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Abstract

known about its virulence mechanisms.

might represent novel virulence loci.

in the Pseudomonas group of bacteria.

Background: Pseudomonas fuscovaginae (Pfv) is an emerging plant pathogen of rice and also of other gramineae
plants. It causes sheath brown rot disease in rice with symptoms that are characterized by brown lesions on the
flag leaf sheath, grain discoloration and sterility. It was first isolated as a high altitude pathogen in Japan and has
since been reported in several countries throughout the world. Pfv is a broad host range pathogen and very little is

Results: An in planta screen of 1000 random independent Tn5 genomic mutants resulted in the isolation of nine
mutants which showed altered virulence. Some of these isolates are mutated for functions which are known to be
virulence associated factors in other phytopathogenic bacteria (eg. pil gene, phytotoxins and T6SS) and others

Conclusions: Being an emerging pathogen worldwide, the broad host range pathogen Pfv has not yet been studied
for its virulence functions. The roles of the nine loci identified in the in planta screen are discussed in relation to
pathogenicity of Pfv. In summary, this article reports a first study on the virulence of this pathogen involving in
planta screening studies and suggests the presence of several virulence features with known and novel functions

Background

Pseudomonas fuscovaginae (Pfv) is a Gram-negative,
fluorescent pseudomonad and a member of Gamma
proteobacteria [1,2]. Pfv is one of the 18 validly described
Pseudomonas plant pathogenic species, which are part of
the oxidase positive cluster [3,4]. This bacterium was first
identified and reported as a pathogen of rice (Oryza
sativa) in the temperate region of Japan in 1976 [2]. It has
now been described in several other regions of the world
where rice and other gramineae food crops are cultivated
including Burundi [5], Madagascar [6], Mexico [7], the
Philippines [8], Nepal [9], Brazil [10], China [11], Iran [12]
and more recently in Malaysia [13] and Australia [14].
Pfv causes brown sheath rot disease in rice and also in
other gramineae food crops including maize (Zea mays),
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sorghum (Sorghum bicolour) and wheat (Triticum aesti-
vum) [5,7]. Brown sheath rot symptoms on rice plants ap-
pear at all growing stages. At the seedling stage symptoms
start with yellow to brown discoloration on the lower leaf
sheath which later turns into grey-brown to dark-brown
and ultimately, the infected seedlings rot and die. In
mature rice plants Pfv symptoms can be observed on flag
leaf sheaths, other leaf sheaths and also on the panicles.
Under severe infection conditions, the entire leaf sheath
becomes necrotic and dries out. Spikelets of emerging
panicles may be discoloured, sterile or symptomless, ex-
cept for small brown spots [1,15].

A successful infection by a phytopathogenic bacterium
is not a single step process and is coordinated by several
functions including bacterial adherence, movement,
colonization, invasion, and suppression of host immunity.
Type IV pili are one of the best characterized adhesins
in Pseudomonas pathogens and it has been shown to
be involved in several functions including adhesion in

© 2014 Patel et al,; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain

Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article,

unless otherwise stated.


mailto:venturi@icgeb.org
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/

Patel et al. BMIC Microbiology 2014, 14:274
http://www.biomedcentral.com/1471-2180/14/274

P. syringae pv. phaseolicola [16], epiphytic fitness and
survival in P. syringae pv. syringae [17] and P. syringae
pv. tomato [18] and also in surface motility and virulence
in P. syringae pv. tabaci [19,20]. The colonization process
in Pseudomonas plant pathogens has been associated with
exopolysaccharides (EPSs) shown to be involved in biofilm
formation, epiphytic fitness and virulence [21,22]. The
invasion process of plant pathogens has also been linked
with secretion of several cell wall degrading enzymes in-
cluding pectinolytic enzymes, cellulases and lipase through
protein secretion systems [23]. Plant pathogenic bacteria
also have strategies to suppress the host defense responses
induced during the infection process by secretion of
effector proteins directly into the host cell through a
type III secretion system (T3SS) [24]. In addition to these
functions, phytopathogenic pseudomonads produce sev-
eral phytotoxins including coronatine, syringomycin, syr-
ingopeptin, phaseolotoxin, tabtoxin, and mangotoxin [25].
Quorum sensing (QS) signaling and its role in virulence
has also been studied in several Pseudomonas species
including P. aeruginosa [26-29], P. syringae pv. syringae
[30] and P. fuscovaginae [31].

To our knowledge no genetic and molecular studies or
screening for virulence-associated systems/functions in
Pfv have been reported. Only a few biochemical studies
have shown the production of three phytotoxins; namely
syringotoxin, fuscopeptin A (FP-A) and fuscopeptin B
(FP-B) [32,33] which have been shown to be able to
generate the disease symptoms. We reported the role
of the two QS systems in causing brown sheath rot by
Pfv in rice [31] and have also determined the first draft
genome sequence of a highly virulent Pfv strain [34]. In
this study an in planta screening of 1000 genomic Tn5
mutants has provided some insight into the virulence
associated functions in Pfv.

Results and discussion

Screening of P. fuscovaginae Tn5 mutants for altered
virulence in planta

As there are no major reports regarding virulence func-
tions of this emerging phytopathogen, we performed an in
planta screen of 1000 Tn5 genomic mutants to identify
genes and/or pathways that might influence Pfv virulence
potential. A Tn5 mutant bank of Pfv was generated as
described in the Materials and Methods section and 1000
insertion mutants randomly selected and numbered from
1 to 1000 were tested for virulence on plants of Chenopo-
dium quinoa. In this screen C. quinoa was chosen as a
plant model over rice because the infection protocol for
Pfv is simpler to perform in C. quinoa compared to rice
and therefore more suitable for a high-throughput screen
involving many mutants [31]. Plant inoculations were per-
formed as described in the Materials and Methods section
and virulence was assessed using the virulence score from
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0 to 5 as previously described [31] and presented here in
Additional file 1. In the first round of screening we
obtained 83 mutants that were altered for virulence
compared to wild type. In order to verify the results,
the 83 mutants were re-assessed for virulence in three
biological replicates using two independent plants (total of
six replicates). We then obtained a total of 9 mutants
(Table 1) that displayed consistent and a significantly re-
duced virulence compared to wild type Pfv (Table 2). None
of the mutants were affected in their growth pattern when
grown in liquid rich media (data not shown).

