 1 h.
After that, the membranes were washed and the reaction
was developed using 5-Bromo-4-chloro-3-indolyl phos-
phate (BCIP) and Nitro Blue Tetrazolium (NBT).

Image analyses

The comparative analysis between the images of the pro-
teins stained with Coomassie Blue and the membranes
of the Far Western assay were performed using the
Image Master 2D Platinum software v7.0 (GE Health-
care) in order to identify in the 2-DE gels the protein
spots that were visualized in the membranes through the
pairing. The gels and membranes were aligned and the
spots were compared according to their isoelectric
points and molecular masses.

Mass spectrometry analysis

The spots of interest were manually excised from the 2-
DE gels and treated with trypsin as previously described
[48,77,80]. The spots were removed, washed three times
with ultrapure water, resuspended in 100 pL of 100%
acetonitrile (ACN) and dried in a vacuum centrifuge.
Subsequently, the samples were reduced with 10 mM
DDT in 25 mM ammonium bicarbonate (NH,HCOs3),
and alkylated with 55 mM iodoacetamide in 25 mM
NH4HCOj3 protected from light. The supernatant was
removed and the gel pieces were washed with 100 pL of
a solution containing 25 mM ammonium bicarbonate/
50% ACN (v/v), vortexed for 5 min, and centrifuged. En-
zymatic digestion was performed by incubation at 37°C
for 16 h in buffer containing trypsin (12.5 ng/pL) and
25 uL of 25 mM NH4HCO3;. The supernatant was trans-
ferred to a new tube and the gel pieces were shaken for
30 min in 50% ACN (v/ v), and 1% trifluoroacetic acid
(TFA) (v/v), followed by sonication for 5 min, after
which the supernatant was combined with the one ob-
tained in the previous step. The dried samples were re-
suspended in 10 uL of ultrapure water and subsequently
purified using a pipette tip with a bed of chromato-
graphic media (ZipTips® C18 Pipette Tips, Millipore,
Bedford, MA, USA). Two microliters of each peptide
sample were deposited onto a matrix-assisted laser
desorption ionization quadrupole time-of-flight mass
spectrometry (MALDI-Q-TOF MS) target plate. Next,
2 pL of matrix solution (10 pg/pL a-cyano-4-hydroxy-
ciannamic acid matrix in 50% (v/v) ACN and 5% (v/v)
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TFA) was added. The mass spectra were performed in
the positive reflectron mode on a MALDI-Q-TOF mass
spectrometer (SYNAPT, Waters Corporation, Manchester,
UK). The MS/MS and PMF analysis was performed using
Mascot software v. 2.4 (http://www.matrixscience.com)
(Matrix Science, Boston, USA). The ion search parameters
were: tryptic peptides with one missed cleavage allowed;
fungi taxonomic restrictions; fixed modifications: carba-
midomethylation of Cys residues; variable modifications:
oxidation of methionine and a tolerance of 0.6 Da. I silico
analyzes were performed to validate the results obtained
in vitro. In order to predict the location of proteins we
used the program Psort (http://www.genscript.com/psort/
wolf_psorthtml). The software big-PI Fungal Predictor
(http://mendel.imp.ac.at/gpi/fungi_server.html) was used
to predict glycosylphosphatidylinositol (GPI) protein an-
chors. In order to predict proteins to be secreted we
employed the Signal P (http://www.cbs.dtu.dk/services/
SignalP/) that predicts the classical pathway secretion and
Secretome P (http://www.cbs.dtu.dk/services/SecretomeP/
) that predicts nonclassical pathway secretion.

Ultrastructure of the yeast cells and immunocytochemistry

of FBA

For the ultrastructural and immunocytochemistry stud-
ies, previously described protocols were employed
[76,81,82]. The yeast cells were fixed in solution contain-
ing 2% (v/v) glutaraldehyde, 2% (w/v) paraformaldehyde,
and 3% (w/v) sucrose in 0.1 M sodium cacodylate buffer
pH 7.2. Ultrathin sections were stained with 3% (w/v)
uranyl acetate and lead citrate. For ultra-structural im-
munocytochemistry studies, the ultrathin sections were
incubated for 1 h with the polyclonal antibodies raised
against the rFBA (diluted 1:100) and for 1 h at room
temperature with the labeled secondary antibody anti
mouse IgG, Au-conjugated (10 nm average particle size;
1:20 dilution). The grids were stained as described
above, and observed with a Jeol 1011 transmission elec-
tron microscope (Jeol, Tokyo, Japan). Controls were in-
cubated with mouse preimmune serum (1:100 dilution).

