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Abstract
Background: Finding the amino acid mutations that affect the severity of influenza infections
remains an open and challenging problem. Of special interest is better understanding how current
circulating influenza strains could evolve into a new pandemic strain. Influenza proteomes from
distinct viral phenotype classes were searched for class specific amino acid mutations conserved in
past pandemics, using reverse engineered linear classifiers.

Results: Thirty-four amino acid markers associated with host specificity and high mortality rate
were found. Some markers had little impact on distinguishing the functional classes by themselves,
however in combination with other mutations they improved class prediction. Pairwise
combinations of influenza genomes were checked for reassortment and mutation events needed
to acquire the pandemic conserved markers. Evolutionary pathways involving H1N1 human and
swine strains mixed with avian strains show the potential to acquire the pandemic markers with a
double reassortment and one or two amino acid mutations.

Conclusion: The small mutation combinations found at multiple protein positions associated with
viral phenotype indicate that surveillance tools could monitor genetic variation beyond single point
mutations to track influenza strains. Finding that certain strain combinations have the potential to
acquire pandemic conserved markers through a limited number of reassortment and mutation
events illustrates the potential for reassortment and mutation events to lead to new circulating
influenza strains.

Background
Influenza A has evolved toward host specific mechanisms
of infection leading to genetic divergence between human
and avian strains. Sequence divergence is so striking that
single nucleotide counts are sufficient for classifying the
host type for most influenza strains when analyzing
whole segment or whole genome data [1]. A notable
exception is the H5N1 avian strain that crosses the species
barrier and can lead to deadly human infection. The H5

surface protein, hemagglutinin (HA), in some cases is able
to recognize human cell receptors [2,3] along with muta-
tions that allow the virus to better survive in the upper res-
piratory tract [4]. To date, however, there are relatively low
numbers of human H5N1 infections compared to the
more human persistent subtypes, which may be in part
due to inefficient human to human transmission [5,6]. In
this study the influenza viruses from the pandemics of
1918, 1957 and 1968 with elements of avian (or avian-
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like) strains mixed with genetic elements persistent in
humans [7-9] are used to provide a historic map of endur-
ing genetic features from past pandemics and their circu-
lation in current human, avian and swine strains [10].

Whole influenza genomes were searched for genetic mark-
ers conserved in pandemic strains that are associated with
two features of infection: host specificity and high mortal-
ity rate. For host specificity a search was designed to find
amino acid mutations in human influenza strains that
were not observed in avian strains. The approach for
defining host specificity markers closely followed the
work of [11] which predicted positions in the genome
associated with human host specificity. Other recent work
[12] looked more broadly for human markers beyond the
pandemic conserved regions. Both of these studies exam-
ined amino acid point mutations using differing measures
for functional significance. In this study a new approach
was developed to look for combinations of mutations in
the genome that identify host specific evolutionary pres-
sures beyond single point mutations. New mutations
were identified that exhibit a co-variation mutation pat-
tern. Evaluating mutation combinations allowed for the
analysis of genetic markers where single point mutations
failed to distinguish high and low mortality rate strains. In
total 34 host specific and high mortality rate pandemic
conserved markers were found. The ultimate goal of our
study was to examine how the 34 pandemic conserved
markers might re-emerge in a future single strain. While
marker re-emergence in a single strain does not predict
pandemic potential, their presence could highlight unex-
pected evolutionary events in circulating strains that war-
rant closer scrutiny.

Influenza genomes not used in the marker estimation
process were searched for the presence or absence of the
markers. The human host specific markers were sought in
the recent avian strains infecting human (H5N1, H9N2,
H7N3 and H7N7), the high mortality rate associated
markers were sought in the avian strains and both marker
sets were sought in non-avian non-human strains (e.g.
swine, cat and others). The high mortality rate markers
appeared in a wide variety of avian strains but the recent
avian to human strain crossovers lacked most of the
human strain specific markers. Human persistent strains
retained human specific markers (by definition) but
lacked most of the high mortality rate markers. Swine
strains fell in the middle, carrying both high mortality rate
and host specificity markers but with no single strain con-
taining all 34 markers. Using a maximum parsimony prin-
ciple, likely evolutionary pathways for the re-emergence
of the 34 markers in a single strain were considered with
a computational experiment. The fewest evolutionary
events through reassortment and mutation needed for a
single influenza strain to acquire all 34 markers in the

presence of a second strain were counted. Starting with a
small number of sequenced H1N1 human and swine
strains, a mix with avian strains were found to acquire the
34 pandemic markers through a combination of 4 or
fewer segment reassortment and amino acid mutation
events.