In order to verify the virulence deficiency of identified
mutants, infection assays were carried out using both C.
quinoa and rice plants. It was of interest to test all the
identified mutants in both models as the strain Pfv
UPB0736 was first isolated as a rice pathogen. Rice in-
fection was performed by syringe inoculation (100 pl of
10® cfu/ml) as described in the Materials and Methods
section and virulence was assessed using the virulence
score from O to 5 and also by measuring the lesion
length (as presented in Additional file 2). In rice, 5 out
of the 9 selected mutants had similar behaviour as in C.
quinoa, being reduced in virulence when inoculated
with a higher dose of bacteria (100 pl of 10® cfu/ml).
Three other mutants were also found with reduced viru-
lence, although the virulence level was not significantly
different compared to wild type. Surprisingly, Pfv 188
on the other hand showed a similar level of virulence
compared to wild type in rice (Figure 1).

We localized the Tn5 insertion site in these selected
nine Tn5 mutants and mapped their insertion position
in the Pfy UPB0736 draft genome (Figure 2). The nine Tn5
mutants were localized in genes coding for the following
features: an arsenic pump efflux (Pfv 80), two hypothetical
proteins (Pfv 90; Pfv 188), the type IV pilus biogenesis
protein, PilZ (Pfv 102), an N-acetyl-gamma-glutamyl-
phosphate reductase (Pfv 169), an acetylglutamate kinase
(Pfv 270), a phage tail fiber homolog protein (Pfv 420), a
syringopeptin synthatase C homolog (Pfv 445) and a bi-
functional sulphate adenylyltransferase subunit 1 (Pfv 480)
(Figure 2).

Validation of the genetic screening by re-generation of
knock-out mutants in the same loci and their genetic
complementation

In order to further verify the virulence phenotype of se-
lected Tn5 mutants, all mutants in the nine loci were in-
dependently re-generated via homologous recombination
as described in the Materials and Methods section. In
addition we also complemented three Tn5 mutants (Pfv
90, Pfv 420 and Pfv 445) by identifying the genomic region
harbouring each of the three loci from a cosmid library.
We re-assessed the virulence phenotype of the nine Tn5
mutants, their corresponding re-generated mutants and 3
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Table 1 Bacterial strains used in this study
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Strains Relevant characteristics® Reference/source
E. coli.

DHsa Cloning strain, Nal’ [35]
PRK2013 Helper strain for tri-parental conjugation, Km' [36]
Pseudomonas fuscovaginae (Pfv)

Pfv UPB0736 (NCPPB 3871) (WT) Wild-type strain isolated from diseased rice in Madagascar; Nf', Amp" [34]

Pfv 80 80: Tn5 of Pfv UPB0O736; Nff, Km" This study
Pfv 90 90: Tn5 of Piv UPB0O736; Nff, Km" This study
Pfv 102 102:: Tn5 of Pfv UPB0736; Nff, Km" This study
Pfv 169 169: Tn5 of Piv UPB0736; Nff, Km' This study
Pfv 188 188: Tn5 of Piv UPB0736; Nff, Km" This study
Pfv 270 270: Tn5 of Pfv UPB0736; Nff, Km' This study
Pfv 420 420: Tn5 of Pfv UPBO736; Nff, Km' This study
Pfv 445 445 Tn5 of Pfv UPB0736; Nff, Km" This study
Pfv 480 480: Tn5 of Pfv UPB0736; Nff, Km" This study
Pfv 80-pKNOCK 80:: pKNOCK mutant of Py UPB0736; Nf', Km" This study
Pfv 90-pKNOCK 90:: pKNOCK mutant of Pfv UPB0736; Nf, Km' This study
Pfy 102-pKNOCK 102: pKNOCK mutant of Py UPB0736; Nff, Km" This study
Pfv 169-pKNOCK 169: pKNOCK mutant of Pfv UPB0736; Nff, Km" This study
Pfv 188-pKNOCK 188: pKNOCK mutant of Py UPB0736; Nf', Km" This study
Pfv 270-pKNOCK 270: pKNOCK mutant of Pfiv UPB0736; Nf', Km" This study
Pfv 420-pKNOCK 420:: pKNOCK mutant of Py UPB0736; Nf', Km" This study
Pfv 445-pKNOCK 445:: poKNOCK mutant of Pfv UPB0736; Nf', Km' This study
Pfv 480-pKNOCK 480: pKNOCK mutant of Piv UPB0736; Nf', Km" This study
Pfv 90 + pCos90 pCos90: Pfv 90; Nf', Km'Tc" This study
Pfv 420 + pCos420 pCos420: Pfv 420; Nff, Km", T This study
Pfv 445 + pCos445 pCos445:: Pfv 445; Nf, Km'Tc" This study

%Nal", Nff Km', Tc" and Amp" indicates nalidixic acid, nitrofurantoin, kanamycin, tetracycline and ampicillin respectively.

Table 2 Virulence screening of Tn5 transposon mutants of P. fuscovaginae in C. quinoa plants

Pseudomonas fuscovaginae (Pfv) strains

Lesion scores in screen | (Average +S.D.)

Lesion scores in screen Il (Average £ S.D.)

Pfv UPB0736 (WT)
Pfv 80

Pfv 90
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Pfv 445

Pfv 480
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2,2,2,2,2,3216+040)7°
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0,1,1,223(150+1057
0,0,0,0,0,0 (0+0)°
0,0,0,0,0,0(0+0)
1L,1,1,1,1,1(0£07°
2,2,3,3,3,3(266+052°
2,2,2,2,2,2Q2+0F
1L,1,1,1,1,1 (007

Table showing disease severity for wild type and selected Tn5 mutants of Pfv based on their rating score in C. quinoa plants. A two-tailed, paired ‘t' test with 95%

of confidence intervals for independent means was performed between the wild type and each of Tn5 mutants.

