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Abstract

Background: Although Candida species are commensal microorganisms, they can cause many invasive fungal
infections. In addition, antifungal resistance can contribute to failure of treatment.

The purpose of this study was to evaluate the antifungal activity of inhibitors of A24(2%)-sterol methyltransferase
(24-SMTI), 20-piperidin-2-yl-5a.-pregnan-33-20(R)-diol (AZA), and 24(R,S),25-epiminolanosterol (EIL), against
clinical isolates of Candida spp., analysing the ultrastructural changes.

Results: AZA and EIL were found to be potent growth inhibitors of Candida spp. isolates. The median MIC;, was
0.5 ng.ml-! for AZA and 2 pg.ml-! for EIL, and the MICyywas 2 pg.ml-! for both compounds. All strains used in this
study were susceptible to amphotericin B; however, some isolates were fluconazole- and itraconazole-resistant.
Most of the azole-resistant isolates were Candida non-albicans (CNA) species, but several of them, such as C.
guilliermondii, C. zeylanoides, and C. lipolytica, were susceptible to 24-SMT], indicating a lack of cross-resistance.
Reference strain C. krusei (ATCC 6258, FLC-resistant) was consistently susceptible to AZA, although not to EIL.
The fungicidal activity of 24-SMTI was particularly high against CNA isolates. Treatment with sub-inhibitory
concentrations of AZA and EIL induced several ultrastructural alterations, including changes in the cell-wall shape
and thickness, a pronounced disconnection between the cell wall and cytoplasm with an electron-lucent zone
between them, mitochondrial swelling, and the presence of electron-dense vacuoles. Fluorescence microscopy
analyses indicated an accumulation of lipid bodies and alterations in the cell cycle of the yeasts. The selectivity of
24-SMTI for fungal cells versus mammalian cells was assessed by the sulforhodamine B viability assay.

Conclusion: Taken together, these results suggest that inhibition of 24-SMT may be a novel approach to control
Candida spp. infections, including those caused by azole-resistant strains.
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Background

Candida species are commensal microorganisms of verte-
brate hosts that can cause infections ranging from non-
life-threatening to invasive illnesses. Although candidae-
mia is the most common manifestation of invasive candi-
diasis, extensive visceral invasion with Candida can occur
in all organs. The eyes, brain, liver, spleen, and kidneys are
the most commonly affected [1]. Candidiasis is the fourth
most common cause of nosocomial bloodstream infec-
tions in Brazil and the U.S.A., with a mortality rate of
approximately 40% [1,2]. A progressive increase in the
number and severity of candidiasis over the past two dec-
ades has been observed worldwide, especially in immuno-
compromised patients and also in patients hospitalised
with serious underlying diseases, during immunosuppres-
sive therapy, or parenteral nutrition, as well as among
patients exposed to invasive medical procedures. Yeasts of
Candida albicans are the most frequently implicated in
cases of invasive candidiasis infections. However, nowa-
days Candida non-albicans (CNA) species such as Candida
glabrata, Candida krusei, and Candida parapsilosis have
increased in importance and number among fungal infec-
tions [1].

Currently, the mainstay of chemotherapy employed for
the treatment of fungal infections comprises drugs that
affect the function or biosynthesis of membrane sterols
[3]- The polyenes (such as amphotericin B) were the first
antifungal class used to treat invasive fungal infections.
The primary mechanism of amphotericin B is its binding
to the signature 24-alkyl sterols present in fungal cell
membranes, leading to a perturbation of the membrane
selective permeability and, consequently, loss of the cellu-
lar content. Despite the specific fungicidal effect of pol-
yenes, they display significant toxicity to mammalian cells
[4]. Another important antifungal class comprises the
azoles, such as ketoconazole, fluconazole (FLC), itracona-
zole (ITC), posaconazole, and voriconazole, which are the
compounds most frequently used today, and whose spe-
cific target is the cytochrome P-450-dependent Cl4a-
demethylase, a key enzyme of the ergosterol biosynthesis
pathway [4]. Although azoles are one of the main classes
of drugs used in the treatment of fungal infections, these
drugs present several problems such as their fungistatic
rather than fungicidal activity, variable drug bioavailabil-
ity, lack of intravenous preparations, large number of
drug-drug interactions, development of resistance, and
potential cross-resistance between different azoles [5].

During the last two decades, some studies have described
a new class of antifungals called azasterols, which are
inhibitors of the A24(25)-sterol methyltransferase (24-
SMT), another key enzyme of the ergosterol biosynthesis
pathway, which is absent in the mammalian host cells [6-
8]. This enzyme catalyses the S-adenosylmethionine-
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mediated incorporation of methyl groups at position 24
in sterols, which is an essential step for the biosynthesis of
fungal sterols [6,8]. 20-piperidin-2-yl-5a-pregnan-3p-
20(R)-diol (AZA) and 24(R,S),25-epiminolanosterol
(EIL) are steroid compounds with a nitrogen atom in the
side chain (azasterols, Fig. 1), and are known inhibitors of
24-SMT in fungi [9], Trypanosoma cruzi [10], and Leishma-
nia amazonensis [11,12]. Antifungal activities of these
inhibitors were also described against Pneumocytis carinii
[13] and Paracoccidioides brasiliensis [14].

The purpose of the present study was to (i) examine the
susceptibilities of a collection of 70 yeasts of the genus
Candida to AZA and EIL; (ii) determine the fungicidal
activities of these compounds; and (iii) detect the main
morphology and ultrastructural alterations of the yeasts
after drug treatment.

Results

Antifungal susceptibility of Candida isolates

The MICs obtained for the ATCC strains to standard drugs
(AMB, FLC, and ITC) and to the experimental compounds
(AZA and EIL) are listed in Table 1. Interestingly, C. krusei
(ATCC 6258, FLC-resistant) has AZA MIC;, of 1 pg.ml!
and MIC,, of 2 pg.ml-l. On the other hand, EIL did not
inhibit the growth of the FLC- and ITC-resistant strains.
All clinical isolates were susceptible to AMB, with the
median MICs, values ranging from 0.015 to 0.25 pg.ml-!
and the MIC,, from 0.12 to 0.5 pg.ml! (Table 2). How-
ever, three isolates (two C. tropicalis and one C. guilher-
mondii) showed MIC,, values higher than 1 pg.ml.
Susceptibility to FLC was observed in 92% of the isolates,
although 26% showed a trailing effect. Clear resistance to
FLC was detected in three isolates (two C. tropicalis and
one C. krusei). 45% of the strains showed MIC;, of 0.25-
0.50 pg.ml?! and 37% showed MIC,, of 0.50-1 pg.ml-1.
On the other hand, 75% of the isolates were susceptible to
ITC, and 16% showed a trailing effect. Resistance to ITC
was detected in 6 isolates (3 C. tropicalis, 1 C. albicans, 1 C.
glabrata, and 1 C. krusei). Most of the isolates had MICg,
and MIC,, for ITC lower than 0.03 pg.ml! (62%, and

OH . NH

HO HO

22,26 azastercl EIL

Figure |

Molecular structures of 20-piperidin-2-yl-50-pregnan-
33,20-diol (22,26-azasterol, AZA) and 24 (R,S),25-epi-
minolanosterol (EIL).
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Table I: Susceptibility of ATCC strains to A24(25) sterol methyl transferase inhibitors, 20-piperidin-2-yl-5a.-pregnan-3p, 20-diol (AZA)
and 24 (R,S), 25-epiminolanosterol (EIL), and standard antifungals (FLC, ITC, and AMB) by the broth microdilution method.