Results and discussion
The genetic marker identification procedure uses a dis-
criminative classifier (a linear support vector machine
[13]) with cross validation to build two models, one for
host specificity and one for high mortality rate strains. The
discriminative classifier is a computational tool that is
designed to classify an unknown sample as belonging to
one of two classes. Here one classifier model is designed
to classify the influenza host type, the second model is
designed to classify the influenza mortality rate type. Each
model takes as input the 11 influenza proteins aligned
and concatenated and classifies the strain in the case of
host specificity as being human or avian. For mortality
rate, input strains are divided into high and low mortality
rate strain classes. The purpose for building the classifier
is to find the positions in the influenza genome that are
important in the model for accurately classifying input
strains, a problem commonly referred to as the feature
selection problem [14]. Candidate markers are found by
building new classifiers that take as input a small subset of
the influenza proteome. The input sets that lead to classi-
fiers that match the accuracy of the original classifier
(which uses the entire proteome as input) highlight the
amino acid markers that are important for class discrimi-
nation. An iterative procedure is used. For the initial step
all single amino acid positions are found that separate the
two classes (human/avian or high/low mortality rate).
The iterative step n identifies the n sized (potentially non-
contiguous sequence) combinations that separate the
data such that each combination does not contain a
smaller sized combination that separates the two classes
equally well. This procedure yields a set of non-redundant
mutation patterns that separate the two classes. The itera-
tive procedure is important so that a candidate marker is
only included as part of a distinguishing pattern when it
adds to the classification accuracy. So for example if posi-
tion 21 in the PB2 protein distinguishes avian and human
strains, then position 21 would not be included as part of
another set of features (say position 22 in the PB2 pro-
tein). Only markers that contribute significantly to classi-
fication accuracy are included in the final result. Details
on selecting candidate functional markers are given in the
Methods section.

Host specificity markers
Sixteen positions in the influenza genome were found to
be associated with human host specificity. The markers
were found on the non-structural protein 1 (NS1), non-
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structural protein 2 (NS2), matrix protein 1 (MP1), nucle-
oprotein (NP), acidic protein (PA) and the basic polymer-
ase 2 (PB2) protein. Each strain was assigned a genotype,
which showed whether the human consensus amino acid
variant was present at each of the 16 positions. Strains
excluded from the marker estimation process, human
infections of avian origin [15] and non-human non-avian
strains, were checked for evidence of an enrichment of
human specificity markers relative to the remaining avian
strains. With one exception the human infections of avian
origin showed a genotype that was distinct from the most
common avian genotype background but the number of
accumulated human markers was small.

Figure 1 shows the relative frequency of different host spe-
cificity genotypes among the sequenced samples with
minimum 1% frequency for the three host categories:
avian, human infections of avian origin and all other non-
human non-avian host types. Redundant sequences that
occur within the same region and year are collapsed to
prevent over weighting heavily sequenced outbreaks. Col-
umns in the table show each genotype configuration with
the last row (Rank) reporting the rank of the genotype's
relative frequency in avian strains. For example, the most
common avian genotype is rank 0 and shown by the red
bar to cover nearly 40% of all avian strains as well as a
small percentage of other host infections shown by the
blue and orange bars. Underneath the three frequency
bars is the corresponding genotype: NHH-

HHNNNNNNNNNNN, which means that these strains
have the human consensus marked 'H' at 4 protein posi-
tions: 87 NS1, 103 NS1, 207 NS1 and 63 NS2. The
remaining 12 positions carry a non-human amino acid
variant marked 'N'. Many of the human markers could be
a consequence of persistent founder mutations from the
ancestral 1918 pandemic strain, which gave rise to current
circulating human strains. It is interesting to observe,
however, that avian strains maintain each of the human
consensus variants in the NS segment with species specific
variation patterns. Twenty-four percent of the avian
strains share the human consensus amino acid in position
87 NS1 spanning 35 distinct serotypes. Seventy-seven per-
cent of the avian strains share at least one human consen-
sus at one of the other positions in the NS segment,
spanning 65 distinct serotypes. If the two sites evolved
independently, 19% of the observed avian genotypes
would be expected to share a human consensus at 87 NS1
and at least one of the other NS segment positions, how-
ever, only 2% of avian strains show this pattern. Half of
these cases involve a collection of H3N2 avian strains that
recently acquired the NS segment from a swine virus
(Rank 12 in Figure 1). For position 70 and 87 in NS1,
Lysine and Serine are the respective consensus amino
acids in human. In avian strains, the combinations for the
respective positions are Glutamic acid and Serine (58%),
Lysine and Proline (26%), Glutamic acid and Proline
(9%) and only rarely Lysine and Serine (2%).

