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Abstract
Background: Escherichia coli O157 is an important cause of acute diarrhoea, haemorrhagic colitis
and, especially in children, haemolytic uraemic syndrome (HUS). Incidence rates for human E. coli
O157 infection in Scotland are higher than most other United Kingdom, European and North
American countries. Cattle are considered the main reservoir for E. coli O157. Significant
associations between livestock related exposures and human infection have been identified in a
number of studies.

Results: Animal Studies: There were no statistically significant differences (P = 0.831) in the mean
farm-level prevalence between the two studies (SEERAD: 0.218 (95%CI: 0.141-0.32); IPRAVE:
0.205 (95%CI: 0.135-0.296)). However, the mean pat-level prevalence decreased from 0.089
(95%CI: 0.075-0.105) to 0.040 (95%CI: 0.028-0.053) between the SEERAD and IPRAVE studies
respectively (P < 0.001). Highly significant (P < 0.001) reductions in mean pat-level prevalence were
also observed in the spring, in the North East and Central Scotland, and in the shedding of phage
type (PT) 21/28. Human Cases: Contrasting the same time periods, there was a decline in the
overall comparative annual reported incidence of human cases as well as in all the major PT groups
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except 'Other' PTs. For both cattle and humans, the predominant phage type between 1998 and
2004 was PT21/28 comprising over 50% of the positive cattle isolates and reported human cases
respectively. The proportion of PT32, however, was represented by few (<5%) of reported human
cases despite comprising over 10% of cattle isolates. Across the two studies there were differences
in the proportion of PTs 21/28, 32 and 'Other' PTs in both cattle isolates and reported human
cases; however, only differences in the cattle isolates were statistically significant (P = 0.002).

Conclusion: There was no significant decrease in the mean farm-level prevalence of E. coli O157
between 1998 and 2004 in Scotland, despite significant declines in mean pat-level prevalence.
Although there were declines in the number of human cases between the two study periods, there
is no statistically significant evidence that the overall rate (per 100,000 population) of human E. coli
O157 infections in Scotland over the last 10 years has altered. Comparable patterns in the
distribution of PTs 21/28 and 32 between cattle and humans support a hypothesized link between
the bovine reservoir and human infections. This emphasizes the need to apply and improve
methods to reduce bovine shedding of E. coli O157 in Scotland where rates appear higher in both
cattle and human populations, than in other countries.

Background
In the last 25 years, Escherichia coli serogroup O157 (E. coli
O157) has become an important cause of severe gastroin-
testinal illness in westernised countries, warranting sub-
stantial public health concern. Clinical signs range from
mild diarrhoea to haemorrhagic colitis and haemolytic
uraemic syndrome (HUS) which may result in death [1].
HUS usually occurs in young children and is the major
cause of acute renal failure in children in western coun-
tries [2]. Clinical surveillance in Scotland has shown that
over 90% of HUS cases are associated with E. coli O157
infection [3]; similar observations have been made in
other countries [4-6]. Cattle are the main reservoir for E.
coli O157 [7], and play a major role in the epidemiology
of human infections [8]. Visits to farms, contact with ani-
mal excreta and recreational use of animal pasture have all
been identified as significant risk factors for sporadic
human infections [9-12]. Spatial analyses suggest that
human incidence is positively associated with indicators
such as livestock density and the ratio of cattle to human
population, although the relationship appears complex
[13-16].

Considerable effort has been made to determine the prev-
alence of E. coli O157 in cattle worldwide (Brazil: [17],
Canada: [18], Denmark: [19], England: [20], Iran: [21],
Netherlands: [22]; Norway: [23], Spain: [24], Sweden:
[25], United States: [26]). Estimates of prevalence range
from 0 to 71% of animals and 0 to 100% of herds [27].
Two of the world's largest surveys of animal E. coli O157
prevalence were conducted in the past decade in Scotland.
The first [28] estimated herd-level and animal-level prev-
alence for 952 farms throughout Scotland in a study
funded by the Scottish Executive Environment and Rural
Affairs Department (SEERAD) conducted from March
1998 to May 2000. Since then a second survey, funded by
the Wellcome Foundation International Partnership

Research Award in Veterinary Epidemiology (IPRAVE)
was conducted on a subsample of the 952 SEERAD farms,
from February 2002 to February 2004. Data from the
SEERAD and IPRAVE studies are presented in this paper.

In Scotland, the first reported cases of human E. coli O157
infection were identified in 1984. Currently, Health Pro-
tection Scotland (HPS) conducts active, population based
enhanced surveillance in close collaboration with the
Scottish E. coli O157/VTEC Reference laboratory (SERL)
[29]. Over the 10 year period 1998-2007, an annual aver-
age of 221 culture positive cases has been reported to HPS,
which is an average annual rate of 4.28 cases per 100,000
population [30]. Rates in Scotland are generally higher
than in most other United Kingdom, European and North
American countries [30-33].