2 significant difference to WT at P <0.05.
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Figure 1 Virulence score of selected Tn5 mutants in rice. Five week old susceptible rice cultivar Co-39 plantlets were inoculated using a 1 ml
syringe with 100 pl of the following Pfv strains: Pfv UPB0736 (WT), Pfv 80, Piv 90, Pfv 102, Pfv 169, Pfv 188, Pfv 270, Pfv 420, Pfv 445 and Pfv 480.
0.15 M saline solution was used as negative control. Data for rating score and lesion lengths were taken 8 days post inoculation. A. Disease
severity based on rating score. Figure showing disease severity (in %) for wild type and Tn5 mutants of Pfv based on their rating score from 0 to
5 in rice plants. B. Disease severity based on lesion length. Figure showing disease severity (lesion length in mm) for wild type and Tn5 mutants
of Pfv based on their lesion length score. Error bars indicate the standard deviation for readings from at least 12 inoculated leaves. Similar results
were obtained in independent experiments (data not shown). A two-tailed, paired ‘t' test with 95% of confidence intervals for independent means
was performed between the wild type and each of Tn5 mutants. a; significant difference to WT at P <0.05.

Score 5
Score 4
Score 3
m Score 2
m Score 1
u Score 0

complemented strains in rice plants by pin prick in-
oculation (this type of infection results in the inocula-
tion of a lower dose of bacteria as the sterile pin was
dipped in a suspension of 10° cfu/ml). Eight of the nine
TnS5 mutants and their respective re-generated knock-outs
showed similar results displaying virulence deficiency
(P <0.05) as observed when inoculated with higher doses
of bacteria in rice. Whereas Pfv 188 again displayed viru-
lence symptoms similar to wild type strain as obtained
with syringe inoculations (Figures 3 and 4). With respect
to complementation in these experiments, the mutant Pfv
90, harbouring the cosmid clone carrying the correspond-
ing wild-type locus, regained virulence completely. On the

other hand the virulence assays with mutants Pfv 420 and
445 harbouring cosmid clones isolated from the gene bank
did not result in complementation (Figures 3 and 4). Mu-
tant Pfv 445 had the Tn5 inserted in a gene homologous
to the one coding for the syringopeptin C of P. syringae
pv. syringae (Pss) B728a, thus this gene is most probably
involved in the biosynthesis of one of the fuscopeptins
produced by Pfv. Peptide synthetases are very large ORFs;
for example in Pss B728a the three syringopeptin genes
sypA (16119 bp), sypB (16410 bp) and sypC (40614 bp) are
at least 16 kb in size (Additional file 3). The TnS5 insertion
region in mutant Pfv 445 was found in a gene homologous
to syringopeptin C of Pss B728a. This homologous gene in
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- (97851.98843)  (96840.99811) (101236-100052) {0, (03235q01075)  (104535:403270)  (105277-104726) (107060-105897)
Oligopeptide transport  Dipeptide transport Probable 101563) Arsenic Permeases HP in Alcohol
ATP-binding protein  ATP-binding protein sugar HP efflux pump of the major PFGI-1-like dehydrogenase
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transporter P superfamily
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(43094.42684) |4A3:1a.us'271 (4501445859)  (45926.47008) :70‘&'4131‘2) Jﬁ:“”:n (:osa'{ms:a)
Cytosolic long-chain enosyl- Methylene.  FIG00955959; P eriplasmic lependent rotein ycel
homocysteinase binding protein, RNA helicase precursor
acyl-CoA EC 3314 tetrahydrofolate HP . RhIE
thioester hydrolase ( -31.) reductase putative
family protein (EC 1.5.1.20)
290192 (+/-)
LR = = L]
Pfv102 T o000 TN Contig_38_from_Pfv UPB0736
(286397-  (287020-  (288067-287099) (288310-288172) (290051-289269) (290422  (291447.290461)  291659.292414)  (293977-2927%)  (294812-293997)
285834)  286415)  Molybd T ipti Deoxyribo-  -290066) poly i Fl i
FIG003620: Lipoprotein cofactor regulator, nuclease  TypelV  lll delta prime monophosphate Protein YceG chorismate
i is  TetR family YefH Pilus subunit kinase, putative like lyase
pho- protein MoaA Putative biogenesis (EC 2.7.7.7 (EC 4.1.3.38)
glycan protein
precursor Pilz
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2,500 5,000 7,500
(1370-2878) (2882:3973)  (4385.4035)  (55074553)  (57226153)  (6340.7182)  (7305-8093) (8565.9281)
Cell wall AnhydroN-  Probable Nacetyl-  Protopor-  FIG00954311: Oxi u i
endopeptidase acetylmuramic  iron binding gamma- phyrinogen HP short chain hydroxylase
, family acid kinase protein from the glutamyl- X oxidase, dehydrogenase PA0ESS
M23/M37 HesB phosphate  novel form, Ireductase family
_lscA_SufA reductase HemJ
family
244624 (+I+)
Pfv188 s = L = s s Contig_320_from_PfvUPB0736
2,42,500 2,45,000 2,417,500
— —_— — —
(240970-  (241507-  (241937-242824) (244386242974 (244512.245612)  (245633-246928)  (246997- 247541.248026) (248386.249039)
241596) 241926) Heme O Transcriptional HP HP 247488) HP Probable
Cytochrome Cytochrome  synthase, regulator, GntR Endo- glutathione
O ubiquinol O ubiquinol protoheme IX family domain / ribonuclease S-transferase,
oxidase oxidase farnesyltransfera Aspartate L-PSP YfcF homolog
subunitlll  subunitlV se COX10-CtaB aminotransferase
293440 (+1-)
see s Contig_41_from_Pfv UPB0736
Piv270 2,92,500 ' 2,95,000 ' 2,97,500 ' 941 from
(290340-291062) (291903-  (291985-292629) (294183.293278) (296824-294236) (297363-296908)  (298712-299386)  (301008-299419)
Ribonuclease 291124) Orotate Ph mutase yuridi DNA repair  Dipeptide-binding
PH Exodeoxy- phosphoribosylt kinase I Phosphogluco-mutase 58#39;. protein ABC transporter,
(EC27.7.56)  ribonuclease ransferase triphosphate RadC periplasmic
n nucleotido- substrate-binding
hydrolase component
13816 (+/+)
Pfvd20 eoe 7 = ; = + e+ Contig_70_from_PfvUPB0736
10,000 12,500 15,000 17,500
(10129.9566)  (11203-10157) (11385- (12286-11441) (14356-12296) (15240-14356) (15431-  (15563- (15966- (16220 (16861. (18158-17808)
Lytic FIG032563: 11260) Phage Phage tail fibers Baseplate  15237)  15910) 16214) 16864) 17175) HP
enzyme Phage tail Prophage protein Assembly Baseplate Baseplate HP  HP Baseplate
D protein  PSPPH02, u protein J assembly assembly assembly
D tail protein  protein protein
protein X w v v
94407 (+1-)
Pfvd4s == o o007 500507 00,0001 1.ﬁm' ¢ ¢+ Contig_36_from_PfvUPB0736
(T8077- (79422- (81802-(83585- (84794- amino acid (114082-155485) (117827.122581)
79283) 80801) 80798) 82692) 83817) adenylation HP Long.chain.
Alphalbeta HP  HP  HP HP (homologous to fatty-acid
hydrolase Syringopeptin CoA ligase
fold synthetase C
88021 (+/+)
Pfv480 s e T — o T + s+ Contig_27_from_PfvUPB0736
—_
(83657-83872) (83929.86028) (86140.87045) (89045.87147) (89978.89061)  (90903.90145)  (91005.92162)
FIGD0956983: Phosphate FIG018329: Sulfate Sulfate adenylyl. ~ FIG137478: Outer
Hypothetical acetyltransferase 1-acyl-sn- i
protein glycerol-3- ase subunit 1) / subunit 2 protein stress sensor
protease Deg$
acyltransferase kinase
Figure 2 Localization of Tn5 insertions in identified Pfv UPB0736 mutants. Localization of Tn5 insertion for the nine mutants in Piv UPB0736
draft genome. A red coloured triangle indicates the position of Tn5 insertion. +/- sign indicates the orientation of Tn5 insertion respective to the
orientation of ORF. ORF with + or - orientation are indicated in brown and green colour respectively. Each ORF has been indicated for its size and
name just below to each ORF arrow. Flanking region of Tn5 insertion for each contig is shown by a solid line with respective positions. Stretches
of dotted black line in Pfv 445 indicates unassigned nucleotides (n). Hypothetical proteins are abbreviated as HP.
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Figure 3 Virulence phenotype of selected Pfv strains in rice.
Five week old susceptible rice cultivar Baldo were pin prick inoculated
by dipping into 10° cfu/ml inoculums of Pfy strains. A: Tn5 mutants
Pfv 80, Pfv 90, Pfv 102, Pfv 169, Pfv 188, Pfv 270, Pfv 420, Pfv 445 and
Pfv 480. B: knock-out mutants of Pfv 80, Pfv 90, Pfv 102, Pfv 169, Pfv
188, Pfv 270, Pfv 420, Pfv 445 and Pfv 480. C: complemented strains
Pfv 90 + pCos 90, Pfv 420 + pCos 420 and Pfv 445 + pCos 445. Pfv
UPB0736 (WT) and MQ water were used as positive and negative
control respectively. Figure showing the disease symptoms were
taken 10 days post inoculation.