Strains AZA EIL FLC ITC AMB
MICs, MICyq, MIC,, MG, MIC,  MIC,  MIC,  MIC, MICs,  MICy,
C. albicans ATCC 10231 > 16 > 16 | > 16 | > 1287 05 >16T 012 025
C. parapsilosis ATCC 22019 025 4 2 4 2 4 0.03 0.06 0.03 0.06
C. tropicalis ATCC 13803 0.25 4 | 2 025 2 <003 003 0007 025
C. krusei ATCC 6258 0.05 | > 16 > 16 32 64R 0.12 025 025 025
C. glabrata ATCC 2001 | 2 > 16 > 16 4 >128T 012 47 0.03 0.12

TTrailing Effect, RResistant
The values are expressed in pg.ml-'.

41%, respectively). Only C. krusei isolates were less sus-
ceptible to all standard drugs, showing a MIC,, of 0.5
pg.ml-! for AMB, > 128 pg.ml-! for FLC, and 2 pg.ml-! for
ITC (Table 2).

When the MIC values for 24-SMTI (AZA and EIL) were
analysed, we observed important antifungal activity for
almost all Candida spp. isolates (Table 3). For AZA, MICs,
and MIC,, values lower than 2 pg.ml! were observed in
86% and 52% of the isolates, respectively. For EIL, MICs,
and MIC,, values lower than 2 pg.ml! were observed in
92% and 63% of the isolates, respectively. C. zeylanoides
and C. lipolytica (a rarely observed CNA) showed MICs,, o,
values of < 0.03 pg.ml-! for both inhibitors, whilst C. kru-
sei was resistant to EIL, with MICs,_o, values of 8 ug.ml-!
(Table 3). However, both C. krusei and C. lipolytica were
resistant to AZA (MICs,_go2 16 pg.ml!) (Table 3). Finally,
C. guilliermondii isolates, FLC- and ITC-resistant, were sus-
ceptible to AZA, with MICy,_o, values of 0.06 - 0.25
pg.ml-1.

Correlations between MIC values

Positive correlations of the MIC;, values were observed
between AZA and AMB (r = 0.47), AZA and EIL (r = 0.46),
and FLC and ITC (r = 0.79). In addition, positive correla-
tions were observed between the MIC,, values of the FLC
and ITC (r = 0.71). On the other hand, no significant cor-
relations were observed between the MIC values for azoles
and 24-SMTI. Some clinical isolates with a trailing effect
for FLC (n = 17) and ITC (n = 11) also showed residual
growth at higher concentrations of AZA (16 pg.ml!) of
58% (10/17) and 54% (6/11) of the isolates, respectively.
Residual growth was not observed in the isolates after
treatment with EIL.

Minimum fungicidal concentration (MFC) of AZA and EIL
The MFCs obtained for half of our isolates were higher
than 16 pg.ml!, revealing a predominant fungistatic activ-
ity of the SMTI. Interestingly, 4 CNA isolates (C. glabrata,
C. lusitaneae, C. zeylanoides, and C. rugosa) showed MFCs
lower than 4 pg.ml-!, indicating a remarkable fungicidal

activity, especially for AZA (Table 4). On the other hand,
AZA killed a negligible number of the C. albicans isolates
at concentrations lower than 16 ug.ml-1.

Ultrastructural effects

The general morphology of untreated C. albicans was
observed using scanning (Figure 2a) and transmission
(Figure 2b-c) electron microscopy. The shape of C. albi-
cans varies from spherical (4.90 + 0.49 um diameter) to
oval cells when viewed by scanning electron microscopy
(Figure 2a). Transmission electron microscopy revealed
the presence of normal cell walls with a thickness of 233
+ 25 nm (Figure 2b-c), including a thin electron-dense
outer layer with delicate fibrillar structures clearly visible
(f in Figure 2¢). A continuous cytoplasmatic membrane
(cm)lining a homogeneous and electron-dense cytoplasm
containing ribosomes, nucleus (n), and nucleoli (nu)
could also be observed (Figure 2b-c). Treatment of C. albi-
cans with MICg, of AZA (0.25 pg.ml!) and EIL (1.00
pg.ml1) induced significant morphological changes,
which ranged from discrete alterations to total destruction
of the fungal cells. A common alteration observed after
the treatment with AZA and EIL was a significant increase
in cell size, from 5 pm to 7 um in diameter (Figure 2d, g,
j, and 2m). The number of altered cells was counted, and
the morphological alterations appeared in 34.79% and
55.17% of the cells after treatment with AZA and EIL,
respectively. Among the most frequently observed
ultrastructural alterations were: (i) presence of small buds
(asterisks in Figure 2d, g and 2j); (ii) irregular cell-wall
surfaces (arrows in Fig. 2D and 2E); (iii) loss of cell-wall
integrity, with an apparent shedding of cell components
(Fig. 2G-J, white and black arrows); and (iv) a two- to
three-fold increment of the cell wall thickness was
observed after treatment with AZA and EIL, respectively
(Figure 2f, i, 1, and 2n). The cytoplasmic membrane of
treated cells also showed several changes, such as the pres-
ence of evaginations, discontinuity, detachment from the
cell wall (Figure 2e-f); budding of small vesicles that
could migrate through the periplasmatic region (Figure
2e-f, black arrowhead), accumulate in the cytoplasm (Fig-
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Antifungal Species (no. of isolates) Concentration (ug.ml-') Susceptibility no. isolates (%)
range of the MICs *MIC;, *MIC,qq S SDD R
AMB All species (65) <0.007 — | 0.06 0.12 65 (100) -
Candida albicans (21) <0.007 -0.5 0.06 0.12 21 (100) -
Candida parapsilosis (19) 0.015-0.5 0.03 0.12 19 (100) -
Candida tropicalis (14) 0.015—1 0.06 0.25 14 (100) -
Candida glabrata (2) 0.015-0.5 0.12 0.25 2 (100) -
Candida krusei (1) 0.25-0.5 0.25 0.5 1 (100) -
Candida lusitaneae (1) 0.06 - 0.12 0.06 0.12 1 (100) -
Candida guilliermondii (3) 0.015—1 0.015 0.06 3 (100) -
Candida zeylanoides (1) 0.06 - 0.12 0.06 0.12 1 (100) -
Candida rugosa (1) 0.03-0.12 0.03 0.12 1 (100) -
Candida dubliniensis (1) 0.12-0.25 0.12 0.25 1 (100) -
Candida lipolytica (1) 0.12-0.25 0.12 0.25 1 (100) -
FLC Al species (65) <0.25->|28* 0.5 | 60 (92.31) 2 (3.07) 3 (4.62)
Candida albicans (21) <0.25-> |28* 0.25 4 21 (100)
Candida parapsilosis (19) <0.25 > |28* 0.5 0.5 19 (100)
Candida tropicalis (14) <0.25->|28* 0.5 4.5 12 (85.71) 2 (14.29)
Candida glabrata (2) <0.25-> |28* 4 64 2 (100)
Candida krusei (1) 16 —> 128 16 > 128 I (100)
Candida lusitaneae (1) 05-1 0.5 | I (100)
Candida guilliermondii (3) 0.12-16 4 4 2 (66.67) 1(33.33)
Candida zeylanoides (1) 4-16 4 16 1 (100)
Candida rugosa (1) 0.5 0.5 0.5 1 (100)
Candida dubliniensis (1) <025-05 <0.25 0.5 I (100)
Candida lipolytica (1) 051 0.5 | I (100)
ITC Al species (65) <0.03-> |6*F* <0.03 0.12 49 (75.38) 10 (15.38) 6(9.23)
Candida albicans (21) <0.03 -> |6*F <0.03 <0.03 17 (80.95) 3(14.28) | (4.76)
Candida parapsilosis (19) <0.03-> |6*FF <0.03 <0.03 18 (94.74) 1 (5.26)
Candida tropicalis (14) <0.03 > |6*F* <0.03 1.25 9 (64.28) 2 (14.28) 3(21.43)
Candida glabrata (2) <0.03-4 0.5 2 | (50) 1 (50)
Candida krusei (1) 0.12-2 0.5 2 | (100)
Candida lusitaneae (1) <0.03-0.12 <0.03 0.12 1 (100)
Candida guilliermondii (3) 0.06 - 0.5 0.12 0.25 1 (33.33) 2 (66.66)
Candida zeylanoides (1) 0.06 —0.12 0.06 0.12 1 (100)
Candida rugosa (1) <0.03 <0.03 <0.03 I (100)
Candida dubliniensis (1) 0.06 - 0.12 0.06 0.12 1 (100)
Candida lipolytica (1) 0.25-0.5 0.25 0.5 I (100)