A recent publication proposed a specific mechanism for
the link between human infection and livestock carriage
of E. coli O157 [34] which involved a subset of shedding
animals known as super-shedders. Super-shedders are
individuals who for a period yield more infectious organ-
isms (here E. coli O157) than typical individuals of the
same host species [34]. Shedding high concentrations of
E. coli O157 has been proposed as a major contributor to
cattle-to-cattle transmission [34-36] and possibly cattle-
to-human transmission. Although little is known about
super-shedders it has been shown that they have been
associated with the presence of phage type (PT) 21/28
whereas non super-shedders are more likely to be associ-
ated with PT32 [37]. Recent evidence has shown PT21/28
to be associated with higher transmission in livestock
when compared to PT32 [38]. PT21/28 is the most pre-
dominant phage type in both cattle [37] and human cases
[39] whereas PT32 is a common phage type in cattle only
[37]. In humans, PT21/28 is of particular concern because
of its association with more severe morbidity. In the UK
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and Ireland (1997-2001), the mean risk of developing
diarrhoea-associated HUS was significantly higher in chil-
dren in Scotland infected with PT21/28 compared with
other phage types [40]. Phage type 21/28 strains possess
the vtx2 gene alone, which appears to be associated with
more serious health outcomes [41].

The objectives of this study were three-fold. First, to calcu-
late the mean prevalence of E. coli O157 in cattle using the
data from both the SEERAD (1998-2000) and IPRAVE
(2002-2004) surveys. Second, to examine temporal pat-
terns in the overall as well as regional, seasonal and phage
type specific prevalence of bovine shedding. Third, to
examine the incidence levels and relative proportions of
common phage types associated with human cases over
the same periods and the proportion of phage types PT21/
28 and PT32 in bovine isolates and human cases, for evi-
dence of any epidemiological link between the two.

Methods
Animal Prevalence Studies
Livestock Sampling Design
Two surveys of Scottish store and finishing cattle were
conducted: the first from March 1998 to May 2000, the
second from February 2002 to February 2004. The first
study was funded by the Scottish Executive Environment
and Rural Affairs Department (SEERAD); the second by a
Wellcome Foundation International Partnership Research
Award in Veterinary Epidemiology (IPRAVE). Details on
the methodology of both surveys have been published
elsewhere [28,37,42], however, a brief outline is given
below.

In 1998, SEERAD provided the Scottish Agricultural Col-
lege (SAC) with a list comprising 3,111 farms with cattle,
randomly selected from 1997 Scottish Agricultural and
Horticultural Census data. For the SEERAD survey, 952
farms across the 6 state animal health divisions (AHDs)
(Highland, Islands, North East, Central, South East, South
West) (Figure 1) were randomly selected and surveyed
[28]. Owners or managers of 925 of these 952 farms con-
sented to an additional sampling visit and these 925 farms
were used as the sampling frame for the second survey
(IPRAVE). Within the sampling frame for the IPRAVE sur-
vey there were insufficient farms to adequately represent
two state animal health divisions: Highland and Islands.
Additional farms (n = 34) for these two AHDs were
recruited by random selection from the remainder of
3,111 farms not sampled in the SEERAD survey. In total,
481 farms were sampled for the IPRAVE survey, 447 of
which had been previously sampled in the SEERAD sur-
vey. Instead of randomly sampling farms within each
AHD, the IPRAVE study used a stratified sampling plan to
select farms to sample [42]. This was done to ensure that
similar numbers were included from each region and that
regions were sampled evenly over time.

Both surveys preferentially sampled cattle groups com-
posed only of store (i.e. weaned cattle before finishing for
slaughter) or finishing cattle closest to sale or slaughter. If
such groups did not exist, one or more mixed groups with
store or finishing cattle closest to sale or slaughter were
sampled. From each group fresh faecal pats were sampled.
The number of faecal pats tested in each group was deter-
mined from the number of cattle in the group using a pre-
scribed sampling schedule. For the SEERAD survey,
sufficient numbers of faecal pats were tested to ensure
prospectively an 80% chance of sampling at least one pos-
itive pat if there was a shedding prevalence of at least 2%
within the group [28]. Based on results from the SEERAD
survey, in the IPRAVE survey, it was assumed that, on aver-
age, 8% of the animals in positive groups would be shed-
ding, with shedding distributed as seen in the SEERAD
survey [28]. For each IPRAVE group, sufficient fresh pat
samples were taken to ensure prospectively a mean 90%
probability of detecting shedding of E. coli O157 if at least
one shedding animal was indeed present.

Samples were collected from freshly voided faecal pats,
refrigerated at 5°C as soon as possible and processed
within 48 hours of collection. No direct animal sampling
was involved and the study was not regulated by The Ani-
mals (Scientific Procedures) Act 1986. At present the
SEERAD and IPRAVE data are not available on open-
access databases, however, requests for data can be made
though the corresponding author.

Immunomagnetic Separation (IMS) and Phage Typing of Livestock 
samples
Within 48 hours of sampling, one gram of faeces from
each sample was tested for the presence of E. coli O157 as
previously described [43]. Following IMS, one E. coli
O157 isolate from each faecal sample was submitted to
the Scottish E. coli O157/VTEC Reference Laboratory
(SERL) for phage typing [44], and tested for the presence
of genes encoding the virulence factors verocytotoxin 1
(vtx1), verocytotoxin 2 (vtx2) and intimin (eae) using mul-
tiplex PCR [45,46].