Persistent human markers in non-human strainsFigure 1
Persistent human markers in non-human strains. Each column in the table is a genotype with the bars showing geno-
type frequency for avian (red), avian to human crossovers (blue) and non-avian non-human strains (orange). A table entry with 
H (green) means the amino acid position has the human consensus for the amino acid position, and N means non-human con-
sensus. The last row "Rank" labels each genotype and shows its frequency rank among avian strains. Rank is in increasing order 
with 0 being the most common genotype. Select strain subtypes are shown in the figure, with details given in the text.

70 NS1 N N N N N N N N N N N N N N H N N N N N H H H H H H H H H
87 NS1 H H H H H H H H N N N H H N N N H H H H H H H H H H H H H
103 NS1 H H H H H H H N N N N N N H N N H H H H H H H H H H H H N
207 NS1 H H N N N N N N N N N H H H N N H N N H H H H H H H H H H
63 NS2 H H H N H H N H H H H H H H N H N N N H N N N H H H H N N
121 MP1 N N N N N N N N N N N N H N N N N N N H H H H H H H H H H
16 NP N N N N N N N N N N N N N N N N N N H N N N N H H H N N N
283 NP N N N N N N N N N N N N N N N N N N N N N N N H H H N N N
313 NP N N N N N N N N N N N N N N N N N N N N N N N H H H N N N
357 NP N N N N N H N N N N N N N N N N N N N N H H H H H H H H H
55 PA N N N N N N N N N N N N N N N N N H H H N H H H H H H H H
400 PA N N N N N N N H H H H N N N N N N N N N N N H H H H N N N
199 PB2 N N N N N N N N H N N N N N N N N N N H N H H H H N H N H
475 PB2 N N N N N N N N N N N N N N N N N N N H N H H H H H H N H
567 PB2 N N N N N N N N N N N N N N N N N N N N N N N H N H N N N
627 PB2 N H N N H H H N N N H N N N N N N N N H N H H H H H H N H
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The columns are grouped so that avian to human crosso-
ver genotypes are clustered into three groups labeled at the
top of Figure 1 as: H7 (avian frequency rank 0 and 14),
H5N1 beginning in 2003 (rank 2, 8, 3, 16 and 9) [7,16-
19] and the H5N1/H9N2 Hong Kong outbreaks from
1997–1999 (rank 13, 15, 6, and 17) [20,21]. Additional
similar genotype patterns are placed in adjacent columns.
A pattern emerges from the two most common avian gen-
otypes ranked 0 and 1 in Figure 1. These two genotypes
cover 60% of the sequenced strains and span nearly all of
the subtypes including H5N1, H9N2, H7N7 and H7N3.
Among the lethal avian to human crossovers there are two
genotypes that arise in humans that are not found in
sequenced avian strains (rank 16 and 17). These cases
could be examples of post infection mutations, or alterna-
tively show the limits in the coverage of sequenced avian
strains.

High mortality rate markers
In a second experiment human influenza strains were sep-
arated into two groups: a high mortality rate group con-
taining pandemic genomes selected from the 1918, 1957
and 1968 outbreaks, human H5N1 and the H1N1 1976
deadly New Jersey infection and a low mortality rate
group containing all other whole genome human infec-
tion samples. As with the pandemic conserved host type
markers, the high mortality rate markers were required to
be positively identified in each of the sequenced strains

associated with the three pandemic outbreaks (e.g. perfect
conservation and no ambiguous sequence codes). Eight-
een of 2,112 sequenced human influenza genomes (9 of
286 when samples were grouped by year, subtype and
location) not in the high mortality rate class contained all
18 of the identified high mortality rate markers. These
cases occurred in H2N2 and H3N2 strains from the 1960s
and 1970s in years following their respective pandemics.