-Not determinate; *MIC results are medians; *Trailing effect to FLC [C. albicans (9), C. tropicalis (4), C. parapsilosis (3) and one C. glabrata(l)];
**Trailing effect to ITC [C. albicans (6), C. tropicalis (4) and C. parapsilosis (1)].

ure 2h-i, details in box), or remain close to the cell mem-
brane (Figure 2k-1, details in box). Vesicle sizes ranged
from 40-80 nm for AZA and 40-220 nm for EIL. Mito-
chondrial swelling and electron dense vacuoles accumula-
tion was also observed (m, Figure 2k-1). CNA cells treated
with MIC;, of 24-SMTI showed similar ultrastructural
changes (data not shown).

Presence of lipid bodies

Treatment with MIC,, of AZA and EIL induced an accu-
mulation of lipid bodies in the cytoplasm, which can be
characterised by the presence of small dots labelled with

Nile Red (Figure 3b-c), which were absent in the
untreated yeasts (Figure 3a). These lipid bodies seen by
fluorescence microscopy can be correlated with the small,
electron-dense vacuoles seen by transmission electron
microscopy (see above, ultrastructural effects).

Effect of 24-SMT inhibitors on the cell cycle

DAPI staining used to label the DNA revealed that the
treatment of C. albicans with AZA and EIL induced impor-
tant alterations in the cell cycle (Figure 4). To quantita-
tively assess these alterations, different stages of the
untreated yeasts were considered, such as: (I) cells con-
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Table 3: Antifungal activity of 20-piperidin-2-yl-50-pregnan-34,20-diol (AZA) and 24 (R,S),25-epiminolanosterol (EIL), A24(25)-sterol
methyl transferase inhibitors, against 65 clinical isolates of Candida spp. by the CLSI reference broth microdilution method.

Drugs Species (no. of isolates) Concentration (pg.ml-')
range of the MICs *MICs, *MIC,,
AZA All species (65) <003->16 0.5 2
Candida albicans (21) 0.06 —> 16 0.5 8
Candida parapsilosis (19) 0.06 —> 16 0.12 0.5
Candida tropicalis (14) 0.06 —> 16 0.62 8
Candida glabrata (2) 0.12->16 | 2
Candida krusei (1) 16 ->16 16 > 16
Candida lusitaneae (1) 0.06 - 0.5 0.06 0.5
Candida guilliermondii (3) <0.03-0.5 0.06 0.25
Candida zeylanoides (1) <0.03 <0.03 <0.03
Candida rugosa (1) 025-1 0.25 |
Candida dubliniensis (1) 05-2 0.5 2
Candida lipolytica (1) > 16 > 16 > 16
EIL All species (65) <0.03-> 16 2 2
Candida albicans (21) 05-8 2 2
Candida parapsilosis (19) 05-8 | 2
Candida tropicalis (14) 1 -8 | 2
Candida glabrata (2) 05-4 | 2
Candida krusei (1) 8 8 8
Candida lusitaneae (1) 05-2 0.5 2
Candida guilliermondii (3) -4 | 4
Candida zeylanoides (1) -2 | 2
Candida rugosa (1) -2 | 2
Candida dubliniensis (1) 2-8 2 8
Candida lipolytica (1) <0.03 <0.03 <0.03

*MIC results are medians.

taining one nucleus, (II) cells with a bud and one nucleus,
and (III) cells with a bud and two nuclei (one in each
cell). After treatment with the MIC;,s of AZA and EIL, dif-
ferent alterations in the nucleus were observed, and these
were classified as: (A) cells with more than one nucleus,
(B) cells showing abnormal chromatin condensation, and
(C) cells without a nucleus. Counting the number of
abnormal cells revealed that approximately 66% of the
yeasts showed abnormal chromatin condensation,
whereas 6.6% of AZA-treated and 1.5% of EIL-treated cells
contained more than one nucleus, and approximately 6%
of the cells treated with both compounds had no nucleus
(Figure 4).

Cytotoxicity evaluation

Cytotoxicity of 24-SMTI was evaluated against mamma-
lian cells (Vero) using the sulforhodamine B viability
assay. For both AZA and EIL the CC,, was 40 pg.ml!,
which corresponds to a mean selectivity index of 80 for
AZA and 20 for EIL.

Discussion
Although C. albicans is the predominant species in candi-
diasis, CNA species have increased in frequency in recent

years. The reasons for the emergence of CNA species are
not fully understood, but some medical conditions may
frequently run the risk of developing candidaemia due to
the CNA species: C. parapsilopsis has been associated with
vascular catheters and parenteral nutrition; C. tropicalis
with cancer and neutropenia; and C. krusei and C. glabrata
with previous treatments with FLC and ITC [2].