Human Case Identification, Data Collection and Phage 
Typing
Health Protection Scotland (HPS) receives reports of
human cases of E. coli O157 infection from SERL and
from diagnostic laboratories throughout Scotland. Diag-
nostic laboratories submit samples (isolates, faeces and
sera) to SERL for further testing in line with Scottish guid-
ance [47]. Using a series of phenotypic and genotypic
tests, SERL confirms the identity of submitted isolates of
E. coli O157, or identifies and isolates E. coli O157 from
submitted faecal samples [48]. SERL also types all isolated
organisms using a hierarchical array of methods including
phage typing, polymerase chain reaction (PCR) and pulse-
field gel electrophoresis (PFGE). The results of phage and
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Location of State Veterinary Service animal health divisions and sampled farms with store and finishing cattleFigure 1
Location of State Veterinary Service animal health divisions and sampled farms with store and finishing cattle. 
Animal health divisions: 1, Highlands; 2, North East; 3, Central; 4, South West; 5, South East; 6, Islands. Open circle, farms 
where no E. coli O157 shedding was detected; closed circle, farms where E. coli O157 shedding was detected. This work is 
based on data provided with the support of the ESRC and JISC, and uses boundary material which is copyright of the Crown 
and the Post Office. Source: the 1991 Census, Crown Copyright. ESRC purchase.
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verotoxin typing undertaken by SERL are also reported to
HPS.

Since establishing enhanced surveillance in 1999, HPS
has compiled a standard dataset for every case, in which
microbiological data shared by SERL is a crucial compo-
nent [29]. A case is defined as one person-infection-epi-
sode, with microbiological confirmation of infection,
defined as culture positive i.e. isolates of E. coli O157 cul-
tured from faeces. Although HPS enhanced surveillance
also includes cases identified by SERL by detection of anti-
bodies to E. coli O157 in serum, these serum positive cases
were excluded from data entered into this study as they by
definition had no available phage type results.

HPS integrates laboratory data including SERL typing
results, with epidemiological details from local investiga-
tors (primarily public health). These include clinical and
exposure details, including travel. Prior to 1999, the
number of cases that might potentially have acquired
infection outside the UK could only be estimated accord-
ing to whether non-UK countries were noted on labora-
tory forms; details of whether travel occurred before,
during or after the incubation period were not available to
HPS. Since 1999, enhanced surveillance at HPS has ena-
bled more accurate differentiation of imported cases
defined as likely to have acquired infection outside the
UK, based on examination of travel, clinical and exposure
histories provided by local investigators [29].

Data on culture-positive, indigenous human cases with
known phage type results identified by SERL, for the period
March 1998 to May 2000 (n = 793 days) and February 2002
to February 2004 (n = 734 days), were therefore entered
into this study by HPS, in collaboration with SERL.

Statistical Analysis
Animal Studies - Prevalence of E. coli O157
The SAS v9.1.3 package (SAS Institute, Cary, NC, USA)
was used to fit generalised linear mixed models (GLMMs),
to generate bootstrap-based estimates of key parameters
and to carry out non-parametric statistical testing. The
Excel 2000 package (Microsoft Corporation) was used to
implement a Latin hypercube sampling algorithm to con-
vert results from the GLMMs into prevalence, taking into
account the influence of random effects [49] and to assess
the group sensitivity of the two sampling regimens. Sea-
sons were defined as: winter, December, January and Feb-
ruary; spring, March, April, and May; summer, June, July
and August; and winter, September, October and Novem-
ber. Statistical significance of pairwise comparisons was
determined using Students t-test.

Farm-level data analysis
The mean percentage of farms with shedding cattle was
estimated using GLMMs [50], fitting models with Ber-

noulli response terms and a logit link function. A farm
was classed as positive if at least one animal was identified
as shedding. Farm cluster and/or farm were fitted as ran-
dom effects depending on the sampling design of the pro-
gram. Including AHD and season as fixed effects, GLMMs
were used to determine the impact of AHD and season on
the proportion of farms with shedding cattle in each AHD
and season. Confidence intervals for means were derived
by reweighting output from the appropriate GLMM, tak-
ing into account the influence of random effects [49].
Latin hypercube sampling of the observed non-zero prev-
alences and sample sizes was used to provide inputs to a
simple probabilistic calculation, assuming sampling with
replacement, of mean estimates of the sensitivity of the
sampling procedures in identifying positive groups.

Pat-level data analysis
For both the SEERAD and IPRAVE surveys, sampling dis-
tributions of the overall mean prevalence of shedding,
overall mean shedding prevalence by specific phage type,
and mean shedding prevalence within AHD or seasonal
subsets were generated using bootstrap sampling with
10,000 iterations. In each iteration, farms and pats from
each farm were sampled from the overall data or respec-
tive AHD or seasonal subsets arising from the original sur-
veys. The same number of pats sampled in the original
surveys was sampled using the sampling procedure used
in the original surveys, but with replacement both at the
farm and pat strata. The mean and upper and lower confi-
dence limits of the mean shedding prevalence were
derived from the respective bootstrap distributions. These
calculations make no adjustment for the sensitivity and
specificity of the assay.

