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Genetic distance in the whole-genome perspective
on Listeria monocytogenes strains F2-382 and
NIHS-28 that show similar subtyping results
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Abstract

Background: Genome subtyping approaches could provide useful epidemiological information regarding food
pathogens. However, the full genomic diversity of strains that show similar subtyping results has not yet been
completely explored. Most subtyping methods are based on the differences of only a portion of the genome. We
investigated two draft genome sequences of Listeria monocytogenes strain F2-382 and NIHS-28, which have been
identified as closely related strains by subtyping (identical multi-virulence-locus sequence typing and multiple-locus
variable number tandem repeat analysis sequence types and very similar pulsed-field gel electrophoresis patterns),
despite their different sources.

Results: Two closely related strains were compared by genome structure analysis, recombination analysis, and
single nucleotide polymorphism (SNP) analysis. Both genome structure analysis and recombination analysis showed
that these two strains are more closely related than other strains, from a whole-genome perspective. However, the
analysis of SNPs indicated that the two strains differ at the single nucleotide level.

Conclusion: We show the relationship between the results of genome subtyping and whole-genome sequencing.
It appears that the relationships among strains indicated by genome subtyping methods are in accord with the
relationships indicated by whole-genome analysis. However, our results also indicate that the genetic distance
between the closely related strains is greater than that between clonal strains. Our results demonstrate that subtyping
methods using a part of the genome are reliable in assessing the genetic distance of the strains. Furthermore, the
genetic differences in the same subtype strains may provide useful information to distinguish the bacterial strains.
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Background
Listeria monocytogenes is a rod-shaped, gram-positive, and
non-sporulating foodborne infectious pathogen that can
cause serious diseases such as septicemia and meningitis,
particularly in high-risk groups (e.g., pregnant woman, ne-
onates, and immunocompromised individuals) with a high
mortality rate of 20%–30% [1]. In particular, ready-to-eat
(RTE) foods, which do not require heat cooking, are a
main source of foodborne listeriosis cases [2-4]. Molecular
subtyping approaches allow us to evaluate the similarity of
strains isolated from geographically or temporally different
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sources with high accuracy and reproducibility for epi-
demiological studies or trace-back surveys [5]. Several mo-
lecular subtyping methods such as PFGE, ribotyping,
MLST including MVLST, and MLVA have been developed
for subtyping of L. monocytogenes [6-10]. These methods
have categorized the microorganism into 4 lineages and
several clonal complexes (CCs). The subtyping data is
highly consistent with pathogenicity and other characteris-
tics, and provides useful information for epidemiologic or
phylogenetic studies [11-13]. However, the whole-genome
structure of strains that show similar subtyping results is
unknown, because most subtyping methods focus on only
a subset of loci such as endonuclease restriction sites or
alleles.
Next-generation sequencing (NGS) technology has fa-

cilitated the analysis of bacterial genomes from a whole-
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Figure 1 Alignment of genome sequences of strains F2-382,
NIHS-28, and F2365. The seven frames on the outer ring show gap
regions larger than 5 kbp. Each lane shows the sequence of one
strain; F2365 (black); F2-382 (dark gray); NIHS-28 (light gray).
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genome perspective by generating relatively high data
output in recent years. Using NGS, some studies have
already reported the relationships between molecular
subtyping results and whole-genome sequences for Sal-
monella enterica and Escherichia coli, and presented
useful information on phylogeny and virulence [14-18].
L. monocytogenes has also been investigated at the
whole-genome level to reveal its pathogenicity and evo-
lutionary history [19-21]. However, the relationship
between the results of genome subtyping and whole-
genome sequencing in L. monocytogenes has not yet
been fully explored.
We compared two draft genome sequences of L.

monocytogenes to reveal the relationship between sub-
typing results and whole-genome diversity. Strains F2-
382 and NIHS-28 were isolated from epidemic patients
in the United States and Japan, respectively. These
strains were not considered to be clonal because the pa-
tients had not engaged in travel around the time of on-
set. However, these strains showed identical MVLST and
MLVA sequence types and strikingly similar PFGE pat-
terns [22]. Thus, they are regarded to be extremely
closely related strains, regardless of their source. In the
present study, their draft sequences were compared to
determine the extent of the differences between their ge-
nomes. In addition, published whole-genome sequences
from 22 strains were compared to evaluate the genetic
distance.