the Pfy UPB0736 draft genome sequence contained
stretches of unassigned nucleotides and it is likely to be an
unusually large ORF. It is therefore possible that the cos-
mid clone used did not harbour the complete gene hence
it could not complement the mutant Pfv 445. Mutant Pfy
420 had the Tn5 transposon insertion in a gene encoding
for a protein with significant homology to a phage tail
fiber. In Pfv this gene is located in a cluster of genes with
phage related functions that are probably part of an op-
eron. Again, lack of complementation could be due to the
cosmid clone not containing all the genetic material ne-
cessary for the complementation. Another possibility for
not having complemented the virulence phenotype of Pfv
420 and Pfv 445 could be due to multicopy allele effects of
these genes which may cause instability or fitness cost. In
summary, 8/9 mutants identified using C. quinoa as infec-
tion model were also found affected for virulence in a
similar manner in rice (except Pfv 188) when inoculated
with low doses of bacteria. The same profile of viru-
lence in rice was also obtained with independently gen-
erated mutants in the same loci as the identified
virulence defective mutants; all these data further con-
firm the results of the genetic screen and indicate that
the inactivated functions in the identified mutants are
directly or indirectly associated with Pfv virulence.

The nine genetic loci identified in the screen and their
inference in virulence

Here below we describe the nine loci in which the Tn5
insertions were located in relation to their potential role
in virulence.

Virulence deficient mutants Pfv 80, 169, 270 and 480 have
transposon insertions in genes involved in various
metabolic functions

Pfv 80: the Tn5 was localized in a gene that displays
significant identity to an arsenic efflux pump protein
(Figure 2). Arsenic is a toxic metalloid and resistance
to this metal has already been described in Gram-positive
and also in Gram-negative bacteria [37]. We do not know
the exact mechanism of involvement in virulence for ar-
senic pump efflux protein in Pfy. However, being a toxic
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Figure 4 Virulence score of selected Pfv strains in rice. Five week old susceptible rice cultivar Baldo were pin prick inoculated by dipping into
10° cfu/ml inoculums of following Pfv strains: Piv UPB0736 (WT), nine Tn5 mutants, the respective nine knock-outs and three complemented
strains. Sterile MQ water was used as negative control. Data for rating score and lesion lengths were taken 10 days post inoculation. A. Disease
severity based on rating score. Figure showing disease severity (in %) for Pfv strains based on their rating score from 0 to 5 in rice plants.