Human Data Analysis--Incidence of Common Phage Types
The number of human cases entered into the study and
the duration of the surveys were used to calculate the com-
parative incidence of human cases. This was then
expressed as an equivalent annual figure. Incidence was
calculated as the number of human cases with each of the
more common phage types (PT2, PT21/28, PT32, PT4,
PT8) and 'Other' PTs (comprising PT34, PT14, PT31,
PT33, PT54, isolates having an RDNC phage type, where
the phages react but do not conform to a known pattern,
and Untypeable) reported to HPS over the time periods
equivalent to the SEERAD and IPRAVE surveys.

Comparison of Phage Types from Cattle and Human 
Cases
The overall temporal pattern of the most common phage
types ie PT2, PT21/28, PT32, PT4, PT8 and 'Other' PTs
(comprising PT34, PT14, PT31, PT33, PT49, PT54, PT24,
RDNC and Untypeable) were examined for human cases
and cattle isolates using the Cochran Mantel Haenzel
(CMH) Test (unordered stratified RxC) (StatXact v.8,
Cytel Software Corp, Cambridge, MA, USA). Temporal
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patterns of human cases and bovine shedding were then
examined separately using the exact chi-square test (SAS
v9.3.1, SAS Institute Inc., Cary, NC). Further analysis was
conducted on PT21/28 and PT32 to compare the relative
ratio of the two phage types in bovine isolates and human
cases. If PT21/28 is associated with super-shedders (which
are suspected to be linked to higher transmission rates) we
should see high proportions in both cattle and humans
whereas PT32 (associated with non super-shedders and
potentially lower transmission rates) should be relatively
over-represented in cattle.

Results
Animal Studies
14,849 faecal pats across 952 farms were sampled in the
SEERAD study and 12,963 pats across 481 farms in the
IPRAVE study. A total of 1,296 E. coli O157 strains were
isolated from the SEERAD study (n = 207 farms) and 516
strains in the IPRAVE study (n = 91 farms). The spatial dis-
tribution of positive farms in the SEERAD and IPRAVE
study are shown in Figure 1.

Among strains isolated during the SEERAD study, 0.2%
(3/1231), 94.9% (1168/1231) and 4.9% (60/1231) pos-
sessed genes encoding the virulence factors vtx1 only, vtx2
only and vtx1vtx2 respectively. Among strains isolated dur-
ing the IPRAVE study, 0.8% (4/508), 89.6% (455/508)
and 8.9% (45/508) possessed genes encoding vtx1 only,

vtx2 only and vtx1vtx2 respectively. All strains isolated from
both studies possessed eae, the gene encoding the viru-
lence factor intimin.

Farm and pat-level mean prevalence estimates for the two
surveys are given in Tables 1 and 2 respectively. The point-
estimate and confidence interval of group prevalence are
both slightly higher than the raw estimates given earlier
[28,34] as the figures now average over unbalanced ran-
dom effects from the studies. Mean overall farm-level
mean prevalence decreased slightly from 0.218 to 0.205
but this was not statistically significant (Table 1). Simi-
larly, there was no significant change in temporal, sea-
sonal or phage specific shedding at the farm-level. Mean
overall pat-level mean prevalence of E. coli O157 more
than halved from 0.089 to 0.040 (P < 0.001) (Table 2).
The farm-level sensitivity of the IPRAVE study was only
marginally smaller, at 81.8%, than that of the SEERAD
study (86.2%), the effect of larger mean sample sizes
being outweighed by the lower pat-level prevalences seen
in the IPRAVE study. Over the same period, there were sta-
tistically significant decreases in the mean prevalence of
shedding in all seasons. The mean pat-level prevalence
decline was highly statistically significant (P < 0.001) in
the North East and Central AHDs. Statistically significant
decreases were also observed in the Highland and South
East AHDs (P = 0.034 and P = 0.030 respectively). Among
the major most common phage types, there was a sub-

Table 1: Mean farm-level prevalence of bovine E. coli O157 shedding for the SEERAD (March 1998-May 2000) and IPRAVE (February 
2002-February 2004) surveys.