Results
General properties of the draft genome sequence
Using the shotgun sequencing method, a total of
46,603,422 bp and 107,127 reads with an average read
length of 435.0 bp were obtained for the F2-382 strain.
A total of 64,444,465 bp with 132,436 reads and an aver-
age read length of 486.6 bp were obtained for strain
NIHS-28. Next, 99.58% of the total bp of the F2-382 strain
and 99.71% of the total bp of the NIHS-28 strain were
aligned in the de novo assembly. In total, 56 contigs were
obtained from the de novo assembly of the F2-382 strain,
with a total length of 2,911,674 bp, an N50-contig of
86,218 bp, and a GC content of 37.9%. The alignment
depths were distributed from 1 to 140, with a peak depth
of 13. For strain NIHS-28, 35 contigs were obtained with a
total length of 2,908,138 bp, an N50-contig of 120,766 bp,
and a GC content of 37.9%. The alignment depths were
distributed from 1 to 180 with a peak depth of 19.

Large-scale differences in genome structure
The alignment analysis constructed using MAUVE soft-
ware for strains F2-382, NIHS-28, and F2365 showed that
their overall genomic structures are similar (Figure 1). In
addition, all of the contigs were aligned to the reference
sequence, indicating that the sequenced strains did not
possess plasmids. Five gap loci were identified in
strains F2-382 and NIHS-28 when aligned to strain
F2365 (Figure 1; gaps 1–5). However, between strains
F2-382 and NIHS-28, only one locus for each sequence
was identified as a gap (Figure 1; gap 6–7). Thus, strains
F2-382 and NIHS-28 exhibit more similarity to each other
than to F2365.
Each gap region between strains F2-382 and NIHS-28

contained several open reading frames (ORFs), which
have been inserted by phage infection (Figure 1; gaps 6–
7, Additional file 1 and Additional file 2). These gap re-
gions were assumed to be derived from the individual
phages, because they showed partial similarity in the
alignment details for the region (Additional file 3).

Recombination analysis
All 24 strains were clustered into three major clades, which
corresponded to previously described lineages (Figure 2,
Table 1) [20,21,23-29]. Strains F2-382 and NIHS-28
were both clustered in the lineage I clade (Figure 2,
Table 1). Lineage I was further divided into six clades.
At the finest level of detail, strains F2-382 and NIHS-28
were clustered in the same clade as strains F2365 and
SLCC2378 (Figure 2). Thus, strains F2-382 and NIHS-
28 exhibit greater similarity to each other in their
whole-genome sequence than to the other strains, con-
sistent with the results of MVLST analysis and MLVA.

A comparison of the clustering results between methods
Recombination analysis of a set of large-genome se-
quences showed some differences in the relationships
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Figure 2 The cluster diagram constructed by recombination analysis using a wide range of genome sequences. Three independent
datasets yielded identical clustering results.
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between lineages, compared to other subtyping methods
(Table 1; Figures 2, 3 and 4). In the recombination ana-
lysis, the three lineages clustered independently. In con-
trast, MVLST subtyping showed that lineages I and II
are more closely related to each other than to lineage III
(Figure 3). MLVA subtyping showed that lineage I could
be separated into two major clusters, and that lineage II
and III comprised a large cluster that did not include
lineage I. However, the relationships among the strains
within the lineage cluster were similar in all methods.
The results of MVLST analysis and MLVA of strains F2-

382 and NIHS-28 were similar to those of strains F2365
and SLCC2378, which were identical to the results of re-
combination analysis. These four strains showed the same
sequence type in MVLST analysis. MLVA results showed
that strains F2-382 and NIHS-28 had the same MLVA
type, and were distinct from other strains. In addition,
strains F2365, SLCC2378, and 07PF0776 showed MLVA
types similar to those exhibited by strains F2-382 and
NIHS-28, and comprised a parent cluster.