B. Disease severity based on lesion length. Figure showing disease severity (lesion length in mm) for Pfv strains based on their lesion length
score. Error bars indicate the standard deviation for readings from at least 10 inoculated leaves. Similar results were obtained in independent
experiments. A two-tailed, paired ‘t' test with 95% of confidence intervals for independent means was performed between the wild type

and each of Tn5 mutants. a; significant difference to WT at P <0.05.

metal, export of arsenic through this efflux protein could
be essential for a proper metabolic function and survival
of the bacterial cell. It is possible that the inability of the
Pfy mutant bacterium to expel this or a related toxic metal
ion from the cytoplasm diminishes its viability in planta
and thus makes it less virulent or less fit for growth in this
environment compared to the wild type Pfv. Virulence
studies in the grapevine pathogen, Xylella fastidiosa
and in the fire blight pathogen, Erwinia amylovora,

tolC mutant affected for efflux pump functions have
shown their involvement in virulence and in planta fitness
[38,39]. It is possible that these efflux pumps are involved
in exporting heavy metals, antimicrobials or harmful plant
phenolic compounds which are released as part of the
plant defense response.

Pfy 169 and Pfv 270: In both mutants Pfv 169 and Pfv
270, the Tn5 was located in genes involved in the bio-
synthesis of the amino acid arginine [38]. Pfv 169 and
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Pfv 270 were found mutated in an N-acetyl-y-glutamyl-
phosphate reductase gene (argC) and N-acetylglutamate
kinase gene (argB) respectively. The two enzymes catalyze
the conversion of N-acetylglutamate in N-acetylglutamate
semialdehyde, via N-acetylglutamyl phosphate. Specific-
ally, N-acetylglutamate kinase encodes the key enzyme for
the biosynthesis of arginine and is inhibited by the reaction
product [39,40]. In order to further verify that the two iso-
lated mutants were affected for arginine biosynthesis, an
arginine auxotrophy assay was performed as described in
the Materials and Methods section. Pfv 169 and Pfv 270
mutants and their respective re-generated mutants were
found affected for growth on M9 agar plates lacking the
amino acid arginine. Supplementation of arginine in
M9 agar restored the growth defect of Pfv 169 and Pfv
270 mutants and their respective re-generated mutants
(Additional file 4). The chemical complementation by
arginine supplementation further confirmed that the
two mutants affect the biosynthesis are involved in ar-
ginine biosynthesis pathway. Besides having a crucial
role in metabolism and growth, arginine was also
shown to have a role in virulence. Arginine is one of the
components of ethylene biosynthesis and together with
oxoglutarate, is used by the ethylene forming enzyme
(EFE) to produce ethylene. Mutants in efe no longer
produce ethylene and were found virulence deficient in
P. syringae pvs. glycinea and phaseolicola [41]. Interest-
ingly, a homolog of efe is present in Pfv UPB0736 draft
genome (data not shown). Arginine is also a fundamen-
tal part of the signal peptide that directs the protein to
the transport system called twin-arginine translocation
system. The consensus sequence of the proteins harbouring
the double arginine motif, contains two arginine repeated
Ser/Thr-Arg-Arg-X-Phe-Leu-Lys. Furthermore, mutants
for the twin-arginine translocation system in P. syringae
spp. showed reduced viability and virulence in planta
[42,43]. It is therefore possible that the reduced viru-
lence of mutants Pfv 169 and 270 is caused not only by
a deficiency in the metabolism of arginine but also due
to a role directly related to pathogenesis via ethylene
and protein transport.

Pfv 480: Mutant Pfv 480 had a mutation in a gene that
encodes a bi-functional protein with two enzymatic activ-
ities: sulfate adenylyltransferase and adenylylsulfate kinase.
Both of these activities are important in the metabolism of
sulfur. The sulfate adenylyltransferase catalyzes the first
intracellular reaction for the assimilation of sulfur with
the use of a molecule of ATP and leading to the formation
of adenosine-5-phosphosulfate (APS). This compound is
pivotal for the biosynthesis pathway of amino acids
that contain sulfur, namely cysteine and methionine.
The adenylylsulfate kinase utilized the same substrate as
APS catalyzing its conversion into 3'-phosphoadenosine
5'-phosphosulfate (PAPS) using ATP molecules. PAPS
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is a universal donor of the sulfate group and is used as
the substrate for important enzymes such as sulfo-
transferase [44]. It is currently unknown how these
enzymes crucial for the metabolism of sulfur are involved
in virulence.

Virulence deficient mutant Pfv 102 is affected in type IV pili

biosynthesis

The Tn5 transposon localized in the Pfv 102 mutant was
found in Type IV pilus biogenesis gene pilZ encoding a
protein that displayed significant identity (82 to 92%)
with PilZ of other pseudomonads. The PilZ protein is
one of the several Pil proteins that are associated with
type IV pili biosynthesis. PilZ is the only protein that is
not part of the pili biosynthesis operon and is located as
a single transcriptional unit in the genome of pseudomo-
nads. Type IV pili genes are found not only in pseudomo-
nads but also in other Gram-negative bacteria including
xanthomonads and are implicated in a wide spectrum of
roles including adhesion, motility, secretion and virulence.
The role of PilZ in the formation of Type IV pili has not
yet been well established. In some cases, knock-out mutants
are incapable of secreting a protein which constitutes the
pilus whereas in other cases PilZ does not seem to be es-
sential for the formation of the pilus and for bacterial
movement [45-47]. In recent years, sequencing of several
bacterial genomes has revealed the presence of a PilZ do-
main in many proteins and has associated the function of
this domain with the binding of the second-messenger
cyclic guanosine monophosphate [46]. The c-di-GMP
regulates many functions including aggregation, biofilm
formation, EPS production, adhesion, movement and viru-
lence [48]. It is possible that PilZ in Pfv can influence the
signalling cascade mediated by c-di-GMP that could be
involved in the pathogenic process.

