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Abstract

Background: Campylobacter jejuni, the commonest cause of bacterial diarrhoea worldwide, can
also induce colonic inflammation. To understand how a previously identified heat stable component
contributes to pro-inflammatory responses we used microarray and real-time quantitative PCR to
investigate the transcriptional response to a boiled cell extract of Campylobacter jejuni NCTC
1168.

Results: RNA was extracted from the human colonocyte line HCA-7 (clone 29) after incubation
for 6 hours with Campylobacter jejuni boiled cell extract and was used to probe the Affymetrix
Human Genome UI33A array. Genes differentially affected by Campylobacter jejuni boiled cell
extract were identified using the Significance Score algorithm of the Bioconductor software suite
and further analyzed using the Ingenuity Pathway Analysis program. The chemokines CCL20,
CXCL3, CXCL2, Interleukin 8, CXCLI and CXCL6 comprised 6 of the 10 most highly up-
regulated genes, all with Significance Scores > 10. Members of the Tumor Necrosis Factor o/
Nuclear Factor-kB super-family were also significantly up-regulated and involved in the most
significantly regulated signalling pathways (Death receptor, Interleukin 6, Interleukin 10, Toll like
receptor, Peroxisome Proliferator Activated Receptor-y and apoptosis). Ingenuity Pathway
Analysis also identified the most affected functional gene networks such as cell movement, gene
expression and cell death. In contrast, down-regulated genes were predominantly concerned with
structural and metabolic functions.

Conclusion: A boiled cell extract of Campylobacter jejuni has components that can directly switch
the phenotype of colonic epithelial cells from one of resting metabolism to a pro-inflammatory one,
particularly characterized by increased expression of genes for leukocyte chemoattractant
molecules.
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Background

Campylobacter jejuni (C. jejuni) is a gram-negative micro-
aerophilic bacterium responsible for the majority of
human bacterial enteric infections worldwide [1,2]. C.
jejuni is commonly found as a commensal organism in the
intestinal tracts of a wide range of wild and domestic ani-
mals, including commercial poultry [3]. Cross-contami-
nation from raw poultry or insufficient cooking of poultry
meat are common sources of infection. Enteric infections
by this pathogen are often associated with a potent local-
ized inflammatory response. Symptoms arising from
infection include watery or bloody diarrhoea with
abdominal cramping and fever. In addition, C. jejuni can
be invasive and is associated with septicaemia, meningitis,
Guillain-Barré syndrome [4] and more recently with
immuno-proliferative disease [5].

C. jejuni virulence factors for human disease include flag-
ella based chemotaxis, adhesin-based cellular adherence,
host cell invasion and the elaboration of a heat labile
cytolethal distending toxin (CLDT) [2,6,7] In previous
studies we have additionally shown that a heat stable C.
jejuni boiled cell extract (BCE) is able to activate the tran-
scription factor NF-kB (nuclear factor kappa-light-chain-
enhancer of activated B cells) [8]. This signalling molecule
is responsible for inducing the expression of a number of
genes involved in inflammation and cell mediated immu-
nity [9], including chemokines capable of attracting leu-
kocytes, resulting in inflammation. NF-«B is held inactive
in the cytoplasm of a cell, whilst its nuclear localization
domain is masked by inhibitory IxB proteins. If kB is
phosphorylated, leading to ubiquitin-mediated proteoly-
sis, then NF-xB is released to transport to the nucleus of
the cell, where it affects transcription of kB-responsive
promoters. Therefore products that activate NF-xB can be
presumed to have a strong role in triggering inflamma-
tion. Previous work has shown that live C. jejuni and a
BCE can induce both NF-«B, and the synthesis and release
of the chemokine interleukin-8 [8].

In order to identify a wider range of genes affected by C.
jejuni products and assess the relative importance of the
NF-«B response we used microarray technologies to iden-
tify genes that were both up and down-regulated in HCA-
7 cells after exposure to a C. jejuni BCE [8,10]. Use of the
Ingenuity Pathway Analysis (IPA) program suite enabled
us to group co-regulated genes in order to identify the cel-
lular signalling pathways activated in HCA-7 cells in
response to C. jejuni BCE. The transcriptomic data were
confirmed by real time quantitative PCR (RQ-PCR).

Methods

C. jejuni culture and preparation of BCE

The type strain C. jejuni National Collection of Type Cul-
tures (NCTC) 11168 was used throughout these experi-
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ments, since it was originally isolated from a patient with
diarrhoea, its genome sequence is available and it has a
well-characterized pathological phenotype [11]. It was
incubated on blood-agar plates (Blood Agar Base CM0271
from Oxoid, Basingstoke, UK with 5%, v/v defibrinated
horse blood) under micro-aerobic conditions for 24 h.
and used to inoculate Nutrient Broth no. 2 (Oxoid
CM0067, 600 ml in 1000 ml flask). Inoculated flasks were
shaken at 140 rpm at 42°C for 16 h. under micro-aerobic
conditions. Culture purity was determined by plating
samples from each overnight culture onto blood plates
and incubating for 24 h., 42°C in micro-aerobic condi-
tions. Bacteria were collected by centrifugation at 10,000
g for 15 min. The cell pellet was washed three times in
Phosphate Buffered Saline (PBS), weighed and re-sus-
pended in PBS to achieve a 10% (w/v) suspension, which
was boiled for 10 min., cooled on ice for 5 min. before
being centrifuged at 10, 000 g for 10 min. The supernatant
was collected, passed through a 0.2 pum filter to remove
residual bacteria and stored at -20°C until required.