Figure 2 shows the high mortality rate genotypes among
the sequenced samples with minimum 1% frequency for
the three host categories. The figure shows that the human
high mortality rate genotype is the most common avian
genotype and that each avian strain has at least 13 of the
18 high mortality rate markers. Analogous to the co-vari-
ation pattern found in the NS segment for the human host
type markers, the non-lethal human strains show that
where the hemagglutinin (HA), neuraminidase (NA) sub-
type lacks the high mortality rate makers (rank 27, 29 and
31 in Figure 2) high mortality rate markers are found in
other segments. The opposite also occurs (rank 26, 28 and
30 in Figure 2).

The most common non-human non-avian genotype
(rank 43 in Figure 2) is a swine H1N1, which shares many
of the high mortality rate variants but misses the muta-
tions found on the NS and PB1 segments. The second
most common subtype shares all but one of the high mor-

High mortality rate genotypesFigure 2
High mortality rate genotypes. Each genotype is specified by a column in the table, where the bars above the column 
reflect relative frequency in the sequenced genomes. V (green) means the genotype has the virulent consensus for the position, 
and N means non-virulent consensus. Bars above each table column mark the relative frequency for avian (red), human – both 
high mortality rate and low mortality rate cases (blue) and non-avian non-human strains (orange bars).

157 NA V V N N N V N V N V V V V V V V V V V V N V V V V N V N V N V N V V V V V V N N V V N V V V V V V V V
213 NA V V V N N V V V N V V V V V V V V V V V V V V V V V V N V N V N V V V V V V N N V V N V V V V V V V V
221 NA V V N V V N N N V V V V V V V N V V V V N V V V N V N N V N V N N N V N N N N N N N N N N N N N V V N
354 NA V V V V N V V V V V V V V V V V V V V V V V V V V V V N V N V N V V V V V V N N V V N V V V V V V V V
372 NA V V V V V V V V V V V V V V N V V V V V V V V N V V V N V N V N V V V N V V N N N N N V V V V V N N V
397 NA V V N V V N N N V V V V V V V V V V V V N V V V V V V N V N V N V V V V V V V N V V N V V V V V V V V
333 HA V V V V V V V V V V V V V V V V V V V V V V V V V V V N V N V N V V V V V V N N V V V V N V V V V N N
93 HA V V V V V V V V V V V V N V V V V V V V V V V V N V V N V N V N V V V V V V N V V V N N N V V N V N V
391 HA V V V V V V V V V V V V V V V V N V N N V V V V V V N N V N V N V N N V V N V N N N N V N V V V N N V
167 MP1 V V V V V V V V V V V N V V V V V V V V V V N V V V N V N V N V N N N N N V V V N N V V N V V V V V V
117 NS1 V N V V V V N N N V V V V V V V V N V N V V N V N V V N V V V N V V V V V V N V V V N N V N N V V V V
125 NS1 V V V V V V V V V V V V V N V V V N N N N N N N N V N V N V V V N N N N N N V V N N V N N N N N V V N
211 PB1 V V V V V V V V V N V V V V V V V V N V V N V V V V V N V V V V V V V V V V N V V V N N V V V N N N V
361 PB1 V V V V V V V V V V V V V V V V V V V N V V V V N V N V N V N V N N N N N N V V N N V N N V N N V V V
461 PB2 V V V V V V V V V V N V V V V V V V V V V V V V V V N V N V N V N V N V V N V V V N V V N V V V V V V
682 PB2 V V V V V V V V V V V V V V V V V V V V V V V V V V N V N V N V N N N N N N V V N N V V N V V V V V V
343 NP V V V V V V V V V V V V V V V V V V V V V V V V V V N V N V N V N N N N N N V V N N V V N V V V V V V
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tality rate variants and is circulating in horse (rank 15) but
Figure 1 shows that H3N8 lacks most of the human host
type markers (rank 19 and 21 in Figure 1). The complete
high mortality rate variant (rank 0) are H5N1 cases that
infect a broad host range including swine, tiger, domestic
cat, civet, and stone marten. Figure 1 shows that these
strains (most with the genotype with rank 9 in Figure 1)
contain only a small number of human specific markers
similar to the H5N1 human infections. The differences in
genotypes show that swine host both strains found with
human transmission markers or strains enriched with the
high mortality rate markers. This could present an oppor-
tunity for two strains to mix and evolve into a swine strain
with all 34 of the predicted pandemic conserved markers.