Virulence deficient mutant Pfv 420 is most likely affected in

type VI secretion machinery

TnS5 transposon localized in Pfv 420 mutant was found
in a gene encoding a protein annotated as a phage tail
fiber in Pfv UPB0736. This gene was found adjacent to
other loci encoding phage related proteins; namely the
phage protein U and baseplate assembly protein J (Figure 2).
Phage related functions are reported to be present in
25% of the Gram-negative bacterial genomes [49]. These
genes encode for protein components that are structur-
ally similar to tailed bacteriophages and are possibly in-
volved in synthesizing a specialized contractile injection
system that is known as Type VI secretion system (T6SS).
Based on structural similarities, T6SS appeared as an
inverted phage tail on the surface of the bacterial cell and
it secretes effector proteins into the extracellular milieu or
injects them directly into host cells by a puncturing mech-
anism [50-53]. A common evolutionary history has been
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proposed for the two injection machines present in
bacteria and bacteriophages [52,54]. In plant associated
bacteria, T6SS has been implicated in several functions
including tumorigenesis in Agrobacterium [55], pro-
grammed cell death in the filamentous fungus Newurospora
crassa by Pss B728a [56] and virulence in Pectobac-
terium [57]. Interestingly, P. fuscovaginae UPB0736
possesses a T6SS (data not shown). Consequently the
TnS5 mutation in phage tail fiber-like protein most likely
results in a non-functional T6SS secretion machinery for
delivery of effector proteins in Pfv UPB0736 thus affecting
virulence.

Virulence deficient mutant Pfv 445 is most likely affected in

phytotoxin production

In this mutant the sequence of the gene inactivated by
Tn5 displays 96% identity with the gene of P. syringae
that encodes an enzyme called syringopeptin synthetase
C (sypC). In P. syringae this gene is 40614 bp long and is
part of a gene cluster of 73800 bp that also includes
syringopeptin synthetase A (sypA) and syringopeptin
synthetase B (sypB) [58] (Additional file 3). The genetic
organization of these loci reveals that several genes
flanking this locus are conserved among other Pseudo-
monas cyclic lipopeptides (CLP) biosynthesis clusters,
including two genes encoding a putative macrolide
transporter MacA and MacB. Genes encoding MacA
and MacB have been reported in syringopeptin, syringo-
mycin [59,60] and entolycin biosynthesis gene clusters
[61] and they were also found in Pfy UPB0736 (data not
shown). The three peptide synthetases are responsible for
the biosynthesis of non-ribosomal syringopeptin, which
represents one of the major virulence factors in P. syringae
[62]. Pfv produces phytotoxins which are similar to
syringopeptin and are called fuscopeptins A and B
[63]. These lipodepsipeptides show numerous struc-
tural and functional characteristics common to syrin-
gopeptin isolated from P. syringae. The distinguishing
feature of the mechanism of action of these lipodepsipep-
tides is their ability to interact with biological membranes.
The amphipathic nature of these molecules allows their
insertion into the lipid bilayer, with the consequent forma-
tion of ion channels that cause the alteration of the mem-
brane potential and in turn the loss of intracellular
material [64]. The leakage from the host cells enriches the
intercellular fluid with sucrose, amino acids, inorganic
ions and other supplements that could be supporting the
bacterial multiplication [63]. These phytotoxins are also
able to play a role on disease symptoms by inducing injur-
ies in the host plant. Syringotoxin has also properties of
surfactant, fungicidal action and alteration in proton gra-
dient. The antagonistic activity is likely to increase the
competitive ability of Pfv against other colonizers of leaf
surfaces. Although in earlier studies three Pfv phytotoxins
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were characterized biochemically, here we report that a
mutant in a vital gene for the biosynthesis of at least one
of them results in Pfv being significantly less virulent.

Virulence deficient mutant affected in hypothetical proteins
(Pfv 90 and Pfv 188)

Pfy 90 mutant had a Tn5 insertion localised in a gene
encoding for a hypothetical protein; adjacent to this
ORF there is a methylene tetrahydrofolate reductase
gene and a gene encoding a periplasmic binding protein
(Figure 2). The spacing between the gene encoding the
hypothetical protein and the next ORF (periplasmic
binding protein) is only 46 bp thus we cannot exclude
that the Pfv 90 mutant phenotype that could be associ-
ated with periplasmic binding gene located downstream
in an operonic organization. Mutant Pfv 188 on the
other hand, had the Tn5 insertion localized in a gene
coding for a hypothetical protein that is flanked by a
gene coding for a transcriptional regulator possessing a
GntR family domain on one side and by a gene encoding
a hypothetical protein on the other side. The gene en-
coding the neighbouring hypothetical protein is 21 bp
away from the gene in which Tn5 insertion is localised
hence they could be organized in operonic structure.
Complementation using cosmid clones resulted in the
restoration of virulence for Pfv 90 indicating that Pfv 90
locus was responsible for causing a virulence deficiency.
We did not find any information related to virulence
functions for Pfv 90 in the literature suggesting that this
is a novel gene and is implicated in virulence in Pfv.

Conclusions

Despite the importance of Pfv as an emerging pathogen
worldwide, to date no major studies have been performed
to understand the mechanisms of Pfv pathogenicity. In
2012 we reported the first genome sequence of a highly
virulent strain UPB0736 [34] and since then the genome
sequence of another strain has been published [65] and
many more genomes will most probably be sequenced
in the future. In this study, we sought to identify and
characterize some of the genes involved in Pfv virulence
through an in planta screening of 1000 Tn5 mutants;
nine mutants that showed virulence deficiency compared
to the wild type were identified. The inactivated loci in
these mutants include some metabolic functions and also
some known virulence associated functions such as type
IV pilus biogenesis protein PilZ, T6SS machinery and syr-
ingopeptin synthetase. The results of this study highlight
the fact that Pfv might share features of some of its viru-
lence mechanisms with other phytopathogens. In addition,
new loci never reported as being involved in virulence and
encoding for hypothetical proteins have been found. Gen-
ome mining with future virulence studies will further
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highlight the mechanisms of virulence of this broad host
range emerging phytopathogen.