Previous studies have described a high susceptibility of C.
albicans isolates to azoles and AMB, whereas CNA isolates
are usually less susceptible and may be intrinsically resist-
ant to FLC and ITC [2,15-17]. As reported by other inves-
tigators [2,18,19], none of our Candida isolates showed
MIC 2 2 pg.ml! for AMB. MIC values found for ITC and
FLU were similar to those previously reported by different
groups [2,15-17]. However, in the present study, FLC-
resistant Candida strains were only observed among CNA
species (6.8% of the isolates). However, ITC-resistance
was found in C. albicans (1.5%) and CNA isolates (7.7%).

The observation of a high positive correlation between
MIC values of FLC and ITC (r=0.79 for MIC;yand r=0.71
for MIC,,), in this study, suggests that cross-resistance
may be occurring. However, no correlation was observed
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Table 4: Cumulative MFC profile of 65 clinical isolates of Candida spp. treated with 20-piperidin-2-yl-5a-pregnan-3f3,20-diol (AZA) and

24(R,S),25-epiminolanosterol (EIL).

Cumulative MFC* (ug.ml-")

Species (no. isolates) Drugs 0.03 | 2 4 8 16 > 16
All species (65) AZA 1.52 3.04 12.16 16.72 34.96 44.08 100
EIL 6.08 15.20 30.40 51.68 100

Candida albicans (21) AZA 4.76 4.76 9.52 9.52 100
EIL 9.52 28.57 61.98 100

Candida parapsilosis (19) AZA 5.26 26.31 36.87 68.42 68.42 100
EIL 10.52 15.79 26.31 63.15 100

Candida tropicalis (14) AZA 35.71 64.28 100
EIL 7.17 7.17 35.71 42.87 100

Candida glabrata (2) AZA 50 50 50 50 100
EIL 50 50 50 100

Candida krusei (1) AZA 100
EIL 100

Candida lusitaneae (1) AZA 100
EIL 100 100 100 100

Candida guilliermondii (3) AZA 100
EIL 100

Candida zeylanoides (1) AZA 100 100 100 100 100 100 100
EIL 100 100 100 100 100

Candida rugosa (1) AZA 100 100 100 100
EIL 100

* data is expressed in percentual of isolates.

between MIC values of the azoles and 24-SMTI, indicating
lack of possible cross-resistance.

The general finding for our Candida spp. isolates was that
they were mostly susceptible to AZA and EIL, because the
MIC; s were lower than 2 pg.ml-! for 73% and 88% of the
isolates after treatment with AZA and EIL, respectively.
Interestingly, some FLC- and ITC-resistant strains were
susceptible to 24-SMTI. However, residual growth of Can-
dida after treatment with AZA was similar to that observed
for FLC and ITC. No residual growth was observed after
treatment with EIL. The fungicidal action of 24-SMTI was
more prominent against CNA species than against C. albi-
cans isolates. A concentration of 4.0 pg.ml! of 24-SMTI
was enough to kill 100% of C. lusitanae, C. zeylanoides, and
C. rugosa, and 50% of C. glabrata. In contrast, this same
concentration killed only 4.7% and 9.5% of C. albicans
isolates, considering AZA and EIL respectively.

Previous studies have shown that azasterol derivatives
have antifungal activity against a variety of species [7]. 15-
azasterol, in concentrations ranging from 0.01 ug.ml-! to
4.08 pug.ml-!, inhibits the growth of Saccharomyces cerevisae
and C. albicans, with a concomitant accumulation of
sterol intermediate molecules [20,21]. The range of MIC
and MFC values for 15-azasterol analogues against these
fungal species varied from 0.8 to 3.1 pg.ml-! and 3.1 to 6.3
pg.ml-1, respectively [7] and are similar to the values
obtained in the present study.

Other azasterol derivatives have been shown to inhibit S.
cerevisae 24-SMT, leading to the accumulation of zymos-
terol [22]. Recent work demonstrated that AZA displays
antifungal activity against Paracoccidioides brasiliensis [14]
and Pneumocystis carinii [13]. Concentrations of 5 uM
(2.05 pg.ml') inhibited 100% of the growth in P. brasil-
iensis, and the treatment of P. carinii with the ICs, of 0.3
puM (0.12 pg.ml-1) led to growth arrest and accumulation
of 24-desakyl sterols, indicating an inhibition of 24-SMT
[13]. In addition, previous studies have also shown an
anti-protozoan activity of AZA and EIL on T. cruzi epimas-
tigotes and intracellular amastigotes [10], L. amazonensis
promastigotes and intracellular amastigotes [11,12], Tox-
oplasma gondii 23], and Giardia lamblia [24], with MICs in
the low uM to sub-uM range. For protozoans, EIL was
reported to be more active than AZA. In contrast, we
found in this study that AZA was more active than EIL
against Candida spp. isolates.

Treatment of C. albicans yeasts with AZA and EIL caused
dramatic changes in their cellular and sub-cellular struc-
ture. The main alterations included changes in the cell
wall shape and thickness, a pronounced disconnection
between the cell wall and cytoplasm, with the presence of
an electron-lucent zone between them, cell collapse and
release of cellular content, mitochondrial swelling, and
abnormalities in the nuclear structure. These findings are
similar to those previously reported after treatment of
Candida spp. with different azoles [25-28]. Borges and co-
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Figure 2

Scanning electron microscopy (left column) and transmission electron microscopy (two right columns) micro-
graphs of C. albicans (isolate 77) untreated (Fig. A-C) and treated with MIC;, of AZA (0.25 pug.ml') (Fig. D-F)
and EIL (I pg.ml-') (Fig. G-L) for 48 h at 35°C. Control cells have a normal ultrastructure, with nucleus (n), nucleoli (nu),
continuous cytoplasmatic membrane (cm), compact cell wall (cw) with fibrillar structures (f), and several ribosomes in the
cytoplasm (Fig. A-C). Treated cells show ultrastructural alterations, such as: presence of small buds (asterisks in Fig. 2D, G and
J); cell-wall disruption (black and white arrows in Fig. D-J), and increased thickness (cw in Fig. F, | and L); budding of small vesi-
cles coming from the intracellular membranes (arrowhead in Fig. F); accumulation of small vesicles in the periplasmatic region
(inset in Fig. F), in cytoplasm (inset in Fig. I), and in close association with the cytoplasmatic membrane (inset in Fig. L); accumu-
lation of electron-dense vacuoles (v in Fig. K) and mitochondrial swelling (m in Fig. K). The effect of 24-SMT inhibitors on cell
size and on cell wall thickness was measured and statistically analysed (Fig. M and N, respectively). Bars in A, D, G,and ] =5
um; B, E,H,and K= | pm; C, F, I, and L = 0.2 um. * p < 0.01; *¥p < 0.001; ***p < 0.0001.
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workers [27] reported that exposure of Candida albicans to
ITC leads to primary alterations at the cell periphery and
the appearance of vacuoles in the cytoplasm, which may
be lipid inclusions. These changes were usually accompa-
nied by an increase in the cell volume and impaired cell
division. In addition, studies by Hazen and co-workers
[28] revealed that Candida treated with FLC shows a dis-
tinct retraction of the membrane from the cell wall. On
the other hand, C. albicans treated with low concentra-
tions of AMB shows chromatin condensation and margin-
ation, separation of the nuclear envelope, and nuclear
fragmentation [29]. High concentrations of AMB induce
cellular changes characteristic of necrosis, showing many
large vacuoles [29]. Additionally, Bahmed and co-workers
[30] demonstrated an increase in cell wall thickness of
Candida yeasts, which may be related to alterations in the
cell wall composition induced by the treatment with
AMB.