Recent work mixing avian H5N1 with human H3N2 in
ferret models has shown that combining the H5N1 cell
surface proteins with the internal human proteins need
not lead directly to efficient ferret to ferret transmission,
which serves as a model for human to human transmis-
sion [22]. In this approach only reassortment events were
considered, highlighting the complexity that may be
involved in acquiring the precise mix of genetic elements
required for an H5N1 virus to acquire pandemic poten-
tial.

To explore the steps needed to acquire the 34 genetic
markers, hypothetical strain mixes were examined where
pairs of genotypes sampled within one year difference
were tested to simulate concurrent circulating strains. Two
evolutionary events were considered: reassortment
between segments counted as a single evolutionary event
and an amino acid point mutation, also counted as a sin-
gle evolutionary event. Each genotype was checked for the
minimal number of events needed to acquire all 34 mark-
ers when mixed with a second strain. For completeness, all
9 pairwise combinations for the three host types were con-
sidered: human, avian and non-human non-avian. There
were 269 distinct genotypes with 24,889 pairwise combi-
nations and 187 distinct combinations of events that led
to the 34 markers in a new strain. It is important to note
that strain mixes that include a human strain already have
the 16 human conserved markers and only lack the com-
plement of high mortality rate conserved markers. Thus,
human strains should require fewer mutation and reas-
sortment events to acquire the 34 markers, compared to
strain combinations between non-human influenza
strains. Figure 3 shows the frequency distribution (in
blue) for the fewest events needed for each of the 269 gen-
otypes to acquire the 34 markers. The percentage of the
blue bar covered by red is the relative contribution of reas-
sortment events to the total. For example, in the case of 4
events, on average roughly half the events are attributed to
reassortment. The histogram shows that on average the
fewest events to acquire the 34 markers is almost always

through a combination of reassortment and mutation.
The figure points to two cases that are one mutation away
from the 34 markers, a human H2N2 strain from 1968
and a H3N2 strain from 1971. These are examples of
strains conserved from their respective recent pandemic
ancestors and their presence (along with the other strains
with the 34 markers previously referenced that persisted
in the 1960s and 1970s) indicate that the 34 markers are
not sufficient for causing pandemic potential.

Potentially novel strains with avian subtypes found to
infect humans, which could circumvent existing human
immunity (H7N7, H7N3, H7N2, H9N2, and H5N1),
were examined more closely. Sixty-six distinct event com-
binations were found, but only a few cases required 4
events or less, which are summarized in Table 1. These
potential paths involve 8 distinct genotypes from human
and swine H1N1 strains, which acquire the two avian sur-
face proteins plus one or two additional amino acid muta-
tions on the NS1, PB1 or PB2 gene. Three of the 8
genotypes were observed in 2006 or later. The first
sequenced strain from each location is given in Table 2.
Although all of the human strains maintain all 16 human
markers, they differ in the number of 18 high mortality
rate markers present. Thus, different human strains
require different numbers of mutations to acquire the 34
markers. For example, when starting with human H3N2
strains, 6 or more high mortality rate mutations are
required in addition to the double reassortment with the
HA and NA genes.

Conclusion
A distinct genotype subset emerges from the avian back-
ground from which the human crossovers are derived

Strain combinations with 34 markersFigure 3
Strain combinations with 34 markers. Frequency distri-
bution for the number evolutionary events needed to acquire 
the 34 pandemic markers. The 9 pairwise combinations are 
shown for human, avian and non-human non-avian. Red bar 
overlays show the average contribution of reassortment 
events (shift) to the total event count with mutations (drift).
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with some strains adopting a limited number of human
persistent markers. Overall, the human infections of avian
origin have acquired no more than a few human specific
markers, which suggests that avian strains are not rapidly
acquiring human persistent markers through genetic drift.
The high mortality rate markers are ubiquitous in the
avian background and are distinct from the vast majority
of human infections. While the host type markers clearly
separate avian and human strains, there are a number of
cases where descendants of the 1957 and 1968 pandemics
continued to retain all of the predicted high mortality rate
markers. Finding that classification accuracy for high mor-
tality rate strains is lower than the host type classification
weakens support for the notion of a single essential com-
mon set of high mortality rate markers. The reduced clas-
sification accuracy comes primarily from the fact that the
H2N2 sequences continue to maintain the 18 markers
into the 1960s, well past the associated pandemic. Thus,
these 18 markers do not clearly distinguish between pan-
demic and non-pandemic associated H2N2 strains.
Instead the results support the hypothesis that additional
factors play an important role in determining the mortal-
ity rates of a specific strain. This highlights the potential
importance to pandemic potential of host immunity and
antigenic novelty. Even in the case of host type markers
where classification accuracy is very high, markers could
be missed. For example, the HA and NA genes play a crit-
ical role in host specific infection, but this study focused
specifically on the persistent markers, and host specificity
markers were found only on the more heavily conserved
internal proteins. Additional potentially important host
type markers that are not persistent should still exist.