HCA-T7 cell culture and treatment with C. jejuni BCE

The human colonocyte line HCA-7 [10], clone 29, was
grown to confluence in a 5% CO, atmosphere in monol-
ayer cultures on monolayer dishes in Dulbecco's Modified
Eagle's Medium supplemented (DMEM) with 100 pg/ml
penicillin, 100 pg/ml streptomycin and fetal calf serum at
10% (v/v, Fisher Scientific, Loughborough, UK) at 37°C.
Twenty-four hours prior to induction by BCE, HCA-7 cells
were transferred to serum-free DMEM. HCA-7 cells were
then incubated for 6 h. with 25 pl BCE or PBS control in
a total volume of 1 ml of DMEM. The BCE preparation
was determined in parallel to induce NF-xB 300-fold
using a reporter cell assay [8]. At 6 h. post induction total
RNAs were extracted using RNAeasy columns (Qiagen,
West Sussex, UK). Total RNA yields and purity were deter-
mined using an Agilent 2100 Bioanalyzer (Agilent Tech-
nologies UK Limited, Stockport, UK).

cDNA synthesis

Approximately 10 pg of total RNA was reverse transcribed
at 42°C for 1 h. to generate first strand DNA using 100
pmol oligo dT|,,) primer containing a 5'-T7 RNA polymer-
ase promoter sequence (5'-GCCAGTGAATTGTAATAC-
GACTCACTATAGGGAGGCGG-(dT),,-3"), 50 mM Tris-
HCI (pH 8.3), 75 mM KCl, 3 mM MgCl,, 10 mM dithio-
threitol (DTT), 10 mM dNTPs and 200 units SuperScript
II reverse transcriptase (Invitrogen Life Technologies,
Strathclyde, UK). Second strand DNA synthesis was car-
ried out at 16°C for 2 h., using 10 units of E. coli polymer-
ase I, 10 units of E. coli DNA ligase and 2 units of RNase
H in a reaction containing 25 mM Tris-HCI (pH 7.5), 100
mM KCl, 5 mM MgCl,, 10 mM (NH,)SO,, 0.15 mM B-
NAD+and 10 mM dNTPs. 10 units of T4 DNA polymerase
were added and the reaction allowed to proceed for a fur-
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ther 5 min. before termination with 0.5 M EDTA. Double
stranded ¢cDNA products were purified using the Gene-
Chip Sample Cleanup Module (Affymetrix, Santa Clara,
CA, USA).

cRNA synthesis

The synthetic cDNAs were in vitro transcribed using T7
RNA polymerase (ENZO BioArray High Yield RNA Tran-
script Labeling Kit, Affymetrix, Santa Clara, CA, USA) with
biotinylated ribonucleotides to generated biotinylated
complementary RNAs (cRNAs). The cRNAs were purified
using the GeneChip Sample Cleanup Module before ran-
dom fragmentation at 94°C for 35 min. in a buffer con-
taining 40 mM Tris-acetate (pH 8.1), 100 mM potassium
acetate and 30 mM magnesium acetate to generate mole-
cules of approximately 35 to 200 bases long.

Array hybridization

Changes in gene transcription were analyzed by hybridi-
zation to Affymetrix Human Genome U133A array (HG-
U133A) which contains probes for over 22,000 tran-
scripts, including representation of the RefSeq database
sequences and probe sets http://www.affymetrix.com/
products_services/arrays/specific/hgul33.affx. The frag-
mented cRNAs were mixed with 0.1 mg/ml of sonicated
herring sperm DNA in a hybridization buffer containing
100 mM 2-N-morpholino-ethane-sulfonic acid (MES), 1
M NaCl, 20 mM EDTA and 10% Tween 20 to make the
hybridization mixture. The hybridization mixture con-
taining the fragmented cRNA was denatured at 99°C for 5
min. and equilibrated for a further 5 min. at 45°C before
centrifugation at 10,000 g for 5 min. to remove any insol-
uble material from the hybridization mixture. The hybrid-
ization mix was transferred to the ATH1-121501 genome
array (Affymetrix, Santa Clara, CA, USA) cartridge and
hybridized at 45°C for 16 h. on a rotisserie at 60 rpm.

After a 16 h. hybridization period the arrays were washed
and stained in a Fluidics station (Affymetrix, Santa Clara,
USA). The arrays were initially washed in a low stringency
buffer A (6 x SSPE [0.9 M NaCl, 0.06 M NaH,PO,, 0.006
M EDTA], 10% Tween 20) at 25°C for 10 min. and then
incubated with a high stringency buffer B (100 mM MES,
0.1 M NaCl, 10% Tween 20) at 50°C for 20 min. and
stained with 10 mg/ml of streptavidin phycoerythrin
(SAPE), in stain buffer containing 100 mM MES, 1 M
NacCl, 0.05% Tween 20 and 2 mg/ml BSA at 25°C for 10
min. After a further wash in wash buffer A at 25°C for 20
min. they were stained with biotinylated anti-streptavidin
antibody at 25°C for 10 min. After antibody staining the
arrays were stained again with SAPE for signal amplifica-
tion and washed with buffer A at 30°C for 30 min. The
arrays were finally scanned and the intensities averaged
with the Agilent GeneArray Scanner (Agilent Technology
UK, West Lothian, UK).

http://www.biomedcentral.com/1471-2180/9/28

Statistical analysis of Array data and Generation of
Networks and Canonical Pathways

In order to identify genes of interest we used the S Score
(Significance Score) algorithm as implemented in the Bio-
conductor  software  suite  http://www.bioconduc
tor.org[12] based on the R package http://www.r-
project.org[13] that takes advantage of the fact that most
genes are unchanged and calculates an S score (SD from
the mean). The S score threshold of +/- 2.5 and an alpha
value of P = 0.005 was used to define gene changes of
interest. Data listing all genes that satisfied these criteria
were analyzed by Ingenuity Pathway Analysis, Ingenuity®
Systems, http://www.ingenuity.com. This generated func-
tional networks and canonical pathways that connect the
differentially expressed genes, using the IPA Knowledge
base, where the interactions are supported by peer
reviewed publications and which contains over 1.4 mil-
lion interactions between genes, proteins, and drugs.
Scores were assigned allowing ranking of the networks,
using a Fisher's right tailed exact test.