Category Mean Prevalence
(lower, upper 95% confidence limits)

P-value

SEERAD IPRAVE

All categories 0.218 (0.141, 0.320) 0.205 (0.135, 0.296) 0.831

By season
Spring 0.222 (0.144, 0.325) 0.191 (0.125, 0.279) 0.614
Summer 0.230 (0.150, 0.335) 0.262 (0.177, 0.367) 0.637
Autumn 0.262 (0.173, 0.375) 0.231 (0.154, 0.330) 0.648
Winter 0.149 (0.094, 0.229) 0.130 (0.082, 0.199) 0.674

By animal health district
Highland 0.153 (0.096, 0.234) 0.198 (0.130, 0.289) 0.396
North East 0.248 (0.163, 0.359) 0.199 (0.130, 0.290) 0.442
Central 0.249 (0.164, 0.359) 0.204 (0.134, 0.296) 0.480
South West 0.189 (0.121, 0.283) 0.261 (0.177, 0.366) 0.257
South East 0.189 (0.166, 0.364) 0.231 (0.168, 0.354) 0.374
Islands 0.171 (0.108, 0.259) 0.111 (0.070, 0.172) 0.197

By phage type
PT2 0.033 (0.002, 0.352) 0.017 (0.008, 0.034) 0.857
PT8 0.011 (0.006, 0.020) 0.019 (0.01, 0037) 0.278
PT21/28 0.135 (0.067, 0.252) 0.124 (0.066, 0.219) 0.865
PT32 0.031 (0.0021, 0.378) 0.060 (0.019, 0.176) 0.779
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stantial decrease in the mean pat-level prevalence of
PT21/28 shedding from 0.052 to 0.019 (P < 0.001). PT21/
28 was the dominant phage type isolated in both studies,
representing 56% of strains in the SEERAD study and 51%
of strains in the IPRAVE study. A statistically significant
decrease in mean pat-level prevalence was also observed
for PT2 (0.013 to 0.004). Changes in the mean pat-level
prevalence of PTs 8 and 32 were not statistically signifi-
cant.

In the majority of farms sampled in both surveys, no shed-
ding animals were detected. The distribution of the preva-
lence on E. coli O157 positive farms is shown in Figure 2
for both the SEERAD and IPRAVE surveys. The distribu-
tion of prevalence for the two studies was different (Kol-
mogorov-Smirnov two-sample test: exact P < 0.001). The
median prevalence of shedding animals was statistically
significantly lower (Wilcoxon-Mann-Whitney test: exact P
< 0.001) in the IPRAVE compared with the SEERAD sur-
vey (SEERAD: 0.25 (95%CI: 0.20-0.33); IPRAVE: 0.11
(95%CI: 0.09-0.14).

Results from Human Data
Table 3 contains the number of culture positive, indige-
nous human E. coli O157 reported cases with known
phage type results and the comparative equivalent inci-
dence per year for the SEERAD and IPRAVE survey peri-

ods. There were 468 human cases between March 1998
and May 2000 (SEERAD) and 323 human cases between
February 2002 and February 2004 (IPRAVE). The majority
of reported human cases during each survey were PT21/28
with 320 (68% of total cases) and 232 (72% of total cases)
total cases for the SEERAD and IPRAVE survey periods
respectively. Declines were observed in the overall

Table 2: Mean pat-level prevalence of bovine E. coli O157 shedding for the SEERAD (March 1998-May 2000) and IPRAVE (February 
2002-February 2004) surveys.

Category Mean Prevalence
(Lower, Upper 95% Confidence Limits)

P-value

SEERAD IPRAVE

All categories 0.089 (0.075, 0.105) 0.040 (0.028, 0.053) <0.001

By season
Spring 0.104 (0.084, 0.126) 0.044 (0.024,0.0 66) <0.001
Summer 0.084 (0.053, 0.118) 0.039 (0.022, 0.058) 0.018
Autumn 0.085 (0.061, 0.110) 0.045 (0.024, 0.069) 0.016
Winter 0.074 (0.035, 0.107) 0.030 (0.011, 0.054) 0.045

By animal health district
Highland 0.094 (0.044, 0.170) 0.023 (0.008,0.045) 0.034
North East 0.114 (0.075, 0.161) 0.024 (0.005, 0.050) <0.001
Central 0.093 (0.068, 0.118) 0.033 (0.011, 0.058) <0.001
South West 0.051 (0.030, 0.073) 0.068 (0.026, 0.133) 0.550
South East 0.106 (0.074, 0.139) 0.054 (0.022, 0.091) 0.030
Islands 0.064 (0.028, 0.108) 0.042 (0.013, 0.077) 0.396

By phage type
PT2 0.013 (0.008, 0.019) 0.004 (0.001, 0.007) 0.007
PT8 0.004 (0.001, 0.007) 0.004 (0.000, 0.009) 0.821
PT21/28 0.052 (0.039, 0.067) 0.019 (0.012, 0.028) <0.001
PT32 0.010 (0.006, 0.014) 0.007 (0.003, 0.011) 0.262

Distribution of prevalence of E. coli serogroup O157 on posi-tive farmsFigure 2
Distribution of prevalence of E. coli serogroup O157 
on positive farms. Bars represent observed prevalence in 
faecal pats sampled from the SEERAD survey (black, n = 952 
farms; n = 207 E. coli O157 positive) and IPRAVE survey 
(grey, n = 481 farms; n = 91 E. coli O157 positive).
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number of reported cases (468 compared with 323) and
overall comparative annual incidence (215 compared
with 161) as well as for all PTs with the exception of
'Other' PTs (Table 3).