It is worth noting that 5 of the 18 high mortality rate
markers lie on the NA or PB1 segments implying that they
were independently introduced into the three respective
pandemic outbreaks [7]. Aside from the 18 high mortality
rate markers persisting in H2N2 strains past the 1957 pan-
demic time frame, the markers give an overall high degree
of classification accuracy and, therefore, a potentially use-

ful common, although not sufficient, set of associated
genetic factors. Among the high mortality rate strains not
associated with a pandemic, only the 1976 H1N1 isolate
lacks all 18 markers (4 are not present). Because the 1976
sample is a small contributor to the total number of high
mortality rate features, it does not significantly contribute
to the classification model. Substituting a single alternate
1976 swine strain for example, would have limited impact
on the markers chosen unless more strains were added or
a single strain was given the same weight as the pandemic
strains in which perfect conservation is required. In this
case mixing low mortality rate strains into the high mor-
tality rate class would substantially alter the reported set
of persistent markers. Requiring perfect conservation with
the 1976 H1N1 strain would reduce the number of candi-

Table 1: Minimal evolutionary steps to acquire all 34 pandemic 
markers. 

Initial strain Region Shift Drift

H1N1 swine Henan/Tianjin H5, N1 199 PB2
117 NS1

H1N1 human New Zealand H9, N2 211 PB1
Australia H7, N2 117 NS1

U.S.A., Asia H5, N1 (one or both)

First column shows the initial strain, the second column shows region 
where strain is found, the third column shows double reassortments 
taken (Shift) and column four shows the mutations (Drift) taken. The 
human case (row 2) involves three subtypes (H9N2, H7N2, and 
H5N1) and one or two mutations.

Table 2: Strains sequenced since 2006 with 4 events or less 
needed to acquire the 34 markers.

Year Location Sample Accession

2006 KENTUCKY UR06-0010 157281296

2006 MICHIGAN UR06-0015 157281277

2006 NEW YORK 8 118313168

2006 HENAN 01* 151335575

2006 TEXAS UR06-0012 157281258

2007 CALIFORNIA UR06-0435 157281639

2007 COLORADO UR06-0111 157282703

2007 FLORIDA UR06-0280 157282570

2007 ILLINOIS UR006-018 157281334

2007 KANSAS UR06-0140 157283026

2007 KENTUCKY UR06-0028 157368127

2007 MISSISSIPPI UR06-0048 157282646

2007 NEW YORK UR06-0386 157281429

2007 OHIO UR06-0100 157283121

2007 TEXAS UR06-0025 157281620

2007 VERMONT UR06-0050 157281467

2007 VIRGINIA UR06-0109 157283102

The four columns are year sample was taken (Year), location of the 
sample (Location), the sample name (Sample) and GenBank accession 
(Accession). *H1N1 swine sample, all other samples are human H1N1 
strains.
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date markers to 14 (or less if an alternate 1976 swine
strain were used). Similarly, swapping in nearly any other
H3N2 sequence from the low mortality rate class, includ-
ing those from the 1970s would alter the candidate
marker set due to a lack of conservation.

Evolutionary pathways through reassortment and muta-
tion show that strain combinations starting with H1N1
human and swine need the fewest events to acquire the
pandemic conserved markers. Several of these pathways
would lead to novel strains with H5N1 subtypes that
could challenge human immunity. The potential need for
an extended time or number of exposures for strains to
acquire the human persistent mutations combined with
the high mortality rate markers associated with avian
strains suggests how swine could act as a mixing vessel
where both human specific and high mortality rate mark-
ers are found to persist. Additional work may reveal
restrictions that limit the strain combinations that lead to
viable new strains. Measuring the rate of co-infection in
swine and human, particularly in cases where an avian
like strain is suspected to be present, could provide addi-
tional data for more precisely modeling the likelihood of
the reassortment events that combine with mutations to
facilitate mutation combinations important to infection.