Single nucleotide polymorphism analysis of the four most
similar strains
Strains F2-382, NIHS-28, F2365, and SLCC2378, which
were clustered into the smallest clade in recombination
analysis, were evaluated by single nucleotide polymorph-
ism (SNP) analysis. Strains F2-382 and NIHS-28 were
barely affected by the subculture, because they had been
stored at the freezing temperature. Using strain F2365 as a
reference, 424 SNPs were identified in strain F2-382, 317
SNPs in NIHS-28, and 106 SNPs in SLCC2378 (Figure 5).
However, when comparing strains F2-382 and NIHS-28,
only 48 SNPs were found at the same loci with the same
polymorphism. Thus, most of the SNPs were unique to
one of the two strains. The numbers of unique SNPs in
strains F2-382 and NIHS-28 were 366 and 263, respec-
tively, in contrast to 58 in the SLCC2378 strain. Thus,
strains F2-382 and NIHS-28 have unique sequences,
whereas strains F2365 and SLCC2378 have very similar
sequences.

Discussion
Differences in genome structure
We examined the differences between the draft genome
sequences of strains showing similar genome subtyping
results by using NGS technology. The backbone of the
genome (e.g., GC content, number of rRNAs or tRNAs)
is known to be similar among the different strains of L.
monocytogenes regardless of the serotype and lineage,
with the exception of a partial mutation by gene deletion
and/or transfer [19,29]. Strains F2-382 and NIHS-28 also
showed more similar genomic structure in the set of large
genome sequences based on alignment with strain F2365,
compared to the other strains. Furthermore, fewer gaps



Table 1 Isolates and genome subtyping results

Isolates Genbank accession No. Serotype Lineage MVLSTa MLVA Reference

F2-382 BAZC01000001–01000056 4b N/A 1-3-1-3-1-3 13-18-9 This study

NIHS-28 BAZD01000001–01000036 4b N/A 1-3-1-3-1-3 13-18-9 This study

F2365 NC_002973 4b I 1-3-1-3-1-3 14-18-9 Nelson et al. [25]

EGDe NC_003210 1/2a II 7-9-8-6-4-2 25-11-7 Glaser et al. [26]

HCC23 NC_011660 4a III 4-5-4-1-*-4 8-22-4 Steele et al. [27]

Clip80459 NC_012488 4b I 2-4-2-5-2-3 15-20-5 Hain et al. [20]

08-5578 NC_013766 1/2a II 7-8-7-6-3-1 34-22-7 Gilmour et al. [28]

08-5923 NC_013768 1/2a II 7-8-7-6-3-1 34-22-7 Gilmour et al. [28]

L99 NC_017529 4a III 4-5-4-1-*-4 8-22-4 Hain et al. [20]

M7 NC_017537 4a N/A 5-5-4-1-*-4 8-22-4 Chen et al. [23]

10403S NC_017544 1/2a N/A 8-12-6-6-3-2 20-11-7 den Bakker et al. [29]

FSL R2-561 NC_017546 1/2c N/A 7-9-8-6-4-2 21-11-7 den Bakker et al. [29]

Finland1998 NC_017547 1/2a N/A 7-8-7-6-3-2 25-14-7 den Bakker et al. [29]

07PF0776 NC_017728 4b N/A 2-4-2-5-2-3 14-18-9 McMullen et al. [24]

ATCC19117 NC_018584 4a I 2-1-3-3-1-3 17-13-6 Kuenne et al. [21]

SLCC2378 NC_018585 4e I 1-3-1-3-1-3 17-18-9 Kuenne et al. [21]

SLCC2540 NC_018586 3b I 3-7-2-4-2-3 10-11-5 Kuenne et al. [21]

SLCC2755 NC_018587 1/2b I 2-6-3-3-2-3 15-16-5 Kuenne et al. [21]

SLCC2479 NC_018589 3c II 7-9-8-6-4-2 21-11-7 Kuenne et al. [21]

SLCC2376 NC_018590 4c III 6-2-5-2-*-4 9-17-4 Kuenne et al. [21]

SLCC2482 NC_018591 7 I 2-6-3-3-2-3 15-16-6 Kuenne et al. [21]

SLCC5850 NC_018592 1/2a II *-10-6-6-3-2 19-11-7 Kuenne et al. [21]

SLCC7179 NC_018593 3a II 7-11-6-6-3-2 10-12-9 Kuenne et al. [21]