Comparison of Phage Types for Animal and Human Cases
The proportion of human cases and cattle isolates identi-
fied with E. coli O157 PT21/28 was much higher than any
other phage type (Table 4). Overall there was a statistically
significant association between time (SEERAD/IPRAVE)
and PT for human cases and cattle isolates (CMH: 68.49,
P < 0.0001). When human cases and cattle isolates were
examined separately there were significant associations
between time and PT although the associations for cattle
isolates (exact χ2 = 176.56, P < 0.001) were stronger than
human cases (exact χ2 = 11.75, P = 0.037). These results
suggest that there was more temporal change in cattle iso-
lates than in human cases.

Figure 3 shows the proportion of PT21/28, PT32 and
'Other' PTs for human cases and cattle isolates collected
during the SEERAD and IPRAVE surveys. PT21/28 was fre-
quently observed in both human cases and bovine iso-
lates. PT32 was more frequently observed in bovine
isolates for both time periods. The relative ratio of the pro-
portion of PT32:proportion of PT21/28 in cattle to the
proportion of PT32:proportion of PT21/28 in humans is
2.92 and 10.96 for the SEERAD and IPRAVE surveys
respectively, confirming that relative to PT21/28, PT32 is
more common in cattle than human cases of E. coli O157.
Overall there was a statistically significant difference in
the distribution of these PTs between human cases and
bovine isolates over the 2 time scales (CMH: 71.07 P <
0.001). There was no significant change in PT21/28, PT32
or 'Other' PTs for humans cases (exact χ2 = 3.73, P =
0.158) whereas there were significant changes across time
for bovine isolates (exact χ2 = 12.24, P = 0.002).

Discussion
The surveys examined in this study represent the only
reported systematic national surveys of bovine E. coli
O157 shedding and present a valuable opportunity to
examine changes in patterns of shedding and strain char-
acteristics. Knowledge of bovine shedding is important as
cattle represent a major risk factor both for human E. coli
O157 infection, whether from contamination of food or
water by bovine faeces, or from direct contact with cattle
or their environments, and for transmission to other ani-
mals. This is of particular concern in Scotland which has
consistently higher rates of human E. coli O157 cases than

Table 3: Culture positive indigenous human E. coli O157 cases 
with known phage-type results reported to HPS during the 
periods equivalent the SEERAD (March 1998-May 2000; n = 793 
days; n = 468 cases) and IPRAVE surveys (February 2002-
February 2004); n = 734 days; n = 323 cases).

Phage Type Number of Cases Comparative Incidencea

(Cases per Year)

SEERAD IPRAVE SEERAD IPRAVE

All 468 323 215 161
PT2 51 23 23 11
PT21/28 320 232 147 115
PT32 22 7 10 3
PT4 19 9 9 4
PT8 31 22 14 11
'Other' PTsb 25 30 12 15

aComparative incidence is equivalent to the number of cases per year. 
bIncludes PT34, PT14, PT31, PT33, PT54, RDNC and untypeable

Table 4: Comparison of the proportion of phage types between 
cases of culture positive indigenous human E. coli O157 cases 
with known phage type results reported to HPS and cattle 
isolates during the same periods of the SEERAD (March 1998-
May 2000) and IPRAVE surveys (February 2002-February 2004).

Phage Type Human Cases
(Proportion)

Cattle Isolates
(Proportion)

SEERAD IPRAVE SEERAD IPRAVE

PT2 51
(0.109)

23
(0.071)

181
(0.147)

50
(0.098)

PT21/28 320
(0.634)

232
(0.718)

722
(0.587)

257
(0.504)

PT32 22
(0.047)

7
(0.022)

145
(0.118)

85
(0.167)

PT4 19
(0.041)

9
(0.028)

67
(0.0054)

6
(0.012)

PT8 31
(0.067)

22
(0.068)

56
(0.046)

51
(0.100)

'Other' PTsa 25
(0.053)

30
(0.093)

60
(0.049)

61
(0.120)

aIncludes PT34, PT14, PT31, PT33, PT54, RDNC and untypeable

Distribution of Phage typesFigure 3
Distribution of Phage types. Proportion of Phage type 
(PT) 21/28, PT32 and 'Other' PTs in cattle isolates and in cul-
ture positive, indigenous human E. coli O157 cases with 
known phage type results reported to HPS, over the time 
periods equivalent to the SEERAD (March 1998 - May 2000) 
and IPRAVE (February 2002 - February 2004) surveys.
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the rest of the United Kingdom, and other European and
North American countries [31-33].

In most instances it is difficult to compare results from dif-
ferent prevalence studies as different study designs, sam-
pling procedures and microbiological methods have been
used. The use of similar sampling and identical laboratory
methods in the SEERAD and IPRAVE studies allowed
direct comparison of E. coli O157 prevalence estimates.
Estimates of the prevalence of E. coli O157 from the
SEERAD study have been published, but in this study the
estimates were recalculated to accommodate differences
in sampling design and changes in statistical methodol-
ogy. The farm-level and pat-level mean prevalence calcu-
lated for the SEERAD survey was 0.228 (95%CI: 0.196-
0.263) and 0.079 (95%CI: 0.065-0.096) respectively [28].
In this study the same quantities were recalculated to be
0.218 (95%CI: 0.141-0.32) and 0.089 (95%CI: 0.075-
0.105). These minor differences are the result of using dif-
ferent statistical models. Pat-level mean prevalence esti-
mates for the IPRAVE study were generated using a
bootstrapping technique given the clustered nature of
data collection and the zero-inflated nature of the result-
ing data. For comparability the SEERAD pat-level preva-
lence was recalculated using the same methodology.