Methods

Bacterial strains, plasmids, and culture media

The bacterial strains used in this work are listed in
Table 1. The plasmids used and generated in this study
are listed in Additional file 5. Pseudomonas fuscovaginae
(Pfv) strains were grown at 28°C in Luria Bertani (LB)/
King’s B (KB) medium, and E. coli strains were grown at
37°C in LB medium, as described previously [31]. The
concentrations of antibiotics used in this study were as
follows: Nitrofurantoin (Nf); 100-150 pg/ml, Ampicillin
(Amp); 100 pg/ml, Kanamycin (Km); 50 pg/ml, Tetracyclin
(Tc) 30 pg/ml for Pfv and Amp; 75 pg/ml, Km; 50 pg/ml,
Tc; 15 pg/ml for E. coli.

Recombinant DNA techniques

Routine DNA manipulation steps such as digestion with
restriction enzymes, agarose gel electrophoresis, purifica-
tion of DNA fragments, ligations with T4 ligase, radio-
active labelling by random priming and transformation of
E. coli etc. were performed as described previously [66].
Colony hybridizations were performed using N + Hybond
membrane (Amersham Biosciences); plasmids were puri-
fied using the EuroGold plasmid columns (Euro Clone) or
with the alkaline lysis method [67]; total DNA from Pfv
strains were isolated by Sarkosyl/Pronase lysis as described
previously [68]. PCR amplifications were performed using
Go-Taq DNA polymerase or pfu DNA polymerase
(Promega). The oligonucleotide primers used in this
study are listed in Additional file 6. Automated sequencing
was performed by Macrogen sequence service (Europe).
Triparental matings between E. coli and Pfv were carried
out with the helper strain E. coli DH5a (pRK2013) [36].

Generation of Tn5 mutant library of Pfv UPB0736

Tn5 mutagenesis was performed by using triparental
matings between donor E. coli (pSUP2021) containing the
transposon Tn5 (Km resistance), a helper E. coli strain
(pRK2013) and recipient Pfv UPB0736 strain. Briefly, Pfv
UPB0736, donor and helper E. coli strains were grown
overnight in 20 ml of LB media supplemented with ap-
propriate antibiotics. Cells were pelleted, washed and
re-suspended in 10 ml of sterile LB media. Absorbance
of all three strains were measured and cells were mixed
in the following ratio: recipient Pfv UPB0736, 2x10°
colony forming units (cfu/ml); helper E. coli, 4x10°
cfu/ml; donor E. coli, 4x10° cfu/ml. The mixture of
cells were pelleted out, re-suspended in small volume
of LB media and spotted onto Hybond N Plus nylon
membrane (Amersham Pharmacia Biotech) that was
overlaid on LB agar. Overnight incubated cells grown at
28°C were scraped from the membrane and re-suspended
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in 1 mL of sterile LB media. The cell suspension (50 ul
each) was plated on LB agar plates containing Nf and Km.
The plates were incubated at 28°C for 2-3 days to allow
the growth of transconjugants (Tn5 mutants). The Pfv
TnS5 mutants were then patched onto LB agar plates with
Nf and Km, grown in liquid media and a glycerol stock
was prepared and stored at -80°C.

Screening of Pfv UPB0736 Tn5 mutants for virulence
deficiency in Chenopodium quinoa (C. quinoa) and rice
plants

One thousand independent Tn5 mutants of Pfv UPB0736
were grown on fresh LB agar plates and inoculated in-
dividually in greenhouse-grown 2 week old C. quinoa
plants. Inoculation was performed using a needle (size;
21 G x 1 %”) by touching the strains on plates and
pricking onto twigs of C. quinoa plants. After 5 days of
inoculations, brown sheath rot disease symptoms were
observed and scored on a scale of 0 to 5 as previously
reported [31] and shown again here in Additional file
1. Pfv Tn5 mutants with deficiency in virulence com-
pared to wild type were subjected to a second round of
screening using two independent plants.

In order to verify the virulence phenotype of selected
TnS mutants from the C. quinoa screen, mutants were
re-inoculated on rice plants which is a real host for this
bacterium. Rice plants (cultivar Co-39) were grown in
the growth chamber at 28 + 4°C and approximately 70%
relative humidity. Along with wild type Pfv UPB0736,
the selected Tn5 mutants were grown for 48 hrs in KB
medium. Bacterial cultures were diluted to 10® cfu/ml
using 0.15 M saline solution and inoculated onto five
week-old rice plants using a 1 ml syringe. Inoculation
was performed by injecting 100 pl of bacterial culture in
the rice plantlet at 5 cm above ground. After inoculation,
plantlets were kept in a humid chamber at 20-30°C for
disease development. Each bacterial strain was inocu-
lated in rice plantlets in at least 12 replicates. Eight days
after inoculation, data for disease severity in lesion
lengths (mm) and disease rating score (on a scale from 0
to 5) were collected and analysed for statistical significance
using two-tailed, paired 7 test with 95% of confidence
intervals.

Localization of Tn5 insertion

Genomic DNA was isolated from selected Pfv Tn5 mu-
tants and double digested either with BamHI + EcoRI,
BamHI + Sacl or BamHI + Clal. These double digested
products were ligated in pBluescript (double digested
with the corresponding set of enzymes), transformed
into DH5a E. coli cells and selected on LB agar plates
with ampicillin (75 pg/ml) + kanamycin (50 pg/ml). These
pBluescript clones having the insertion of Tn5 flanking re-
gions were sequenced using Tn5 specific Tn5-Ext primers
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(Additional file 6). Sequences obtained were subjected to
homology searches using NCBI Blast and also with the
draft genome sequence of Pfy UPB0736 using a local blast
algorithm. The exact positions of TnS5 insertion were
mapped in the Pfv UPB0736 draft genome. We also per-
formed arbitrary PCR using pairs of primers mentioned in
Additional file 6 as previously described [69]. Arbitrary
PCR products cloned in pGEM-T easy were also se-
quenced using pGEM-T easy vector specific primers.