L312 NC_018642 4b I 2-4-2-5-2-3 15-15-5 Kuenne et al. [21]
aAsterisks (*) indicate that the genome region corresponding to the allele was not found.
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were observed between strains F2-382 and NIHS-28 com-
pared to strain F2365. Thus, it appears that these two
strains, which were shown to be closely related by genome
subtyping analysis, are more similar to each other than
they are to other strains in the genomic structure that is
formed by insertion and deletion, not just in the genomic
backbone of GC content.
Both F2-382 and NIHS-28 had only a single gap in

their genomes (Figure 1; gap 6–7) when we set the mini-
mum gap size as 5 kbp. The smaller gaps could be un-
readable regions in the shotgun sequencing or could be
generated by misassembly. Annotation of the region con-
taining the gaps indicated that both gaps were derived
from a phage infection (Additional file 1 and Additional
file 2). Phage infection is a primary type of genome re-
arrangement that can adapt to a wide range of envi-
ronments [20,21,25,30]. Interestingly, both prophage
regions encode a gene related to sugar phosphorylation
(Additional file 1 and Additional file 2; F2382_00310,
LmNIHS28_02116). Several paralogs of this type of gene
are known to be present in the genome, and play a role in
energy production in host cells in the absence of sugar
[20,31]. We can hypothesize that the genes encoded in the
prophage region are a result of adaptation, as both F2-382
and NIHS-28 were isolated from epidemic patients.

Genetic distance between strains F2-382 and NIHS-28
To compare genetic distances in the whole genome,
Deloger et al. established a maximal unique matches
index (MUMi) [32]. However, we were not able to cal-
culate this index because the two draft whole-genome
sequences obtained in this study were not of sufficient
length for an accurate calculation. Therefore, we com-
pared the strains in the aligned region by establishing
three large datasets. Large dataset recombination ana-
lysis showed that the strains formed clusters corre-
sponding to lineages, as described in a previous study
(Figure 2, Table 1) [20,21,23-29]. It appears that the
lineage perspective that is reflected by partial genome
analysis is consistent with the relationships indicated by
comparison of whole-genome sequences. This hypothesis
has been supported by Kuenne et al., who reported that
phylogenetic analysis using 2,018 gene sequences showed
high correspondence with the lineages [21]. Furthermore,
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Figure 3 The cluster diagram constructed by MVLST analysis using six virulence gene alleles.
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Figure 5 The number of SNPs in each strain compared to strain
F2365. The numbers under each strain name indicate the number
of SNPs in the strain. The numbers in the overlap region indicate the
number of SNPs with the same polymorphism at the same locus
between strains.
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the present study shows that the set of large genome se-
quences, including non-functional regions, are associated
with lineages.
Recombination analysis indicated that both strains F2-

382 and NIHS-28 belong to the lineage I cluster. Lineage
I can be classified into at least five CCs [12]. In the
present study, the strains that clustered in lineage I
formed the six smallest clades (Figure 2). Strains F2-382
and NIHS-28 were both identified as belonging to the
smallest clade, indicating that they are more closely re-
lated than the other strains.
Strains F2365 and SLCC2378 were included in the

same clade with strains F2-382 and NIHS-28 (Figure 2).
Kuenne et al. reported that these two strains have ex-
tremely similar genome sequences [21]. We used SNP
analysis to compare the four strains to determine genomic
similarity at the single nucleotide level (Figure 5). One
limitation of analysis using NGS technology is false-
positive SNPs caused by sequencing errors. To avoid this
problem, we excluded SNPs with quality scores of <40, en-
suring an accuracy of >99.99%. Thus, since <1000 SNPs
were detected, the number of false-positives should be <1.
Furthermore, to avoid false-positive SNPs caused by ho-
mopolymers, which is particularly problematic in 454 se-
quencing, we detected only SNPs with depths of >10 in
the assembly result. We also ensured that all sequence
reads showed identical nucleotides at a given position. For
SNP detection, strain F2365 was used as a reference for
comparison with the other three strains. In strains F2-382
and NIHS-28, the majority of the SNPs detected were
unique to each strain (F2-382, 366; NIHS-28, 263).
However, only 10%–15% of the SNPs (F2-382, 48/424;
NIHS-28, 48/317) involved identical mutations at the
same locus. In contrast, only 58 SNPs were unique to
strain SLCC2378. Gilmour et al. compared complete
genome sequences of strains isolated from the same
outbreak, and reported only 36 SNPs [28]. Based on the
above results, it appears that the genome sequences of
strain F2-382 and NIHS-28 are very similar, but less
similar than those of clonal strains.