An overall comparison of the mean prevalence of E. coli
O157 shedding for the SEERAD and IPRAVE surveys indi-
cated a statistically significant decline in the mean preva-
lence of E. coli O157 at the pat-level but no statistically
significant change at the farm-level. Over the 4-year
period between the surveys there was a substantial
decrease in the mean proportion of cattle shedding E. coli
O157 on farms. The mean pat-level prevalence of E. coli
O157 more than halved from 0.089 to 0.040 between the
two surveys. This result possibly reflects a change in on-
farm transmission rate between the two surveys, although
the effect of environmental conditions or survival outside
the host cannot be eliminated as possible causes of the
differences observed. In two separate publications
[35,36], the R0 (the average number of secondary cases
generated by a single infected individual introduced into
a naive population) of the SEERAD and IPRAVE surveys
were reported as 1.9 [35] and 1.5 [36] respectively. A dif-
ference in transmission dynamics could explain the differ-
ent distribution of prevalences observed in Figure 2.
Higher transmission on a farm has been linked to the
presence of super-shedding or high-level shedding ani-
mals [35,36]. As part of the IPRAVE survey, counts of E.
coli O157 in pat samples were estimated. Unfortunately
there is no data from the SEERAD survey on the density of
E. coli O157 in farm pat samples. Therefore, no direct
comparison between the numbers of super-shedders can
be made between the two surveys. Research has shown
that there is an association between the presence of a

super-shedder and the presence of PT21/28 on a farm
[37,42]. Therefore, we might hypothesise that there were
fewer super-shedders on farms in the IPRAVE survey as
opposed to the SEERAD survey as there were significantly
fewer PT21/28 strains isolated in the IPRAVE survey.
Assuming an association between shedding rates and
transmission rates (R0) [39], fewer super-shedders may
explain lower transmission rates on farms in the IPRAVE
study and hence the lower mean on-farm prevalence.
Unfortunately, in the absence of enumeration data from
the SEERAD study this supposition cannot be tested.

Mean prevalence was calculated for different seasons, ani-
mal health districts (AHD) and phage types (PT). As
observed with the overall prevalence results, statistically
significant declines in mean prevalence of E. coli O157
were observed at the pat-level only. Marginal changes
were observed at the farm-level but these were not statisti-
cally significant. The decline in the mean prevalence of
pat-level shedding appears to have been driven by statisti-
cally significant reductions in the mean prevalence of
PT21/28 as well as specific seasonal (spring) and regional
(North East and Central) decreases.

Despite the statistically significant pairwise reductions in
mean pat-level prevalences there was no equivalent
change in overall mean prevalence at the farm-level. The
mean farm-level prevalence between surveys did decline
but it was not statistically significant. Changes in sam-
pling strategy between the two surveys had a negligible
effect on the power to identify positive farms, with the
only potential effect of these changes being to reduce fur-
ther the absolute size of the change in mean farm-level
prevalences across the surveys. Dissociation between the
mean prevalence at the pat and farm-level has been
described for non-O157 strains of E. coli [51]. It is possi-
ble that at farm-level, E. coli O157 shedding may stop or
remain undetectable in many cattle but still remain on the
farm, and there are reports of extended E. coli O157 activ-
ity on individual farms [52]. This point has important
implications for control programmes and assessment of
their efficacy. Is it reasonable to conjecture that reductions
in farm-level prevalence lag behind pat-level prevalence?
Do we need to see more significant reductions in pat shed-
ding over longer time periods before we might see a signif-
icant impact at the farm-level? Is this the result of bacteria
maintained within the environment re-infecting cattle, or
of a few persistently shedding cattle that are shedding at
detectable levels but not transmitting to the rest of the
group? Low-level shedders may have different risk factors
but could have an important role in the maintenance of E.
coli O157 populations on farms.

Sustained farm-level prevalence indicates persistence of E.
coli O157 on farms, but decreases at the pat-level imply a
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lower environmental load which would expect to lower
the force of infection to both cattle and humans. Concur-
rent declines in the total number and comparative annual
incidence of human cases in this survey may reflect a link
between human infection and the level of bovine shed-
ding on a farm. However, the drivers of E. coli O157 infec-
tion are likely to be multifactorial, and as the infectious
dose for E. coli O157 is low [53], a substantial reduction
in environmental load may therefore be required to sig-
nificantly reduce the risk of infection for humans.