Analysis of microarray data by real time quantitative PCR
To confirm microarray results, extracted HCA-7 total RNA
was amplified by oligo dT(15) primers according to the
Im-Prom II Kit (Promega UK, Southampton UK) method-
ology. Representative samples of genes from a number of
the major functional groups and gene networks identified
by IPA program were selected to confirm the array data
using RQ-PCR analysis (Tables 1, 2 and 4) under appro-
priate conditions for an ABI Prism 7700. Primer and
probe design utilized Primer Express software (Applied
Biosystems, Warrington, UK). The primers were validated
for gene specificity by agarose gel electrophoresis.
Reporter dye-labelled probes were used with FAM (6-car-
boxyfluorescein) at the 5'-end and TAMRA (6-carboxy-
tetramethyl-rhodamine) at the 3'-end. Reactions were set
up in a final volume of 25 pl containing 12.5 pl of 2 x Taqg-
man Universal PCR Mastermix (Applied Biosystems, War-
rington, UK): 0.75 pl of each primer (10 pmol/ul), 0.5 pl
of probe (10 pmol/ul), 2 ul of cDNA (equivalent to 5 ng
total RNA/ul) and 8.5 pl of water. Samples were analyzed
in triplicate and the emission released reporter dye was
monitored by an ABI Prism 7700 Sequence Detector
(Applied Biosystems, Warrington, UK) using the default
PCR program of 2 min at 50°C and 10 min at 95°C; each
cycle included denaturing at 95°C for 15 s and annealing
at 60°C for 1 min. Analysis of the data was via the
Sequence Detection System (SDS) software (Applied Bio-
systems, Warrington, UK). A no template control was
included in each analysis and did not give any signal with
any of the primer/probe combinations. RQ-PCR data were
normalized using primers to B-actin based on the consid-
erations outlined by Hugget et al. [14].
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Table I: Primers and probes used in the study
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Gene Forward Primer Reverse Primer Probe
B-actin TCACCGAGCGCGGCT TAATGTCACGCACGATTTCCC CAGCTTCACCACCACGGCCG
A
Interleukin-8 ATTTTCCTAGATATTGCACGG GCAAACCCATTCAATTCCTGA AAAATTGAGGCCAAGGGCCA
GAG AGAGAA
ATPase, Na+/K+ transporting, GCCCAGAGGGATGACATGAT CAGACCTTTCGCTCTCCTCG  TTTGAAGATTGTGGCGATGTG
Betal polypeptide CCCA
Syndecan 4 TGGGTGGTTGAGTGAGTGAA CCTCAACTATTCCAGCCCCA  TTTCTCTTGCCCTGTTCCTGG
TT T TGCC
Retinoic acid receptor responder ~ ACCCTGAGGAACCTGCTGGT TGGTTTTTTGTTTCTCAGTCT TGAGCAGAGTTCAGTGTGCA
(tazarotene induced) | GCT TGCGCT
tumor necrosis factor, alpha- CTTTGAGTCAGGCTGTGGGC TTGGATGCAATTCCTTCTTTC ACCACAGGGAGTAAATTGGC
induced protein 3 C CTCTTTGATACA
nuclear factor of kappa light GGCCTCCAAACACACAGTCA GCTGCCAGAGAGTGAGGATG CTCCGTGAACTCTGACTCTGT
polypeptide gene enhancer in B- A GTCATAGCTCTC
cells inhibitor, alpha
matrix metallo-peptidase 7 GATCCCCCTGCATTTCAGG CTGGCCCATCAAATGGGTAG TCATGATTGGCTTTGCGCGA
GG

Forward primer, reverse primer and Tagman probes for RQ-PCR assays used, all listed 5' - 3' direction.

Chemokine and cytokine analyses

Cultured cells were prepared and induced as described
above. After 6 h. incubation, the media was removed and
stored at -20° C until examined using a Coulter-Alter Flow
Cytometer in conjunction with a BD cytometric bead
array human inflammation kit according to manufac-
turer's instructions (BD Biosciences, Oxford, UK). IL8 and
CCL20 (MIP-3a) were specifically measured using a sand-
wich ELISA, by capture with a murine anti-human IL8 or
CCL20 and detected using biotinylated goat anti-human
IL8 using streptavidin-coupled horseradish-peroxidase,
according to the manufacturer's instructions (R&D Sys-
tems, Minneapolis, MN, USA).

Results

The Bioconductor and IPA programs identified 356 genes
that changed with a positive or negative S score of 2.5 or
greater (maximum 13.54). Three hundred were up-regu-
lated and 56 were down-regulated (Additional file 1).

Up-regulated genes

Table 2 shows 48 genes that were up-regulated with an S
score of 5 or greater. These were grouped by class and
ordered by the highest S score in each class. Chemokines
dominate the most highly up-regulated genes with six of
the ten highest S scores. Members of the TNFa-NF-«xB
super family were also highly up-regulated (Table 2).
Other highly up-regulated genes were those involved in

apoptosis and ubiquitination, extra-cellular matrix pro-
teins, the folate receptor, superoxide dismutase, thiore-
doxin reductase, Intercellular Adhesion Molecule (ICAM)
1 and cytokines or their receptors (Colony Stimulating
Factor [CSF] 2 and interferon-y receptor 1).

Down-regulated genes

Fewer genes were down-regulated than those that were
up-regulated and negative S scores were less pronounced
than those for the up-regulated genes. For comparative
purposes Table 3 shows down-regulated genes that were
selected on the basis of a more permissive S score of -2.6
or less to yield a similar number (46). These genes were
grouped by class and ordered by the highest negatively
regulated (lowest value) S score in each class. The pattern
of down-regulated gene classes differ markedly to those
that were up-regulated. Most prominent were genes con-
cerned with the maintenance of normal cell cycle, DNA
replication and cell structure. The down-regulated group
feature specific genes encoding components involved in
membrane transport, mitosis, nucleotide synthesis, tran-
scription, protein synthesis and export, membrane trans-
port and energy metabolism.

Signalling pathways

IPA identified a number of canonical signalling pathways
that were most significantly affected (Figure 1). Figure 2
shows a simplified composite of all genes identified by
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Table 2: Up-regulated genes. Functional classes of genes shown are ordered by the S score of the most highly regulated examples in
the class with S score > 5.