Confirmation of Tn5 mutations

The selected Tn5 mutants were reconstructed by deletion
of the wild-type genes via homologous recombination
with the use of the pKNOCK-Km suicide delivery system.
Briefly, an internal fragment of each Tn5 insertion locus
was amplified by PCR using primers listed in Additional
file 6 and cloned in pGEMT-easy vector. EcoRI digested
internal fragments were ligated to EcoRI digested
pKNOCK-Km and transformed into C118 cells yielding
pKNOCK plasmids having internal fragments from se-
lected TnS5 loci. These pKNOCK plasmids were further
used as a suicide delivery system and the nine Tn5 mu-
tants from Pfv 80 to Pfv 480 mutants were regenerated in
the wild-type as previously described [70]. Pfv mutant
strains were verified by PCR analysis and sequencing.

In order to complement Pfv UPB0736 Tn5 mutants, a
cosmid library was constructed from the Pfv UPB0736
strain by using the cosmid pLAFR3 [71] as a vector. In-
sert DNA was prepared by partial EcoRI digestion of the
genomic DNA and then ligated into the corresponding
site in pLAFR3. The ligated DNA was then packaged
into N phage heads using Gigapack III Gold packaging
extract (Stratagene) and the phage particles were trans-
duced to E. coli HB101 as recommended by the supplier.
In order to identify the cosmids containing the genes of
interest (90, 420 and 445), the cosmid library was
screened using radio-labelled probes for Tn5 insert re-
gions from 90, 420 and 445 in colony hybridization. We
obtained respective cosmid clones pCos 90, pCos 420
and pCos 445 in this screen. It is not known whether
the cosmids contain the full length genes for 90, 420 and
445 (Additional file 5) and they were introduced in Pfv
90, Pfv 420 and Pfv 445 TnS5 mutants respectively by
conjugation. Positive complemented clones were selected
on LBA plates supplemented with Nf, Km and Tc.

Arginine auxotrophy assay

Stock solution of arginine-HCl (Sigma Chemicals) was
prepared at a concentration of 100 mg/ml in sterile MQ
water and filter sterilized. M9 agar plates with 0.2%
glucose and with and without arginine (100 pg/ml)
were prepared. The Pfv wild type strain, the two argin-
ine biosynthesis defective Tn5 mutants Pfv 169 and Pfv
270, their respective re-created knock-out mutants and
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one other Tn5 mutant Pfv 102 as a control were streaked
onto each of these plates and incubated at 30°C for
24-48 hrs.

Virulence assay in rice by pin prick inoculation

Pfv in planta virulence assay was performed on rice
plants by pin pricking method with some modifications
as described previously [31]. Briefly, the seeds of a sus-
ceptible rice variety (Baldo) were surface sterilized using
washes with hypochloride and sterile MQ water. Surface
sterilized rice seeds were germinated on a sterile filter
paper in a petriplate in the dark at 30°C. Rice seedlings
of 5 to 6 cm growth stages were planted in 50 ml falcon
tubes containing Hoaglands solutions with 0.5% agar.
The transplanted rice plants were maintained in a climate
controlled room with conditions set to 70% humidity,
16/8 hours light/dark and temperature at 28°C and watered
regularly. For inoculation, Pfv strains were grown for 24 hrs
on LBA medium supplemented with appropriate antibi-
otics, at 30°C. Bacterial cultures were pelleted down
washed with sterile MQ water and adjusted to approxi-
mately 10° cfu/ml in sterile MQ water. Four to five week
old rice plants were pin prick inoculated using a sterile
board pin by dipping in the bacterial inoculum. For each
strain, 10 plants were inoculated in two different sites
each and control plants were inoculated in the similar
manner using sterile MQ water. In order to determine
in planta virulence of Pfv strains, disease severity was
assessed on the 10™ day post inoculation by measuring
the browning lesion length neighboring to the zone of
inoculation and also by assessing their disease rating
score (scale of 0 to 5). Virulence score with average and
standard deviations are presented. The statistical signifi-
cance was performed using two-tailed, paired ‘¢ test
with 95% of confidence intervals.

Additional files

Additional file 1: Virulence score of Pfv strains in Chenopodium
quinoa. Severity scale used to evaluate disease caused by Pfv infection
on Chenopodium quinoa: severity score 0; No symptoms, severity score 1;
Necrosis on less than 2 mm around the puncture, severity score 2;
Necrosis on 2 to 10 mm around the puncture, severity score 3; Necrosis
on 2 to 10 mm around the puncture and bending of petiole, severity
score 4; Collapse of the petiole and severity score 5; Wilting of the leaf.

Additional file 2: Virulence score of Pfv strains in rice. lllustration of
the rating scores used in evaluating the severity of sheath rot lesions on
rice inoculated with bacterial strains. A: severity score 0; No symptoms
only the sign of the injection puncture, B: severity score 1; Necrosis
around the puncture till 1 cm, C: severity score 2; Necrosis around the
puncture and chlorosis from 1 to 2 cm, D: severity score 3; Necrosis
around the puncture from 2 to 3 c¢m, E: severity score 4; Necrosis around
the puncture from 3 to 5 cm and F: severity score 5; Necrosis around the
puncture from 5 cm and above.

Additional file 3: Syringopeptine operon in Pss B728a.

Additional file 4: Arginine auxotrophy. The wild type, two arginine
biosynthesis defective Tn5 mutants Piv 169 and Pfv 270, their respective
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knock-out mutants and one other Tn5 mutant Pfv 102 as a control were
streaked onto A: LB agar plate, B: M9 plate with 2% CAS amino acid, C:
M9 plate with 2% glucose and D: M9 plate with 2% glucose and

25 pg/ml of arginine-HCI. (+) and (-) indicates growth and no growth
respectively.

Additional file 5: List of plasmids used in this study.

Additional file 6: List of primers used in this study.
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