Plasminogen activation assay

The wells of multitier plates were coated with 1 pg of
rFBA or fixed with 1 x 10® yeast cells during 1 h. After
that, the wells were incubated with 1 pg of hPlg
(Sigma-Aldrich), followed by incubation with 3 pg of
plasmin substrate (D-valyl-L-lysyl-p-nitroaniline hydro-
chloride) (Sigma-Aldrich) and 15 ng of tPA (Sigma-
Aldrich). Competition and control experiments were
performed by blocking the generation of plasmin in
the absence of tPA (Sigma-Aldrich) or in the presence of
the lysine analogue e-aminocaproic acid (€ACA). The ami-
dolytic activity of the generated plasmin was measured at
405 nm.
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Fibrin matrix-gel degradation analysis

The matrix gel contained 1.25% (w/v) low-melting-
temperature agarose, 100 pg of hPlg (Sigma- Aldrich) and
4 mg of fibrinogen (Sigma- Aldrich) in a final volume of
2 mL. To detect fibrinolysis activity, a total 1 x 10" cells of
Paracoccidioides, Pb01 were incubated with 50 pg of hPlg
for 3 h in the presence or absence of tPA (50 ng). The
yeast cells were also incubated with the serine proteinase
inhibitors aprotinin (1 pg), PMSF (50 mM) and with anti-
rFBA antibodies in a final volume of 1 mL. Thereafter, the
mixtures were washed three times with PBS and the
pellets were placed in wells of a fibrin substrate matrix
gel. Plasmin activity was detected by the observation of
clear hydrolysis haloes within the opaque jellified fibrin-
containing matrix, after incubation in a humidified cham-
ber at 37°C for 12 h.

Binding assays of the rFBA to in vitro cultured macrophages
J774 1.6 macrophages (Rio de Janeiro Cell Bank — BCR]/
UFR]J, accession number 0273) were used for phagocyt-
osis assays. The J774 1.6 cells were cultured in RPMI
medium containing bovine fetal serum 10% (v/v) (Vitro-
cell Embriolife,) containing IFN-y (1U per mL) and
MEM non-essential amino acid solution (Sigma Aldrich,
Missouri, USA) at 36°C and 5% CO,, until complete
confluence. The macrophages were incubated with
50 pg/mL of rFBA, at 36°C for 5 h, and washed. Next,
the cells were lysed by incubating with distilled water for
1 h. The lysate was centrifuged at 1,400 x g for 5 min.
The proteins contained in the supernatant were submit-
ted to SDS-PAGE and transferred to nitrocellulose
membrane. The membrane was incubated blocking buf-
fer [PBS 1X with 5% (w/v) nonfat dried milk and 0.1%
(v/v) Tween 20] for 2 h, and then successively with anti-
rFBA polyclonal antibodies (1:1000) and with the anti-
mouse immunoglobulin G (IgG) coupled to alkaline
phosphatase (Sigma Aldrich). The reactions were devel-
oped with BCIP-NBT.

rFBA and anti rFBA-antibodies decrease Paracoccidioides
macrophages interaction

We tested the interference of the rFBA and antibodies to
adhesion/infection of Paracoccidioides in macrophages. In
addition, we tested the ability of Plg-treated yeast cells to
adhere/infect macrophages. A total of 5 x 10° yeast cells,
per well, were added to the macrophages, reaching a
yeast:macrophages cells ratio of 5:1, followed by incuba-
tion for 12 h at 36°C, in 5% CO,, in RPMI medium con-
taining IFN-y (1U per mL). The J774 cells were pre
incubated for 1 h at 36°C with the rFBA (50 pg/ml), or the
yeast cells were pre- incubated with anti-rFBA antibody
(1:1000) and then the infection was performed. In parallel,
yeast cells were incubated with the polyclonal antibody
anti-rFBA (1:1000 diluted) for 1 h at 36°C, and then
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incubated with plasminogen (50 pg) and tPA (50 ng) for
1 h at 36°C. After that, the yeast cells were washed three
times in PBS 1X and incubated with the macrophages.

At the end of the infection, the adhered macrophages
were washed, lysed by addition of distilled water and
centrifuged. The pellet was diluted 1:10 and plated in
solid BHI medium supplemented with inactivated fetal
calf serum (4% v/v). After 7 days at 37°C the number of
CFU’s was counted.

Statistical analysis

The experiments were performed in triplicate, with sam-
ples in triplicates. Results are presented as means * stand-
ard deviations. Statistical comparisons were performed
using Student’s ¢ test and the statistical significance was
accepted for P value of < 0,05.
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