Function Symbol Name S Score
Chemokine CCL20 Chemokine (C-C Motif) Ligand 20 13.542
CXCL3 Chemokine (C-X-C Motif) Ligand 3 11.866
CXCL2 Chemokine (C-X-C Moitif) Ligand 2 11.742
IL8 Interleukin 8 11.393
CXCLI Chemokine (C-X-C Moitif) Ligand | 11.096
CXCL6é Chemokine (C-X-C Motif) Ligand 6 10.79
CCL2 Chemokine (C-C Motif) Ligand 2 5.294
TNF/NFkB superfamily TNFAIP3  Tumor Necrosis Factor, Alpha-Induced Protein 3 11.678
IKBA Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, 10.956
alpha
TNIPI TNFAIP3 Interacting Protein | 9.344
TNFAIP2  Tumor Necrosis Factor, Alpha-Induced Protein 2 8.293
OPTN Optineurin 6.487
IL32 Interleukin 32 6.12
NFKBI Nuclear Factor Kappa B (P105) 5.355
Apoptosis/Cell death UBD Ubiquitin D 11.647
BIRC3 Baculoviral IAP Repeat-Containing 3 11.063
CFLAR CASP8 And FADD-Like Apoptosis Regulator 6.224
SGK Serum/Glucocorticoid Regulated Kinase 5.705
1SG20 Interferon Stimulated Exonuclease Gene 20 kda 5.575
Extracellular Matrix MMP7 Matrix Metallopeptidase 7 (Matrilysin, Uterine) 9.812
SDC4 Syndecan 4 (Amphiglycan, Ryudocan) 8.923
LAMA3 Laminin, Alpha 3 5.824
LAMC2 Laminin, Gamma 2 5.32
Folate receptor FOLRI Folate Receptor | (Adult) 8.963
Redox state SOD2 Superoxide Dismutase 2, Mitochondrial 8.879
TXNRDI  Thioredoxin Reductase | 6.378
Cell adhesion ICAMI Intercellular Adhesion Molecule | 8.879
Page 5 of 16

(page number not for citation purposes)



BMC Microbiology 2009, 9:28

http://www.biomedcentral.com/1471-2180/9/28

Table 2: Up-regulated genes. Functional classes of genes shown are ordered by the S score of the most highly regulated examples in

the class with S score > 5. (Continued)

FNDC3B  Fibronectin Type Ill Domain Containing 3B 5.851
Cytokines/Receptors IFNGRI Interferon Gamma Receptor | 8.403
CSF2 Colony Stimulating Factor 2 5.101
PLAT Plasminogen Activator, Tissue 7.464
SERPINB2  Serpin Peptidase Inhibitor 2 6.319
Energy metabolism ATPIBI Atpase, Na+/K+ Transporting, Beta | Peptide 7.184
Nuclear transcription CEBPD CCAAT/Enhancer Binding Protein Delta 6.708
RARRES|  Retinoic Acid Receptor Responder 6.179
Antibacterial LCN2 Lipocalin 2 6.6
PI3 Peptidase Inhibitor 3 (Elafin) 5.057
Cell signalling CDC42 Cell Division Cycle 42 7.28
DUSP5 Dual Specificity Phosphatase 5 6.541
SGPLI Sphingosine- | -Phosphate Lyase | 6.242
Cytoskeleton/cytokinesis TPMI Tropomyosin | 5.689
PDLIM5 PDZ And LIM Domain 5 5.169
Transcription, protein synthesis and export SF3BI Splicing Factor 3b, Subunit I, 5.146
UGCG UDP-Glucose Ceramide Glucosyltransferase 5.388
Cell cycle PLK2 Polo-Like Kinase 2 5.55
Structural SYNGR3  Synaptogyrin 3 5.133
Antigen presentation TAPI Transporter |, ATP-Binding Cassette 5.207

IPA as being part of specific signalling pathways that are
most significantly regulated, together with their individ-
ual S scores. Here the central mediator is the NF-«B signal-
ling pathway that is clearly contributory in affecting the
signalling through the Death Receptor, IL6, IL10, Toll-like
receptor and PPAR pathways (also see Gene Networks sec-
tion below and Figure 3 which also features NF-kB). In
addition, several other canonical signalling pathways,
some of which do not feature NF-xB, were also identified
as significantly affected.

The antigen presentation pathway was identified through
up-regulation of the Large Multifunctional Protease
(LMP)-7, Transporter Associated with Antigen Processing
(TAP) 1, TAP-binding protein (TAPBP), Calreticulin

(CALR) and the Major Histocompatibility Complex
(MHC)1-0..

Activation of the interferon-y receptor defence signalling
pathway was noted through up-regulation of both com-
ponents of interferon-y receptor, Janus kinase (JAK) 1 and
Tyrosine Kinase (TYK) 2.

Activation of the ephrin signalling pathway, indicating
activation of actin-based cytokinesis and repulsion. The
pathway included up-regulation of ephrin receptor sub
components, RHO family, GTP binding protein (Racl),
Cell Division Cycle (CDC) 42, Wiskott-Aldrich syndrome
protein (WASP), actin-related protein 2 (ARP2), V-crk
homologue (CRK) and Ras oncogene family member
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Table 3: Down-regulated genes Functional classes of genes shown are ordered by the S score of the most highly regulated examples in
the class with S score < -2.6.