Methods
A pattern classification approach [23] is used with heuris-
tic feature selection [14,24] to predict the candidate mark-
ers. Taken as input is a multiple sequence alignment
(using MUSCLE [25]) for a collection of influenza
genomes, where the 11 proteins are concatenated
together. Each position in the alignment is converted to a
bit vector of length 21, where an entry of 1 in the vector
indicates the presence of one of the 20 amino acids or an
insertion symbol. For an input alignment of length x (and
21 × x length bit vector), to find all n sized mutation sub-
sets, x choose n combinations are checked, which is time
prohibitive even for small n when x is large. A heuristic is
used to exploit the information obtained from the linear
support vector machine (LSVM) to reduce the size of x to
60 and limit n to 10. Note that even this size (~7 × 1010)
in theory could be too large to efficiently process. Since
smaller combination sizes were found, the search space
size was sufficiently reduced to compute a solution. The
LSVM computes weights for each position in the align-
ment reflecting the relative influence on the classifier.
These weights are used to select the x most heavily
weighted mutations from which to consider combina-
tions. A similar approach was used in document classifica-
tion [26] and a related approach was taken to classify 70
antibody light chain proteins [27]. LSVM code was devel-
oped by modifying the software package LIBSVM [28].

The expected classification accuracy is defined by the accu-
racy of the LSVM using the aligned proteome as input and
5-fold cross validation. Similar to the approach taken by
[11] for human specific markers, sequences in the multi-
ple sequence alignment used for training the classifier
were labeled either human or avian depending on the
host, excluding the avian to human crossover samples
(H5N1, H9N2, H7N7 and H7N3) from training and test-
ing. The 2,026 human persistent strains and 1,018 avian
strains were grouped by time, location and subtype, with
representative samples chosen at random to yield 281 dis-
tinct human strains and 560 distinct avian strains. Classi-
fier accuracy was estimated by randomly dividing the data
set into 5 non-overlapping partitions. The classifier was
trained on 4 of the partitions and accuracy was measured
by the percentage of correct classifications on the fifth par-
tition, with the percentage of correct classifications calcu-
lated separately for each class to account for the difference
in class size. The average of all 5 tested non-overlapping
partitions was calculated giving two accuracy values (one
for each class) and the final accuracy measure was the
average of these two values. The 34 pandemic conserved
markers given in this report were required to be positively
identified in every sequenced strain in each of the three
pandemic outbreaks without deviation from the majority
consensus. This led to three markers reported in [11] that
were excluded from this report for lack of conservation or
positive identification (when an ambiguous sequence
code was present) in one of the sequenced strains associ-
ated with the pandemic outbreaks.

The host specificity classifier misclassified 2 human and 2
avian strains for a classification accuracy of 99.5%. The
classification errors appeared to be due to recent reassort-
ment events that suggest the presence of influenza
genomes that are a mix of both human and avian strains
[29].

The high mortality rate data set was constructed using the
same procedure as the host type dataset and the same 5-
fold cross validation procedure was used to estimate accu-
racy. A total of 111 influenza genomes were classified as
high-mortality rate strains and 2,001 were classified as
low-mortality rate strains, with a non-redundant subset
taken for training (35 high mortality rate, and 255 low
mortality rate). The percentage of high and low mortality
rate strains that were correctly classified was 96.2% and
96.9% respectively (an average of 96.6%). The lower accu-
racy for the high mortality rate classifier compared to the
host type classifier likely highlights the genetic complexity
associated with high mortality rate and the influence of
other important factors such as host interaction.
Page 7 of 10
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Newly generated classifiers using only a small subset of
the aligned proteomes as input were required to match the
original classifier accuracy (99.5% for host type and
96.6% for high mortality rate type) within a margin of
error defined by a confidence threshold. The confidence
thresholds were defined by confidence intervals assuming
1 sided t-test comparisons using the standard deviation in
the cross validation tests. Lowering the classification accu-
racy threshold allowed for the possibility of undetected
reassortment events and other potential strain labeling
errors (such as host interaction factors) that preclude per-
fect separation of class types.

The genotype analysis shown in Figures 1 and 2 includes
193 non-human non-avian influenza strains. All data was
downloaded from the NCBI influenza whole genome
database [30].