PT21/28 is of particular concern because of its association
with more severe human disease [41]. Analysis of human
E. coli O157 cases over the same period as this study show
that although it remains the dominant phage type, the
incidence of phage type PT21/28 E. coli cases in humans
declined [29] as did the prevalence of bovine shedding,
providing circumstantial evidence of a link between
bovine shedding and human infection. Our findings
show that the relative ratio of PT32:PT21/28 in cattle pats
compared with PT32:PT21/28 in human E. coli O157
cases was 2.92 during the course of the SEERAD study and
10.96 during the IPRAVE study. This supports the conten-
tion that phage type PT21/28 is more transmissible from
cattle to humans than phage type PT32. The relative pro-
portion of PT32:PT21/28 in cattle pats compared to
human cases was much higher for the IPRAVE survey
period, a reflection of the significant temporal change in
the proportion of PT32 and PT21/28 in cattle between the
two survey periods. The decrease in the proportion of
PT21/28 and increase in PT32 were not mirrored by data
on the human cases. Such results may be a reflection of
the proposed heterogeneity in transmission [39]. In addi-
tion, PT32 may either be less stable in the environment
than PT21/28 and/or less virulent to humans [41].

In this paper we have highlighted the importance of cattle
as the primary source of human E. coli O157 infection.
Cattle are the major reservoirs of E. coli O157 [54], they
carry it asymptomatically in their intestines and excrete it
in their faeces. Excretion rates for some animals (i.e.
super-shedders) can be high (≥104 colony forming units
(CFU) per gram of faeces) [34]. The potentially high excre-
tion rate, longevity of E. coli O157 in pasture and soil [55]
and the low infectious dose for human infection [53]
mean that the environment is an important source of
infection for humans. Comparison of 90 published E. coli
O157 outbreaks meeting certain criteria (eg secondary
cases were identifiable) from 9 countries [56] has identi-
fied exposure to contaminated food (54%) and environ-
mental sources (including animal contact and water
contamination) (17%) as the most frequently reported
primary modes of transmission [56]. Analysis of general
outbreaks (ie outbreaks involving the members of more
than one household, or of institutions) of E. coli O157

infection in Scotland associated with either meat or dairy
foods, or with environmental transmission (including
direct contact with animals and their faeces and contami-
nated water supplies) showed that approximately 40% of
these outbreaks were associated with foodborne transmis-
sion, 54% with environmental transmission and 6% with
both modes of transmission [57]. However, most infec-
tions in Scotland are sporadic or single household cases,
and not part of general outbreaks. Contact with livestock
faeces was the risk factor most strongly associated with
sporadic infection [10]. This further highlights the cattle
and the environment as an important sources of E. coli
O157 infections in humans.

It remains to be seen whether the decline in the mean
prevalence of E. coli O157 cattle shedding observed
between the SEERAD and IPRAVE surveys continues, but
there are precedents among other members of the Entero-
bacteriaceae family e.g. Salmonella [58] to suggest that
this is possible. Despite observing declines in the number
of human E. coli O157 cases over the time periods equiv-
alent to the two cattle surveys, incidence rates, at least
from 1998, do not seem to suggest a downward trend
(Figure 4). Although these data were not generated by our
study, examination of the reported rate of E. coli O157
infection per 100,000 population in Scotland shows that
from 1998 to 2007 there was no change in the reported
national rate of human cases (slope not significantly dif-
ferent from zero, P = 0.65) (Figure 4). Between 1998 and
2007 the average annual rate (per 100,000 population)
was 4.28 (95% CI: 3.75-4.81) [30]. The IPRAVE survey
included the year 2003, a year which had the lowest
reported rate of human cases in Scotland since the early
1990s [30], suggesting that 2003 may have been an unu-

Reported human E. coli O157 infectionsFigure 4
Reported human E. coli O157 infections. Rate per 
100,000 population of all culture positive human E. coli O157 
infections reported to Health Protection Scotland1998 to 
2007. Source: Health protection Scotland. http://www.docu-
ments.hps.scot.nhs.uk/giz/graphs/2008/rates.pdf.
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sual year. In some regions of Scotland, 2003 was charac-
terised by the highest temperatures and lowest rain fall
since 1959 [59], and in the Islands, Highlands, and North
East AHDs, the mean prevalence of E. coli O157 shedding
in cattle was much lower in 2003 compared with 2002.
Without linked data on the prevalence of bovine E. coli
O157 shedding and the incidence of human cases over a
longer time period, and more detailed linkage of geo-
graphical, temporal and meteorological data, the possible
effects of climate must remain as conjecture.

Conclusion
The objectives of this study were to assess the prevalence
of bovine E. coli O157 shedding in Scotland; determine
changes in the temporal, spatial and phage patterns of
bovine shedding between the periods 1998-2000 and
2002-2004; and compare the phage types of E. coli O157
associated with human infections with those shed by cat-
tle. Between the two survey periods, farm-level prevalence
of shedding changed little, yet pat-level prevalence of
shedding halved. This study also demonstrated that sea-
son, location and phage type are linked to pat-level prev-
alence of shedding. Between the two survey periods,
human E. coli O157 case numbers also declined and the
pattern of phage types shed by cattle were comparable to
those isolated from human patients suggesting a link
between bovine shedding and human infection. Our find-
ings reinforce the need to reduce the prevalence and viru-
lence of E. coli O157 shed by cattle in Scotland and the
health risk posed by this organism [60,61].
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