Function Symbol Name S Score
Cell cycle, DNA replication and Mitosis IDI Inhibitor Of DNA Binding | -4416
ID3 Inhibitor Of DNA Binding 3 -4.304
ID2 Inhibitor Of DNA Binding 2 -4.054
LHX3 LIM Homeobox 3 -3.18l
KLFI Kruppel-Like Factor | -2.97
FOXF2 Forkhead Box F2 -2.684
SFN Stratifin -4.086
FGFBPI Fibroblast Growth Factor Binding Protein | -3.922
SKP2 S-Phase Kinase-Associated Protein 2 (P45) -3.035
RPA3 Replication Protein A3 -2.975
RFC4 Replication Factor C 4 -2.845
SPBC25 Spindle Pole Body Component 25 Homolog -2.688
Structural REGIA Regenerating Islet-Derived | Alpha -4.213
CX36 Connexin-36 -3.79
COL4AS5 Collagen, Type IV, Alpha 5 -3.69
ODFI Outer Dense Fiber Of Sperm Tails | -3.511
CD248 CD248 Molecule, Endosialin -2.965
Membrane transport SLC2AI Solute Carrier Family 2, Member | -3.912
CRIPI Cysteine-Rich Protein | (Intestinal) -3.079
SCNNIA Sodium Channel, Nonvoltage-Gated | Alpha -2918
HFE Hemochromatosis Gene -2.723
Transcription, protein synthesis and export CHMPé6 Chromatin Modifying Protein 6 -3.599
RANBPI RAN Binding Protein | -3.48
EHBPI EH Domain Binding Protein | -3.106
RRM2 Ribonucleotide Reductase M2 Polypeptide -2.957
CTDSPL Small Carboxy-Terminal Domain Phosphatase -2.838
DARS2 Aspartyl-Trna Synthetase 2 (Mitochondrial) -2.795
POLR3K Polymerase (RNA) Subunit K -2.701
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Table 3: Down-regulated genes Functional classes of genes shown are ordered by the S score of the most highly regulated examples in

the class with S score < -2.6. (Continued)

Nucleotide synthesis UNG Uracil-DNA Glycosylase -3.553
GLRX Glutaredoxin -3.325
DUT dUTP Pyrophosphatase -2.967
TYMS Thymidylate Synthetase -2.687
Energy metabolism ATAD4 ATPase Family, AAA Domain Containing 4 -3.185
COX7B Cytochrome C Oxidase Subunit 7B -2.893
Cytoskeleton/cytokinesis M-RIP Myosin Phosphatase-Rho Interacting Protein -2.954
MALL Mal, T-Cell Differentiation Protein-Like -2918
ARHGAP29 Rho Gtpase Activating Protein 29 -2.909
ROCK2 Rho-Associated, Coiled-Coil Containing Protein Kinase 2 -2.701
Cytokine TGFB2 Transforming Growth Factor, Beta 2 -2.909
CIQTNF3 Clq And TNF Related Protein 3 2.701
Protease SPINKI Serine Peptidase Inhibitor, Kazal Type | -2.889
Cell adhesion LGALS4 Galectin 4 -2.869
Redox TXNIP Thioredoxin Interacting Protein -2.843
Cell signalling HSIBP3 HSI-Binding Protein 3 -2.755
Anti-inflammatory ANXAI Annexin Al (Lipocortin I) -2.703
Matrix LAMBI Laminin, Beta | -2.702

(RAP)1B with rho-associated coiled-coil containing pro-
tein kinase (ROCK) 2.

Finally, up-regulation of most components of the PI3K-
phosphatase signalling pathway were noted, including
phosphatase and tensin homology (PTEN) pathway indi-
cating possible effects on the cell cycle, including Cell
Division Cycle (CDC) 37, Forkhead Box (FOX)O1A and
Cyclin Dependent Kinase Inhibitor (CDKN)la (P21).
SEN (Stratifin or 14-3-3c) however, was down-regulated.

Predicted functional effects

The IPA program can determine if groups of significantly
changed genes have related cellular and molecular func-
tions (Figure 4). Here IPA identified 16 functional catego-
ries that were significantly affected by the C. jejuni BCE.
The most prominent functions implicated were cellular
movement (reflecting changes in chemokines, adhesion

receptors and molecules affecting cytokinesis), cell growth
and proliferation and cell death.

Gene networks

The IPA program constructed 16 interconnected gene net-
works that were significantly altered as a result of treat-
ment of HCA-7 cells with C. jejuni BCE, all with network
scores of > 8. The network score is the probability that a
network would be assembled by chance where a level of >
3 is statistically significant, at p < 0.001. In the four most
significantly regulated all 35 focus genes of the network
were affected, all giving an identical score of 52 (P < 1E-
52).

The first network (Figure 3) contains genes concerned
with cellular movement, particularly chemotaxis. NF-xB
occupies a central position in the network and includes a
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PPAR Signaling

Canonical Signalling Pathways identified by IPA software as significantly regulated by C. jejuni BCE. A Fisher's
exact test was used to calculate a p-value (Bars) determining the probability that the association between the genes in the data-
set and the canonical pathway can be explained by chance alone. Threshold refers to the cut off for p < 0.05.

number of genes which are known to up-regulate includ-
ing a number of chemokines.

The second network (Additional file 2) likewise contains
genes associated with cellular movement, including cyto-
kinesis and inflammatory responses. Up-regulated genes
include Ephrin Receptor B2 (EPHB2), PTGS2 (COX-2),
ICAM1, both components of interferon-y receptor, IL23A,
IL27RA, JAK1, JUNB proto oncogene, Mitogen Activated
Protein Kinase Kinase Kinase Kinase (MAP4K4), TYK2,
Mothers Against DPP homologues (SMAD) 3, with 2
genes shown to be significantly down-regulated (SH2B
and Transforming Growth Factor [TGF] 2).

MYC occupies a central position in the third network
(Additional file 3), which contains genes concerned with
the regulation of the cell cycle. Up-regulated genes include
MYC as well as FAS, folate receptor (FOLR1), HLA mole-
cules E, F and G, laminins 3, a3 (LAM-B3, A3) and y2
(LAMC2), Matrix Metallo Proteinase (MMP)7, and SOD2.
Down-regulated were Laminin B1 (LAMB1), RAN Binding
Protein 1 (RANBP1) Thioredoxin Interacting Protein
(TXNIP) and Thymidylate Synthetase (TYMS).