Figure 3

Differential Interference Contrast (DIC) microscopy
(left) and fluorescence microscopy with Nile Red
(right) of C. albicans (isolate 77) control (A), treated
with MIC;, of AZA (0.25 pug.ml') (B) and EIL (I
pg.ml-') (C) for 48 h at 35°C, showing the presence of
lipid droplets. Bars = 5 pm.

http://www.biomedcentral.com/1471-2180/9/74

In addition, similar to our findings, the appearance of
multivesicular bodies and myelin-like structures were
reported after treatment of Leishmania [11,12] and T. cruzi
[31] with AZA and EIL.

Staining with Nile Red revealed the presence of lipid accu-
mulation in the cytoplasm after treatment with 24-SMTI,
confirming that these compounds induce a perturbation
in lipid biosynthesis. Similar observations have recently
been made as the result of treatment of Leishmania amazo-
nensis with 24-SMTI, which induced several abnormalities
in the lipid content, with the accumulation of steroid
intermediate molecules [12].

In addition, staining of DNA with DAPI indicates a pro-
found alteration in the cell cycle after treatment with AZA
and EIL. Candida yeasts produced unfertile buds that
remained closely associated with the mother cell, and
appeared with or without various nuclei. The nucleus may
also have an altered shape and/or with abnormal chroma-
tin condensation that might be associated with apoptosis
cell death, as previously described after treatment of C.
albicans with AMB [29]; and also after treatment of Tritri-
chomonas foetus with hydrogen peroxide [32]. The pres-
ence of many cells with more than one nucleus may also
indicate that ergosterol biosynthesis inhibitors are inter-
fering with cytokinesis. In fact, it was previously found
that ergosterol levels modulate the activity of protein
kinases such as pp60v-src and also the levels of cAMP,
both of which are directly related to the control of the cell
cycle [33,34].

In addition, some studies have shown that drugs such as
griseofulvin and nocodazole, which interfere with the
assembly of cytoskeleton components, induce alterations
in the cell cycle and apoptosis cell death [35-37]. Thus,
there are two possible explanations for the alterations in
the cell cycle: (a) the depletion of ergosterol and other lip-
ids, which are essential for the maintenance of the cyto-
plasmatic membrane structure and are also important key
regulators of the cell cycle; and/or (b) alterations in the
cytoskeleton structure, which can affect the cytokinesis
process. The results obtained here suggest that AZA and
EIL are probably interfering with sterol biosynthesis in
Candida spp., as previously described for C. albicans [20],
P. carinii [13], T. cruzi [3], and L. amazonensis [12]. On the
other hand, we cannot exclude the possibility that these
compounds may be acting in other pathways, inducing
some secondary effects that could be related to the accu-
mulation of other lipids or, as demonstrated in Crithidia
deanei, that AZA can interfere with phospholipid biosyn-
thesis [38]. Further studies are necessary to characterise
the correlation between the depletion of ergosterol and
the cell cycle in C. albicans.
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Figure 4

Differential Interference Contrast (DIC) microscopy
(left) and fluorescence microscopy with DAPI (right)
of C. albicans (isolate 77) control and treated with
MIC;, of AZA and EIL, showing alterations in the cell
cycle such as the presence of cells with multiple
nuclei (arrows in Fig. D and G), abnormal chromatin
condensation (arrowheads in Fig. E and H), and cells
without a nucleus (asterisk in Fig. F and I). A-C: con-
trol cells in different stages of the cell cycle; D-F: 0.25 pg.ml-
I'AZA; G-I: | pg.ml-! EIL; J: Percentage of C. albicans cells,
untreated and treated with 24-SMT inhibitors, showing dif-
ferent cell cycle stages: (I) cells with no bud and one nucleus,
(I1) cells with a bud and one nucleus, and (lll) cells with a bud
and two nuclei (one in each cell); and alterations of cell
cycles: (A) cells with more than one nucleus, (B) cells show-
ing abnormal chromatin condensation, and (C) cells without
a nucleus. Bar = 5 um.

Conclusion

The results presented herein demonstrate the potential
usefulness of the 24-SMT inhibitors AZA and EIL as anti-
fungal agents, including azole-resistant Candida strains.
The specific in vitro and in vivo antifungal and antiproto-
zoal activity of azasterols has been known for years, and
in most cases has been linked to their specific inhibition
of 24-SMT, an enzyme absent in mammals [10-14,39].
However, other studies have found that these compounds
are also active against parasitic protozoa that lack endog-
enous sterol biosynthesis, such as T. gondii [23,40] and
Trypanosoma brucei [41], indicating that they may have
other biochemical targets. Taken together, these results
indicate azasterols as useful leads for novel antifungal
agents, but optimisation of their selectivity, ADME, PK,
and toxicological properties is required for their further
advancement as drug candidates.

http://www.biomedcentral.com/1471-2180/9/74

Methods

Microorganisms

Antifungal assays were performed against 70 yeasts of the
genus Candida. Five standard strains from the American
Type Culture Collection (ATCC): Candida albicans ATCC
10231, Candida krusei ATCC 6258, Candida glabrata ATCC
2001, Candida parapsilosis ATCC 22019, and Candida trop-
icalis ATCC 13803; and 65 clinical isolates: Candida albi-
cans (21), Candida parapsilosis (19), Candida tropicalis (14),
Candida guilliermondii (3), Candida glabrata (2), Candida
krusei (1), Candida lusitaneae (1),Candida zeylanoides (1),
Candida rugosa (1),Candida dubliniensis (1), and Candida
lipolytica (1) were used. The clinical isolates came from
bloodstream (35%), urine (26%), and other clinical
material (39%), and were isolated from 2002 to 2006 at
the Microbiology/Mycology Laboratory of Hemorio, Rio
de Janeiro, Brazil. Species identification was performed by
micromorphology analysis and Vitek Systems (Biomer-
ieux Inc., France). The isolates were maintained in Sab-
ouraud dextrose agar plates at 4°C, and subcultures were
used in each experiment.