Finding markers tied to function
Figure 4 shows the frequency distribution for the size of
amino acid combinations (combinations up to size 10
were checked) that distinguish avian and human strains at
the different accuracy thresholds. The highest accuracy
threshold of 99.5% (red bar in Figure 4) requires using
more mutations per combination to accurately discrimi-
nate host type. For example, a minimum of 3 amino acid
positions are required, with most combinations using 4 or
more amino acid positions. By contrast, at the lowest
accuracy thresholds, only single or pairs of amino acids
are needed.

In Chen et al. (2006) functional significance was cali-
brated to detect the 627 PB2 mutation. A feature of the
627 PB2 mutation is that the human variant (Lysine) was
found in 1% of the background avian flu and 23% of the

H5N1 avian flu (~5% total) suggesting less human spe-
cific selective pressure. Thus distinguishing at the minimal
accuracy threshold (set at 98.3%) using 627 PB2 required
at least one additional marker. From the combinations of
amino acid positions used for discrimination, an individ-
ual marker's functional significance was determined by
two criteria. The marker must be part of a combination of
mutations that separates the two phenotype classes with
the same degree of accuracy (at one of the four confidence
thresholds) that was achieved using the complete pro-
teome alignment as input. Second the marker's individual
contribution to the combination's classification accuracy
must be above a minimal threshold defined by the distri-
bution of observed contribution values. A mutation's con-
tribution value was measured by the maximal increase in
classification accuracy gained by adding the marker as a
feature to one of the classifiers that met the minimal accu-
racy requirements. For example, mutation 627 PB2 could
be combined with several additional mutations to make
an accurate classifier. The classification accuracy of each of
the additional mutations was measured without includ-
ing 627 PB2 and compared to the accuracy when includ-
ing 627 PB2, with the maximal difference being 627 PB2's
contribution value. Figure 5 plots the contribution values
for each candidate marker's maximal contribution to clas-
sification accuracy for the 4 different accuracy thresholds.
At one end of the spectrum are markers like position 199
PB2 which is shown in Figure 5 to accurately classify close
to 99% of the samples, without looking at any other posi-
tions in the proteome. Most positions add little to the host
type discrimination, with accuracy contributions well
below 1% (for clarity these positions were excluded from
Figure 5). The figure shows the 16 mutations that stand

Host marker classification accuracyFigure 5
Host marker classification accuracy. Relative contribu-
tion of the human transmission markers to classification 
accuracy (Acc. = Accuracy). Positions increasing classification 
accuracy by at least 10% are shown. The colored bars show 
each mutation's contribution at the 4 different accuracy 
thresholds. Red is the highest accuracy cut off (99.5%), fol-
lowed by blue (98.9%), orange (98.5%) and green (98.3%).
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Mutation combination sizesFigure 4
Mutation combination sizes. Relative frequency of muta-
tion combination sizes for different classification accuracy 
thresholds. Red is the highest accuracy cut off, followed by 
blue, orange and green.
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out by their contribution of at least a 10% increase in
accuracy at one of the four accuracy thresholds.

Ten of the 13 pandemic conserved host specificity posi-
tions reported in [11] were found. The 3 remaining mark-
ers (702 PB2, 28 PA and 552 PA) were not predicted due
to lack of conservation among the pandemic strains. The
host specific mutations reported here but not in [11] are
attributed to the use of mutation combinations to guide
the search for new genetic markers. Two mutations of note
not reported by [11] that gave at least a 5% increase in
accuracy at the highest classification accuracy threshold
(99.5%) were 400 PA and 70 NS1. The 400 PA human
consensus amino acid was Leucine and 3% of the avian
strains had Leucine, with the remainder split between Ser-
ine and Proline. In the case of 70 NS1, 99.6% of human
samples had Lysine along with 23% of the avian strains.
(The avian consensus amino acid was Glutamic acid.)

Figure 6 shows the analysis for finding the high mortality
rate type mutations. No single mutation contributed more
than 50% to the classification accuracy, which illustrates
the complexity of high mortality rate classification. Multi-
ple mutations were required, but even considering combi-
nations of size less than 10 precluded classification
accuracy levels that matched the initial classifier accuracy
using the whole genome as input. The marker combina-
tions were found to reach the accuracy levels only at the 3
lower thresholds of 94.8%, 93.5% and 92.8% but not at
the highest threshold of 96.6%
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