Finally, a network (Additional file 4) contains genes
affecting cell death and gene expression. The network con-
tains 25 genes that were up-regulated, including Activat-
ing Transcription Factor (ATF) 3, cellular Inhibitor of

Apoptosis Proteins (cIAP) 1 and 2 (BIRC 2 and 3), cyclin
dependent kinase (CDK) 7, cyclin dependant kinase
inhibitor (CDKN) 1A, GATA binding protein (GATA) 6,
TNFo-Induced Protein (TNFAIP) 2, the TNEF-Related
Apoptosis-Inducing Ligand (TRAIL or TNFSF10), its
receptor TRAILR2 (TNFRSF10B or Death receptor [DR] 5)
and TNF Receptor Associated Factor (TRAF) 2. Whilst
CDKNI1A is up-regulated, CDKN3 is down-regulated, as
are the Inhibitors of DNA Binding (ID)1,2 and 3, Mini-
Chromosome Maintenance homologue (MCM) 6, RCF4,
rho-associated, coiled-coil containing protein kinase
(ROCK) 2 and S-Phase Kinase-Associated Protein (SKP) 2.

Validation of Microarray data

Changes in gene expression identified by microarray were
confirmed by RQ-PCR (Table 4). However, hierarchical
differences are apparent between the RQ-PCR values nor-
malized against B-actin compared with the S score associ-
ated with the significantly regulated genes as indicated by
differential hybridization of the cRNA preparations to the
microarray.

Chemokine and cytokine responses

To further validate the gene transcriptional changes using
microarray and RQ-PCR methods, we measured the levels
of secretory immunomodulatory proteins in parallel cell
supernatants of HCA-7 cells pre- and post-induction with
C. jejuni BCE. Table 5 presents the chemokine and
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cytokine levels of pro- and anti-inflammatory secretory
proteins. Consistent with the microarray observations the
pro-inflammatory chemokine CCL20 showed a 12.6-fold
increase in levels 6 h. post treatment. IL8 levels were also
found to increase, but far more dramatically than CCL20
with a 460-fold induction. HCA-7 colonocytes are partic-
ularly IL8 responsive with post-induction levels of 18.4
ng/ml, an observation that is consistent with previous
reports with this cell line [8]. The pro-inflammatory
cytokine IL1f3 showed a weak response consistent with the
transcriptional response recorded in the microarray study.
Pro-inflammatory cytokine IL6 showed a 5-fold increase,
whereas the anti-inflammatory cytokine IL10 remained
static. The transcriptional response of the genes encoding
IL6 and IL10 did not show marked transcriptional

changes but the pathways associated with these immu-
nomodulatory proteins were recognized by IPA and are
responsive to NF-xB.

Discussion

Understanding the pathogenesis of C. jejuni enteric dis-
ease is important both because C. jejuni is a major cause
of diarrhoeal illness worldwide and because it may serve
as a model for ulcerative colitis, the pathology of which it
closely resembles [15]. Previous work has shown that
direct interaction between C. jejuni and epithelial cells is
capable of inducing pro-inflammatory and pro-secretory
processes [8,16]. These are associated with cellular inva-
sion [17] and secretion of IL8 by CLDT dependent and
independent mechanisms [16,18]. Direct use of a BCE has
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IPA generated NF-«B-centred gene network. Network contains nodes (gene/gene product) and edges (indicating a rela-
tionship between the nodes) showing the cellular/subcellular location as indicated. An asterisk indicates that duplicates were
identified in each dataset. Function classes of nodes indicated by shape to represent functional class, a plus sign indicates node
is contained in other networks. All 35 focused genes are significantly up-regulated. Genes with an S score of > 7 are shown in
red and those with an S score of between 2.5-7 are shown pink. Explanation of edge types and shapes is indicated.

allowed us to use a reductionist approach to investigate
effects of C. jejuni that are not dominated by these linked
processes of cellular invasion by live bacteria and by toxin
based cell lysis. BCE has been determined to contain
polysaccharide and protein components of the cell. As
demonstrated previously the NF-«B inducing activity of C.
jejuni BCE is relatively insensitive to digestion by protease
K [8]. However the protein content has been determined
using tryptic digests of SDS-polyacryamide extracted pro-
tein bands using MALDI-TOF mass spectrometry as flagel-
lin (Cj1339c), trigger factor (Cj0193c), lipoprotein
(Cj0983), major outer membrane protein (Cj0599), cyto-
chrome-c  peroxidase  (Cj0358),  bacterioferritin
(Cj1534c), cell binding factor PEB4A (Cj0496), hypothet-
ical protein (Cj0706), periplasmic protein (Cj0772c),
fibronectin binding protein (Cj1478c), non-heme iron

protein (Cj0012c), periplasmic protein (Cj1380), peri-
plasmic protein (Cj0420), periplasmic protein (Cj0998c),
DNA-binding protein HU (Cj0913c), periplasmic cyto-
chrome C (Cj1153) and thioredoxin (Cj0147c) [11]. The
polysaccharide component features o-glucan oligomers.
The C. jejuni extract is notably devoid of the dominating
heat-labile effects of the CLDT. C. jejuni BCE, like infec-
tion with live C. jejuni, has been shown to be a potent
inducer of NF-«xB using either luciferase based reporter
assays, western blots with antibodies against IkB or elec-
trophoretic mobility shift assays in epithelial cells [8] but,
unlike treatment with live C. jejuni, this does not lead to
host cell lysis. These observations are consistent with the
hypothesis that a heat stable component plays a signifi-
cant role in the pro-inflammatory response upon expo-
sure to C. jejuni.
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Functional Molecular and Cellular pathways significantly affected by C. jejuni BCE. A Fisher's exact test was used to
calculate a p-value (Bars) determining the probability that the association between the genes in the dataset and the canonical
pathway can be explained by chance alone. Threshold refers to the cut off for p < 0.05.