Drugs

20-piperidin-2-yl-5a.-pregnan-3p, 20-diol (22,26-azas-
terol or AZA) (Fig. 1) and 24(R,S),25-epiminolanosterol
(EIL) (Fig. 1), A24(25)-sterol methyltransferase inhibitors,
were synthesised, purified, and characterised as described
by Urbina et al. [10]. Fluconazole (FLC) (Pfizer, Sao
Paulo, Brazil), Itraconazole (ITC), and Amphotericin B
(AMB) (both from Sigma Chemical Co., Missouri, USA)
were used as reference antifungals. Drugs were diluted in
dimethyl sulfoxide (DMSO) to obtain 100-times stock
solutions and maintained at -70°C.

Antifungal susceptibility test

The minimal inhibitory concentration (MIC) of each drug
was obtained using the broth microdilution technique as
described in document M27-A3 of the Clinical and Labo-
ratory Standards Institute — CLSI [42]. Briefly, serial two-
fold dilutions of the drugs were performed in RPMI 1640
medium (Sigma Chemical Co., Missouri, USA), buffered
with MOPS 0.16 M, pH 7.0, into 96-well microtitre trays
to obtain concentration ranges of 0.03-16 ug.ml1 (AZA,
EIL, and ITC), 0.25-128 pg.ml! (FLC) and 0.007-4
pg.ml! (AMB). Next, the yeast inoculum was adjusted to
1-5 x 106CFU.ml-!. Dilutions of 1:50 and 1:20 in RPMI
1640 medium were performed to obtain 1-5 x 103
CFU.ml!, and an aliquot was dispensed into each well.
The microtitre trays were incubated at 35°C, for 48 h.
MICs,and MIC, values (MICs that inhibit 50% and 90%
of the yeast growth in relating to control, respectively)
were determined using a spectrophotometer at 492 nm.
MICs, and MIC,, median values for test and standard
drugs were also determined. Clinical isolates were classi-
fied according to their MIC in three different categories:
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susceptible (S), susceptible dose-dependent (SDD), or
resistant (R). Interpretative breakpoints proposed by the
CLSI [42] for FLC and ITC were used, and concentrations
above 1 pg.ml-! were considered resistant for AMB [43].
Trailing effect for FLC and ITC was detected at visual read-
ing after 24 h of incubation.

The minimum fungicidal concentration (MFC) was deter-
mined after 48 h of treatment with the inhibitory concen-
trations used in the susceptibility test. An aliquot of each
Candida isolate was transferred onto Sabouraud dextrose
agar plates without the presence of drugs. The plates were
incubated at 35°C for 48 h, and the minimum fungicidal
concentration (MFC) was determined. MFC means the
lowest concentration that showed no fungal growth [44].

Fluorescence microscopy

C. albicans (isolate 77) was treated with MIC, of AZA and
EIL at 35°C for 48 h. Yeasts were washed in PBS, pH 7.2
and fixed with 4% paraformaldehyde in PBS for 30 min.
Next, the yeasts were adhered to coverslips with poly-L-
lysine and incubated with 5 pg.ml-! Nile Red (Fluka, USA)
for 30 min to label the lipid bodies and 1 ug.ml-! DAPI
(Sigma Chemical Co., Missouri, USA) for 10 min to label
the DNA. Coverslips were mounted in n-propylgallate
solution and observed in a Zeiss Axioplan epifluorescence
microscope equipped with rhodamine (Nile Red fluores-
cence) and DAPI filters, and the images were recorded
with a C5810 Hamamatsu camera. The number of altered
Candida was determined after the counting of at least 300
yeast cells. Cell size was measured by means of the SemA-
fore 5.0 software (Jeol, Japan).

Transmission electron microscopy

C. albicans (isolate 77) was treated with MIC;, of AZA and
EIL at 35°C, for 48 h. Yeasts were washed in PBS, pH 7.2
and fixed in a solution of 2.5% glutaraldehyde and 4%
freshly prepared formaldehyde in 0.1 M cacodylate buffer,
pH 7.2, for 2 h at room temperature. After fixation, yeasts
were post-fixed for 2 h in 1% osmium tetroxide contain-
ing 1.25% potassium ferrocyanide and 5 mM CaCl, in
cacodylate buffer, pH 7.2, washed in the same buffer,
dehydrated in ethanol, and embedded in Spurr. Ultrathin
sections were stained with uranyl acetate and lead citrate,
and images were obtained in a Zeiss 900 electron micro-
scope equipped with a CCD Camera (Mega view III
model, Soft Image System, Germany). Images were proc-
essed with iTEM software (Soft Image System, Germany).
Cell wall thicknesses and vesicles of untreated and treated
yeasts were measured by means of the SemAfore 5.0 soft-
ware (Jeol, Japan).

Scanning electron microscopy
C. albicans (isolate 77) treated with MIC;, of AZA and EIL
at 35°C for 48 h, was fixed as described above for trans-
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mission electron microscopy, and subsequently dehy-
drated in ethanol, critical-point dried in CO,, coated with
gold, and observed in a JEOL JSM-5310 scanning electron
microscope.

Cytotoxicity tests in mammalian cells

Green monkey kidney (Vero) cells were maintained in
Dulbecco's modified Eagle's medium (DMEM, Gibco Inv-
itrogen Corporation, New York, USA) supplemented with
2 mM L-glutamine, 10% heat-inactivated fetal bovine
serum (FBS), and 50 pg.ml-! gentamicin at 37°C in a 5%
CO,/air mixture. In 96-well microtitre trays, 2.5 x 104
cells/well were dispensed and incubated for 24 h. Monol-
ayers of Vero cells were treated with different concentra-
tions of 24-SMTI for 48 h at 37°C in 5% CO, and fixed in
10% trichloroacetic acid for 1 h at 4°C, stained with sul-
forhodamine B for 30 min at 4°C, and the optical densi-
ties were obtained in a spectrophotometer at 530 nm [45].
The 50% cytotoxic concentration (CCs,) and the selectiv-
ity index (SI = CC;5/MIC;,) were calculated.

Statistical analysis

Statistical analyses were performed with the Prism 5.0
software, and p < 0.05 was considered as significant. Dif-
ferences in the cell size and cell-wall thickness of
untreated and treated Candida spp. were analysed by one-
way ANOVA (Dunnett test), and MIC values were ana-
lysed by linear regression test.

Authors' contributions

KI, JCFR and SR designed the study and wrote the manu-
script. The syntheses of 24-SMT inhibitors were performed
by JAU. MDR provided the clinical isolates. KI and TVMV
realized the susceptibility assay, fluorescence and trans-
mission electron microscopy. CVN worked on cytotoxicity
tests. JAU and WS critically revised the manuscript for its
important intellectual content. All authors read and
approved the final manuscript.

Acknowledgements

This work was supported by the Conselho Nacional de Desenvolvimento
Cientifico e Tecnoldgico (CNPq) and Fundagdo Carlos Chagas Filho de
Amparo a Pesquisa do Estado do Rio de Janeiro (FAPER)). J.C.F.R. has a
postdoctoral fellowship from the Coordenagio de Aperfeicoamento de
Pessoal de Nivel Superior (CAPES).