Relationship between genome subtyping results and
whole-genome sequencing
The recombination analysis result in the present study
generated from an accumulation of point mutations.
Accordingly, this result can be considered to indicate
the vertical relationship among the strains. When the
recombination analysis result was compared to MVLST
analysis and MLVA, different relationships were ob-
served for each subtyping method between clusters cor-
responding to lineages. The three lineages were shown
to be independent by large genome sequence recom-
bination analysis. In contrast, MVLST indicated that
lineages I and II were more closely related to each
other than to lineage III. We presume that this is be-
cause MVLST is based only on virulence genes [33].
Thus, the lineage III strains, which were rarely associ-
ated with human listeriosis cases, were located distantly
from lineage I and II strains. The relationships between
lineages indicated by MLVA also differed from the results
of other analyses. It is known that the number of tandem
repeats can be altered several times in a short period of
time in E. coli O157:H7 and Vibrio parahaemolyticus
[34,35]. Based on this knowledge, we assumed that the
characteristics of the tandem repeat region biased the re-
sults. While the relationships among the lineages are dif-
ferent, as previously mentioned, the relationships among
the strains under the lineage cluster were almost identical
in all analyses. Thus, genome subtyping methods are valid
for the identification of strains because the alleles require
adequate time for mutation. In addition, we concluded
that the results of genome subtyping are correlated with
the phylogenetic relationships between strains when con-
sidering a limited group such as a lineage.

Accuracy of genome subtyping methods
Our results suggest that strains that show similar sub-
typing results have similar whole-genome sequences, ac-
cording to the analysis of DNA sequence, which is the
origin of the genome subtyping methods. In a limited
group of strains, the relationships indicated by the gen-
ome subtyping methods were correlated with the results
of whole-genome sequencing. These results support the
reliability of the phylogenetic relationships that were
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inferred using genome subtyping methods in previous
studies. However, our observations also demonstrate that
a more accurate classification is possible by single nu-
cleotide analysis within the whole-genome perspective.
Strains F2-382 and NIHS-28, which showed similar

subtyping results, were isolated from the United States
and Japan, respectively. Listeriosis is rare in Japan, and
only one foodborne case has been reported [36,37]. In
contrast, cases have been sporadically reported in the
United States and in European nations [38,39]. However,
foodborne illnesses are no longer geographically limited
since the globalization of food, including RTE foods, has
been promoted worldwide [40-42]. Therefore, it is neces-
sary to evaluate the virulence or to trace the origin of L.
monocytogenes strains in foods [39,41]. The present study
demonstrates that the genome typing results can be con-
sidered as genetic distances regardless of their geographic-
ally or temporally independent sources. This observation
may improve the reliability of subtyping results in surveys.
The identity of individual strains from a whole-genome

perspective is suggested by the present results. Genome-
wide SNP analysis demonstrated that strains F2-382 and
NIHS-28, which have been shown to be very similar by a
previous subtyping method [22], are not clonal strains.
The development of novel DNA sequencing technologies,
including NGS, allows the analysis of microorganisms, in-
cluding L. monocytogenes, from a whole-genome perspec-
tive [14-21]. We anticipate that the observations reported
here will be useful as a reference for future studies that re-
quire validation of strain identity.

Conclusions
We revealed the genome differences between two similar
subtype strains, F2-382 and NIHS-28, from a whole-
genome perspective, and estimated the concordance of
the whole-genome sequence and genome subtyping re-
sults. Strains that show similar subtypes were shown to
also have similar sequences at the whole-genome scale.
We observed that the relationships among strains indi-
cated by genome subtyping methods are consistent with
the relationships indicated by whole-genome analysis.
However, we also revealed that the genetic distance be-
tween closely related strains is greater than that between
clonal strains, from a single nucleotide perspective. These
findings could facilitate improvement of the reliability of
genome subtyping results, in that they may be valuable
references for estimating genetic distances by using sub-
typing methods. We anticipate that our findings will be
useful for evaluating the identity of the strains.

Methods
Bacterial isolates
L. monocytogenes strain F2-382 was isolated from a patient
in the United States and was kindly provided by
Dr. Martin Wiedmann (Cornell University, Ithaca, NY).
Strain NIHS-28 was isolated from a patient in Japan. Both
strains were of serotype 4b. Ethical approval was not re-
quired, as the clinical isolates were collected as part of
standard patient care. These strains showed identical
MVLST and MLVA sequence types and only one differ-
ence in the PFGE band pattern [22]. However, they were
considered as non-clonal strains, because the patients had
not engaged in travel near the time of onset of listeriosis.
After isolation, these strains had been stored at freezing
temperature until pre-culture to extract DNA.
Whole-genome sequences were obtained for 22 add-

itional strains from the GenBank/EMBL/DDBJ data-
bases (http://www.insdc.org/) for comparison (Table 1)
[20,21,23-29]. The strains contained in the reference
showed nine serotypes (1/2a, 4a, 1/2b, 3b, 4b, 1/2c, 3c,
4c, and 7).