We hypothesize that NF-kB modulation is central to the
response of enterocytes to C. jejuni BCE; to study this we
determined the global changes in gene expression
induced by C. jejuni BCE treatment of the well-differenti-
ated human colonocyte line HCA-7, clone 29. In order to
ensure the relevance of our results we have adopted strin-

gent criteria for the identification of significantly affected
genes and used the IPA program to determine the func-
tional links between these gene products, identify the sig-
nalling pathways and networks to which they belong.
These changes were validated by showing similar affects

Table 4: Comparison of results for selected up-regulated genes determined by Affymetrix/S score and RQ-PCR.

Gene Description Ingenuty Name Affymetrix Probe S Score Fold RQ-PCR Network Location

Set
Interleukin-8 IL8 211506_s_at 11.393 594+ |55 See Figure 3 Extra-cellular
ATPase, Na+/K+ ATPIBI 201242 _s_at 7.184 45+ 1.8 10 Plasma Membrane
transporting, Beta |
polypeptide
Syndecan 4 SDC4 202071 _at 8.823 40 +0.84 5 Plasma Membrane
Retinoic acid receptor RARRESI 221872 _at 6.179 2.4+ 0.7 8 Plasma Membrane
responder (tazarotene
induced) |
tumor necrosis factor, alpha- TNIPI 207196_s_at 9.344 20+0.2 See Figure 3 Nucleus
induced protein 3
nuclear factor of kappa light  NFKBIA 201502_s_at 10.956 40+ 1.2, See Figure 3 Cytoplasm
polypeptide gene enhancer
in B-cells inhibitor, alpha
Matrix Metallo-peptidase 7 MMP7 202644 _s_at 9.812 2.1 £4.2 9 & See Additional Extra-cellular

file 3

For each gene ingenuity description, name and Affymetrix probe set, assigned network and cellular location are shown together with the S score

and fold RQ-PCR change compared to B-actin control.
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Table 5: Cytokine and chemokine levels (pg/ml) pre- and post-
induction of HCA-7 cells with C. jejuni BCE for 6 h.

Pre-Induction Post-Induction Fold-Induction

IL10 12 (+2) I5 (+3) 1.25
IL6 30 (+ 3) 150 (# 5) 5

ILIB 20 (+ 4) 30 (+ 6) 15
L8 40 (£ 16) 18,400 (+ 400) 460
CCL20 30 (+ 6) 380 (+ 40) 12.6

on mRNA levels when genes of interest were investigated
by real-time quantitative PCR.

Consistent with the initial hypothesis that NF-kB plays a
major role in the response of HCA-7 cells to C. jejuni BCE,
and features in 8 of the 11 designated signalling pathways
identified by IPA as up-regulated. Moreover, all genes in
the NF-xB associated network (Figure 3) were up-regu-
lated by C. jejuni BCE. The dominant component of this
response concerned up regulation of chemokines that
would act to induce the influx of acute inflammatory cells
that characterize Campylobacter colitis. Our data are
remarkably similar to transcriptomic data reported by
Hinata et al., who activated NF-kB by transfecting clones
expressing subunits of NF-xB to show up-regulation of the
chemokines CXCL3 (GRO3) IL8, CXCL6, CXCL2
(GRO2), CXCL20 (SCYA20), CXCL1 (GRO1), CCL2
(CXYA2) as well as IL1a and CSF2, all of which were also
significantly up-regulated in our study [19]. The NFKBI1,
NFKB2 and RELB components of NF-«B are also similarly
up-regulated in our study. Other changes that are likely to
be of functional importance and are the up-regulation of
COX2 (PTGS2), TNIP2, MYC, SOD2, ELF3 and ICAM1
(Additional file 1), where all of these processes are also
downstream targets of NF-kB [20] and mediators of feed-
back inhibition of NF-«xB activation such as NFKBIA (IxB)
[9], TNIP1 [21] and TNIP2 (Figure 3) [22]. A central role
for NF-kB is also supported by data using the monocytic
cell line THP-1 [23]. Studies in which Caco-2 cells were
incubated with live bacteria resulted in expression of
many genes similar to those reported here, including
chemokines, but additionally, the NF-xB inhibitor NFK-
BIZ [24]. This difference may reflect the ability of live bac-
teria to invade cells and/or elaborate a CLDT with DNase
activity [6].

The pattern of significantly down-regulated genes (Table
3) is remarkably different with a reduction in expression
in constitutively expressed genes concerned with nucle-
otide synthesis, transcription, DNA replication, mitosis,
structural protein synthesis, membrane transport and
energy metabolism. These changes likely reflect the repri-
oritization of cellular metabolism in response to pro-
inflammatory products.

http://www.biomedcentral.com/1471-2180/9/28

Whether the changes caused by the C. jejuni BCE would
lead to increased or reduced apoptosis is difficult to pre-
dict, especially as HCA-7 lack a functional TP53 protein,
although these cells are capable of apoptosis given the
appropriate signal [25]. Invasive C. jejuni infection can
cause cell death in HCA-7 cells [16], although we did not
see this with the addition of BCE [8]. Increased expression
of members of the death receptor pathway, the TNFa
superfamily and their receptors, but also of TNFa agonists
may imply regulated activation of pro-apoptotic activity
[26-30]. Up-regulation of TRAIL, DR5, and FAS ligand act-
ing via FADD, the universal adaptor protein known
domain-containing members of the TNF receptor super-
family, would successively activate caspases 8, 10 and 3 as
well as possible G1-S cell cycle progression [27]. However,
the antagonists TNFAIP3, FLIP and cIAP, which respec-
tively inhibit apoptosis via TRAF6, caspases 8, 9, 10 and
TRAEF-2 directly or indirectly are also prominent amongst
the up-regulated genes [29-32].

Moreover, several other key proteins for the cell cycle and
apoptosis are affected. Thus CDKN1A (P21, WAF, WAF1
or CIP1) which plays a pivotal role in inhibiting cell cycle
progression at several points in response to DNA damage
[33], is up-regulated, as are FOXO1A and SMAD 2 (Addi-
tional file 1) and 3 (Additional file 2), which act together
to increase CDKN1A activity [34,35]. Conversely, other
genes that inhibit cell cycle progression are down-regu-
lated. These include SKP2, the F-box receptor that inter-
acts with p19 and the CDK2/cyclin A to prevent entry into
G1 [36] and SEN (stratifin or 14-3-3c) a key target of the
tumour suppressor gene TP53 which acts to cause G2
arrest [37].