References

I.  Kauffman CA: Fungal infections.
3:35-40.

2. Colombo AL, Nucci M, Park B}, Noue'R SA, Arthington-Skaggs B,
Matta DA, Warnock D, Morgan |: Epidemiology of candidemia in
Brazil: a nationwide sentinel surveillance of candidemia in
eleven medical centers. | Clin Microbiol 2006, 44:2816-2823.

3. Pappas PG, Rex JH, Sobel |D, Filler SG, Dismukes WE, Walsh TJ,
Edwards JE: Guidelines of treatment of candidiasis. Clin Infect
Dis 2004, 38:161-189.

4. Odds FC, Brown AJ, Gow NA: Antifungal agents: Mechanism of
action. Trends Microbiol 2003, 11:272-279.

Proc Am Thoracic Soc 2006,

Page 10 of 12

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16891497
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16891497
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16891497
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14699449
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12823944
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12823944

BMC Microbiology 2009, 9:74

20.

21.

22.

Pasqualotto AC, Denning DW: New and emerging treatments
for fungal infections. | Antimicrob Chemother 2008, 61(Suppl
1):i19-i30.

Barret-Bee K, Ryder NS: Biochemical aspects of ergosterol bio-
synthesis inhibition. In Emerging targets in antibacterial and antifun-
gal chemotherapy Edited by: Sutcliffe ], Georgopapadakou NH. New
York: Chapman & Hall; 1992:410-436.

Burbiel |, Bracher F: Azasteroids as antifungals. Steroids 2003,
68:587-594.

Oehlschlager AC, Czyzewska E: Rationally designed inhibitors of
sterol biosynthesis. In Emerging targets in antibacterial and antifungal
chemotherapy Edited by: Sutcliffe |, Georgopapadakou NH. New York:
Chapman & Hall; 1992:437-475.

Song Z, Nes WD: Sterol biosynthesis inhibitors: Potential for
transition state analogs and mechanism-based inactivators
targeted at sterol methyltransferase. Lipids 2007, 42:15-33.
Urbina JA, Vivas ], Visbal G, Contreras LM: Modification of the
composition of Trypanosoma (Schizotrypanum) cruzi epimas-
tigotes by A24(25 sterol methyltransferase inhibitors and
their combinations with ketoconazole. Mol Biochem Parasitol
1995, 73:199-210.

Rodrigues JCF, Bernardes CF, Visbal G, Urbina JA, Vercesi AE, de
Souza W: Sterol methenyl transferase inhibitors alter the
ultrastructure and function of the Leishmania amazonensis
mitochondrion leading to potent growth inhibition. Protist
2007, 158:447-456.

Rodrigues JCF, Attias M, Rodriguez C, Urbina JA, de Souza W:
Ultrastructural and biochemical alterations induced by
22,26-azasterol, a A24(25)-sterol methyltransferase inhibitor,
on promastigote and amastigote forms of Leishmania amazo-
nensis. Antimicrob Agents Chemother 2002, 46:487-499.

Urbina JA, Visbal G, Contreras LM, Mclaughlin G, Docampo R: Inhib-
itors of D24(25) sterol methyltransferase block sterol syn-
thesis and cell proliferation in Pneumocystis carinii. Antimicrob
Agents Chemother 1997, 41:1428-1432.

Visbal G, Alvarez A, Moreno B, San-Blas G: S-adenosyl-L-methio-
nine inhibitors A24-sterol methyltransferase and A24(28)-
sterol methylreductase as possible agents against Paracoc-
cidioides brasiliensis. Antimicrob  Agents Chemother 2003,
47:2966-2970.

Borg-von Zepelin M, Kunz L, Riichel R, Reichard U, Weig M, GroB3 U:
Epidemiology and antifungal susceptibilities of Candida spp.
to six antifungal agents: results from a surveillance study on
fungaemia in Germany from July to August 2005. | Antimicrob
Chemother 2007, 60:424-428.

Godoy P, Tiraboschi IN, Severo LC, Bustamante B, Calvo B, Almeida
LP, da Matta DA, Colombo AL: Species distribution and antifun-
gal susceptibility profile of Candida spp. bloodstream iso-
lates from Latin American hospitals. Mem Inst Oswaldo Cruz
2003, 98:401-405.

Tortorano AM, Kibbler C, Peman ], Bernhardt H, Klingspor L, Grillot
R: Candidaemia in Europe: epidemiology and resistance. Int
J Antimicrob Agents 2006, 27:359-366.

Almirante B, Rodriguez D, Park BJ, Cuenca-Estrella M, Planes AM,
Almela M, Mensa J, Sanchez F, Ayats |, Gimenez M, Saballs P, Fridkin
SK, Morgan ], Rodriguez-Tudela JL, Warnock DWV, Pahissa A: Epide-
miology and predictors of mortality in cases of Candida
bloodstream infection: results from population-based sur-
veillance, Barcelona, Spain, from 2000 to 2003. | Clin Microbiol
2005, 43:1829-1835.

Ostrosky-Zeichner L, Rex JH, Pappas PG, Hamill R], Larsen RA,
Horowitz HW, Powderly WG, Hyslop N, Kauffman CA, Cleary J,
Mangino JE, Lee J: Antifungal susceptibility survey of 2,000
bloodstream Candida isolates in the United States. Antimicrob
Agents Chemother 2003, 47:3149-3154.

Georgopapadakou NH, Dix BA, Smith SA, Freudenberger |, Funke PT:
Effect of antifungal agents on lipid biosynthesis and mem-
brane integrity in Candida albicans. Antimicrob Agents Chemother
1987, 31:46-51.

Hays PR, Parks LWV, Pierce HD, Oehlschlager AC: Accumulation of
ergosta-8,14-dien-3beta-ol by Saccharomyces cerevisae cul-
tured with an azasterol antimycotic agent. Lipids 1977,
12:666-668.

Oehlschlager AC, Angus RH, Pierce AM, Srinivasan R: Azasterol
inhibition of A24-sterol methyltransferase in Saccharomyces
cerevisae. Biochemistry 1984, 23:3582-3589.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

http://www.biomedcentral.com/1471-2180/9/74

Dantas-Leite LRV, Urbina JA, de Souza W, Vommaro RC: Selective
anti-Toxoplasma gondii activities of azasterols. Int | Antimicrob
Agents 2004, 23:620-626.

Maia C, Attias M, Urbina JA, Gilbert |, Magaraci F, de Souza W: Aza-
sterols impair Giardia lamblia proliferation and induces
encystation. Biochem Biophys Res Commun 2007, 363:310-316.
Bellanger P, Nast CC, Fratti R, Sanati H, Ghannoum M: Voricona-
zole (UK-109,496) inhibits the growth and alters the mor-
phology of fluconazole-susceptible and -resistant Candida
species. Antimicrob Agents Chemother 1997, 41:1840-1842.