Whole-genome shotgun sequence
Strains F2-382 and NIHS-28 were cultured overnight in
brain-heart infusion broth (Eiken Chemical, Tochigi,
Japan) at 37°C. Bacterial DNA was extracted using the
phenol-chloroform extraction and ethanol precipitation
methods [43,44]. For whole-genome shotgun sequen-
cing, the GS Junior platform (Roche, Basel, Switzerland)
was employed using a GS Junior Rapid Library Pre-
paration Kit and a GS Junior emPCR Kit (Lib-L; Roche),
according to the manufacturer’s protocol. The read se-
quences were used to construct a contig without a refe-
rence sequence by de novo assembly, using the GS De
Novo Assembler (Roche). For this assembly, the pro-
gram parameters were set to: seed step, 12; seed length,
16; seed count, 1; minimum overlap, 10; and minimum
identity, 90.

Genome structural analysis
To construct the scaffolds from the contigs, the software
MAUVE v2.3.1 was employed, with the move contig
script using the default settings [45]. Strain F2365 was
chosen as a reference because it was aligned with the
largest number of contigs in the 22 reference strains.
The aligned contigs were constructed into a scaffold by
joining with an N of 100 bp between each contig.

Annotation
ORFs were extracted from each contig by using the
Glimmer v3.02 software [46]. The ORFs were imported
into the Genome Traveler software (In Silico Biology,
Kanagawa, Japan) for annotation. The microbial database
included in the software was used in combination with
the BLAST algorithm for annotation. ORFs that showed
less than 90% identity during the annotation process
were excluded from subsequent analyses; this threshold
indicated that the gene coding region had low reliability.

http://www.insdc.org/
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Recombination analysis
Recombination analysis was conducted according to Cao
et al.’s method [16]. To identify the core local collinear
blocks (LCBs), which are the sequence segments common
to all strains, the two scaffold sequences from F2-382 and
NIHS-28 were aligned with the complete whole-genome
sequences of the 22 reference strains with the MAUVE
software, using the progressiveMauve script [47]. Using
this alignment, 258 core LCBs were identified. Three inde-
pendent data sets were constructed by randomly extrac-
ting approximately 500-kbp sequences from core LCBs,
and evaluated by recombination analysis using Clonal-
Frame software v1.1 [48]. For this analysis, the parameters
were set to 25,000 rounds of burn within the 50,000 gen-
erations and 100 thinning intervals. To rule out any bias
among the three independent data sets, the results were
evaluated using Gelman-Rubin statistics.
In silico MVLST and MLVA
The genome regions for the targets of MVLST and
MLVA were extracted for cluster analysis from the 24 L.
monocytogenes sequences. The target loci for MVLST
analysis were chosen according to Zhang et al.’s method
[33]. The loci for MLVA were chosen according to Miya
et al.’s method [22]. Clustering analysis was conducted
using BioNumerics software v. 4.0 (Applied Maths, Sint-
Martens-Latem, Belgium) by using the categorical coef-
ficient and UPGMA method.
Single nucleotide polymorphisms
SNPs were identified for four strains (F2-382, NIHS-
28, F2365, and SLCC2378) that clustered in a single
group in recombination analysis. MUMmer software
v3.23 was employed to identify SNPs by alignment with
the reference sequence, F2365 [49]. To avoid false-
positives caused by sequencing errors and the problem-
atic 454 sequencing-related homopolymers for strains
F2-382 and NIHS-28, the polymorphisms that showed a
quality score of <40 or a depth of <10 in the de novo as-
sembly results were excluded from the SNP results.
Availability of supporting data
The draft genome sequences of strains F2-382 and
NIHS-28 were deposited in the Genbank/EMBL/DDBJ
database with the accession numbers BAZC01000001–
BAZC01000056 and BAZD01000001–BAZD01000035,
respectively.
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