Five other changes of potential functional importance are
of note. Firstly, a number of potentially antibacterial
agents are highly induced, including LCN2 (lipocalin-2)
[38,39] and PI3 (peptidase inhibitor 3, aka ELAFIN) [40],
whilst MMP7 is thought to activate defensins [41]. Sec-
ondly, five key molecules involved in antigen processing
and presentation (Figure 1, 2) [42] were also up-regulated
and could play a role in the development of immune
responses to C. jejuni. Thirdly, alterations in matrix metal-
loproteinases and leukocyte receptors would influence the
inflammatory response, with MMP9 acting to facilitate
neutrophil transfer by activating interleukin-8 [43] and
MMP?7 acting to localize them to sites of tissue damage
[44]. Fourthly, the ephrin pathway (Figure 2), including
Ephrin A2 and B2 receptors (EPHA2, EPHB2) and Ephrin
A1 (EFNA1, Figure 3), rho kinase (ROCK2), Rac, ARP2/3,
CDC42 and WASP appeared to be strongly up-regulated.
This pathway is concerned with activation of cytokinetic
changes that may potentially play a role in rapid restitu-
tion [45,46]. Finally, up-regulation of the folate receptor
(FOLR1) may reflect preparation for reparative nucleotide
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synthesis dependent upon one-carbon transfer activity
[47].

Conclusion

The data we have generated using a BCE of C. jejuni repre-
sents a reductionist approach to determine some of the
cellular responses associated with C. jejuni infection.
However, because C. jejuni BCE represents a robust NF-xB
inducing activity that is not only heat-stable but resistant
to protease and acidic pH (pH 3) [8], these may indeed be
of clinical significance if these products are shed upon C.
jejuni infection or co-delivered through the diet. C. jejuni
has been detected in many commercially available
chicken portions [2] and clinical cases of Campylobacter
enterocolitis are frequently associated with ingestion of
partially cooked poultry meat [48].

Changes in host gene expression following C. jejuni BCE
interestingly reflects some of the changes that are known
to occur in inflammatory bowel diseases (IBD) such as
ulcerative colitis, for which C. jejuni colitis can be consid-
ered a model, and may therefore indicate other potential
targets for investigation of epithelial-derived mediators of
inflammation in ulcerative colitis/IBD. Up-regulation of
NF-kB is well recognized and considered a possible target
of mesalazine [49,50]. Genes up-regulated by C. jejuni
that have been associated with active ulcerative colitis/
IBD include chemokines [51], such as IL8 and CCL20
(macrophage inflammatory protein 3a) [52-54]
cytokines, including TNFa [55], eicosanoids [53] and
elafin [56]. IL23, IL32 [57-59] and receptors such as inter-
feron-y receptor, and TLR2 [60] have all been demon-
strated to be altered here (Table 2, Additional file 1).
Activation of pro-apoptotic pathways involving the TNF
superfamily and death domain signalling pathway have
been reported to be up-regulated in colonic enterocytes
isolated from patients with ulcerative colitis, from which
C-IAP2 (BIRC3) has been proposed as a disease marker
[61], whilst the leukocytes serine anti-proteinase elafin
has recently been identified as a candidate biomarker for
ulcerative colitis but with attenuated induction in Crohn's
disease [56]. Thus, the data we report here include a
number of pathways and mediators that may be realistic
anti-inflammatory therapeutic targets to prevent or reduce
the activity of C. jejuni colitis or ulcerative colitis. These
targets include mechanisms for chemoattraction of
inflammatory cells, cellular processes associated with
repair and the processes associated with apoptosis, as well
as NF-xB itself, the utilization of which can be investi-
gated by intervention studies in model systems and
humans.
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Additional material

Additional file 1

Complete listed of significantly regulated genes induced by C. Jejuni
BCE. File contains all genes identified by the Bioconductor and IPA pro-
grammes as significantly regulated (S score <-2.5 or >2.5). All genes are
shown together with their synonym, description, Genbank name, S score,
network allocation, location, family, Entrez ID for Human, Mouse and
Rat, and NCBI Entrez Gene web-link. Network 1 is displayed in addi-
tional file 3, network 2 is displayed in additional file 4, network 3 is dis-
played in figure 3, and network 4 is displayed in additional file 2.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2180-9-28-S1 .xls]

Additional file 2

IPA generated cell movement associated gene network. All 35 focus
genes in this pathway are significantly up or down-regulated. Labeling of
Network is similar to that of figure 3. Genes with an S score of > 7 are
shown in red and those with an S score between 2.5-7 are shown pink.
Down-regulated genes with an S score between -2.5 and -7 are shown
green.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2180-9-28-S2.jpeg]

Additional file 3

IPA generated MYC associated gene network. All 35 focus genes in this
pathway are significantly up or down-regulated. Labeling of Network is
similar to that of figure 3. Genes with an S score of > 7 are shown in red
and those with an S score between 2.5-7 are shown pink. Down-regulated
genes with an S score between -2.5 and -7 are shown green.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2180-9-28-S3.jpeg]

Page 14 of 16

(page number not for citation purposes)


http://www.biomedcentral.com/content/supplementary/1471-2180-9-28-S1.xls
http://www.biomedcentral.com/content/supplementary/1471-2180-9-28-S2.jpeg
http://www.biomedcentral.com/content/supplementary/1471-2180-9-28-S3.jpeg

BMC Microbiology 2009, 9:28

Additional file 4

IPA generated cell death associated gene network. All 35 focus genes
in this pathway are significantly up or down-regulated. Labeling of Net-
work is similar to that of figure 3. Genes with an S score of > 7 are shown
in red and those with an S score between 2.5-7 are shown pink. Down-
regulated genes with an S score between -2.5 and -7 are shown green.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2180-9-28-S4.jpeg|
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