Koul A, Vitullo J, Reyes G, Ghannoum M: Effects of voriconazole
on Candida glabrata in vitro. | Antimicrob Chemother 1999,
44:109-112.

Borges M, Ven MA Van de: Degenerative changes after itracon-
zole treatment. Rev Infect Dis 1987, 9(Suppl 1):5S33-42.

Hazen KC, Mandell G, Coleman E, Giangqin W: Influence of fluco-
nazole at subinhibitory concentrations on cell surface hydro-
phobicity and phagocytosis of Candida albicans. FEMS
Microbiology Letters 2000, 183:89-94.

Phillips A, Sudbery |, Ramsdale M: Apoptosis induced by environ-
mental stresses and amphotericin B in Candida albicans. Proc
Natl Acad Sci USA 2003, 100:14327-14332.

Bahmed K, Bonaly R, Benallaoua S, Coulon J: Effect of sub-inhibi-
tory concentrations of amphotericin B on the yeast surface
and phagocytic killing activity. Process Biochem 2005, 40:759-765.
Vivas JJ, Urbina JA, de Souza W: Ultrastructural alterations in
Trypanosoma (Schizotrypanum) cruzi induced by A24(25)-sterol
methyltransferase inhibitors and their combinations with
ketoconazole. Int | Antimicrob Agents 1996, 7:235-240.

Mariante RM, Guimardes CA, Linden R, Benchimol M: Hydrogen
peroxide induces caspase activation and programmed cell
death in the amitochondrial Tritrichomonas foetus. Histochem
Cell Biol 2003, 120:129-141.

Dahl C, Biemannt HP, Dahl J: A protein kinase antigenically
related to pp6Ov-src possibly involved in yeast cell cycle con-
trol: Positive in vivo regulation by sterol. Proc Natl Acad Sci USA
1987, 84:4012-4016.

Sardari S, Mori Y, Kurosawa T, Daneshtalab M: Modulatory effect
of cAMP on fungal ergosterol level and inhibitory activity of
azole drugs. Can | Microbiol 2003, 49:344-349.

Pacchierotti F, Bassani B, Marchetti F, Tiveron C: Griseofulvin
induces mitotic delay and aneuploidy in bone marrow cells of
orally treated mice. Mutagenesis 2002, 17:219-222.

Panda D, Rathinasamy K, Santra MK, Wilson L: Kinetic suppression
of microtubule dynamic instability by griseofulvin: Implica-
tions for its possible use in the treatment of cancer. Proc Natl
Acad Sci USA 2005, 102:9878-9883.

Shaw SL, Yeh E, Maddox P, Salmon ED, Bloom K: Astral microtu-
bule dynamics in yeast: A microtubule-based searching
mechanism for spindle orientation and nuclear migration
into the bud. | Cell Biol 1997, 139:985-994.

Palmié-Peixoto IV, Rocha M, Urbina JA, de Souza W, Einicker-Lamas
M, Motta MC: Effects of sterol biosynthesis inhibitors on endo-
symbiont-bearing trypanosomatids. FEMS Microbiol Letters
2006, 255:33-42.

Urbina JA, Vivas |, Lazardi K, Molina J, Payares G, Piras MM, Piras R:
Antiproliferative effects of delta 24(25) sterol methyl trans-
ferase inhibitors on Trypanosoma (Schizotrypanum) cruzi: in
vitro and in vivo studies. Chemotherapy 1996, 42(4):294-307.
Lorente SO, Rodrigues JC, Jimenez C, Joyce-Menekse M, Rodrigues
C, Croft SL, Yardley V, de Luca-Fradley K, Ruiz-Perez LM, Urbina J,
de Souza W, Gonzalez Pacanowska D, Gilbert IH: Novel azasterols
as potential agents for treatment of leishmaniasis and
trypanosomiasis. Antimicrob Agents Chemother 2004, 48:2937-2950.
Gros L, Castillo-Costa VM, Jiménez CJ, Sealey-Cardona M, Vargas S,
Estevez AM, Yardley V, Rattray L, Croft SL, Ruiz-Perez LM, Urbina JA,
Gilbert IH, Gonzilez-Pacanowska D: New azasterols against
Trypanosoma brucei: role of 24-sterol methyltransferase in
inhibitor action. Antimicrob Agents Chemother 2006, 50:2595-2601.
Reference Method for Broth Dilution Antifungal Susceptibil-
ity Testing of Yeasts. In Approved Standard Third edition. CLSI,
Wayne, PA, USA; Clinical and Laboratory Standards Institute . M27-
A3

Nguyen MH, Clancy CL, Yu VL, Yu YC, Morris A}, Snydman DR, Sut-
ton DA, Rinaldi MG: Do in vitro susceptibility data predict the
microbiologic response to amphotericin B? Results of a pro-

Page 11 of 12

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18063600
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18063600
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12957663
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17393207
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17393207
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17393207
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8577328
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8577328
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17719843
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17719843
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11796362
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9210660
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12937003
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17562683
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17562683
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17562683
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12886424
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12886424
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12886424
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16647248
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15815004
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15815004
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15815004
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14506023
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3551826
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=331008
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=331008
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6383468
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15194134
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17870055
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17870055
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9257776
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9257776
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10459817
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3027844
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3027844
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10650207
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14623979
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18611761
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18611761
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18611761
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12844218
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2438691
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12897828
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12897828
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12897828
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11971993
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11971993
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11971993
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15985553
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15985553
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15985553
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9362516
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9362516
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9362516
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8804798
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15273104
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15273104
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15273104
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16870747
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16870747

BMC Microbiology 2009, 9:74

44,

45.

spective study of patients with Candida fungaemia. | Infect Dis
1998, 177:425-30.

Ishida K, Mello JCP, Cortez DAG, Dias Filho BP, Ueda-Nakamura T,
Nakamura CV: Influence of tannins from Stryphnodendro
adstringens on growth and virulence factors of Candida albi-
cans. | Antimicrobial Chemother 2006, 58:942-949.

Lin Z, Hoult J, Raman A: Sulforhodamine B assay for measuring
proliferation of a pigmented melanocyte cell line and its
application to the evaluation of crude drugs used in the
treatment of vitiligo. | Ethnopharmacol 1999, 66:141-150.

http://www.biomedcentral.com/1471-2180/9/74

Submit your manuscript here:

O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and publishedimmediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Page 12 of 12

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9466531
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10433470
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10433470
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10433470
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	Antifungal susceptibility of Candida isolates
	Correlations between MIC values
	Minimum fungicidal concentration (MFC) of AZA and EIL
	Ultrastructural effects
	Presence of lipid bodies
	Effect of 24-SMT inhibitors on the cell cycle
	Cytotoxicity evaluation

	Discussion
	Conclusion
	Methods
	Microorganisms
	Drugs
	Antifungal susceptibility test
	Fluorescence microscopy
	Transmission electron microscopy
	Scanning electron microscopy
	Cytotoxicity tests in mammalian cells
	Statistical analysis

	Authors' contributions
	Acknowledgements
	References

