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Abstract

Background: During the interaction between rhizobia and leguminous plants the two partners
engage in a molecular conversation that leads to reciprocal recognition and ensures the beginning
of a successful symbiotic integration. In host plants, intracellular Ca2* changes are an integral part
of the signalling mechanism. In rhizobia it is not yet known whether Ca2* can act as a transducer of
symbiotic signals.

Results: A plasmid encoding the bioluminescent Ca2* probe aequorin was introduced into
Mesorhizobium loti USDA 31477 strain to investigate whether a Ca?* response is activated in
rhizobia upon perception of plant root exudates. We find that M. loti cells respond to
environmental and symbiotic cues through transient elevations in intracellular free Ca2*
concentration. Only root exudates from the homologous host Lotus japonicus induce Ca2* signalling
and downstream activation of nodulation genes. The extracellular Ca2* chelator EGTA inhibits both
transient intracellular Ca2* increase and inducible nod gene expression, while not affecting the
expression of other genes, either constitutively expressed or inducible.

Conclusion: These findings indicate a newly described early event in the molecular dialogue
between plants and rhizobia and highlight the use of aequorin-expressing bacterial strains as a
promising novel approach for research in legume symbiosis.

Background

Rhizobia are Gram-negative soil bacteria which can
engage in a mutualistic association with leguminous
plants. Under nitrogen-limiting conditions, rhizobia col-
onize plant roots and highly specialized plant organs, the
nodules, are generated de novo on host roots (for a recent
review see [1]). When living symbiotically, rhizobia are
able to fix atmospheric nitrogen into forms usable by the

plant. In return, they receive dicarboxylic acids as a carbon
and energy source for their metabolism. Nitrogen is the
most frequent limiting macronutrient in many soils, and
it is generally supplied as fertilizer. The rhizobium-legume
mutualistic association can reduce or eliminate nitrogen
fertilizer requirements, resulting also in a benefit to the
environment [2].
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A successful symbiosis is the result of an elaborate devel-
opmental program, regulated by the exchange of molecu-
lar signals between the two partners [3]. During growth in
the rhizosphere of the host plant, rhizobia sense com-
pounds secreted by the host root and respond by inducing
bacterial nodulation (nod) genes which are required for
the synthesis of rhizobial signal molecules of lipo-chitoo-
ligosaccharide nature, the Nod factors. In the host plant,
the generation of intracellular Ca2+ oscillations triggered
by Nod factors has been firmly established as one of the
earliest crucial events in symbiosis signalling; these oscil-
lations are transduced into downstream physiological and
developmental responses [1]. It is not known whether
there is a parallel key role for Ca2+in rhizobia.

As in eukaryotic cells, Ca2+is postulated to play essential
functions in the regulation of a number of cellular proc-
esses in bacteria, including the cell cycle, differentiation,
chemotaxis and pathogenicity [4,5]. Homeostatic
machinery that is able to regulate intracellular free Ca2+
concentration ([Ca2+];) tightly is a prerequisite for a Ca2+-
based signalling system, and is known to be present in
bacteria [6]. Ca2+ transport systems have been demon-
strated in bacteria, with the identification of primary
pumps and secondary exchangers, as well as putative
Ca?+-permeable channels [5,7]. Other Ca2?+ regulatory
components such as Ca2+-binding proteins, including sev-
eral EF-hand proteins, have been detected and have been
putatively identified from genomic sequences [8,9].

In order to establish precisely when and how Ca2* regu-
lates processes in bacteria it is essential to measure [Ca2+];
and its changes in live cells. This has proven difficult
because of problems in loading fluorescent Ca2+ indicator
dyes, such as fura-2, into bacterial cells. However, the
recombinant expression of the Ca2+-sensitive photopro-
tein aequorin, which has been demonstrated to be a suit-
able method to monitor [Ca2?+]; changes accurately in
eukaryotes [10-12], has been successfully applied also to
bacteria. Challenge of E.coli [13-17] and the cyanobacte-
rium Anabaena sp. PCC7120 [18-21] expressing aequorin
with different stimuli resulted in the induction of tran-
sient variations of [Ca2+ |; with specific Ca2* signatures.

Here we report the introduction of a plasmid encoding
apoaequorin in Mesorhizobium loti, the specific symbiont
of the model legume Lotus japonicus, and the use of this
reporter to examine the Ca2+ response of rhizobia to abi-
otic and biotic stimuli. The results obtained highlight the
occurrence in M. loti of Ca2*-based mechanisms for sens-
ing and responding to cues originating in the rhizosphere.

http://www.biomedcentral.com/1471-2180/9/206

Results

Construction of an inducible reporter system for Ca?*
measurements in rhizobia

The apoaequorin gene was cloned in the broad host-range
expression vector pDB1 [22] under the control of the
strong synthetic promoter Py, regulated by the lacld
repressor (see Additional file 1). The pAEQ80 plasmid
was mobilized by conjugation into the type strain of M.
loti (USDA 31477).

Validation of the experimental system

The functioning in M. loti of the pAEQ80 plasmid con-
taining the apoaequorin gene was verified by evaluating
the level of aequorin expression in an in vitro reconstitu-
tion assay. Light emitted by total soluble protein con-
tained in the lysates from wild-type and aequorin-
expressing M. loti cells was monitored after reconstitution
of the apoprotein with coelenterazine. The strong lumi-
nescence signal detected in protein extracts from M. loti
cells containing the apoaequorin construct and induced
with IPTG confirmed the efficient level of aequorin
expression (see Additional file 2).

We analysed whether the introduced pAEQS80 plasmid
(10.5 kb) encoding apoaequorin or the expressed protein
could affect bacterial cell growth and the symbiotic per-
formance of M. loti cells. There is no significant effect on
bacterial growth kinetics exerted either by the introduced
plasmid or apoaequorin expression. Nodulation effi-
ciency of M. loti pAEQ8O cells on the specific plant host
Lotus japonicus was checked 4 weeks after bacterial inocu-
lation on roots of seedlings grown on nitrogen-free
medium. L. japonicus roots were found to be effectively
nodulated by the transformed bacterial strain, with no dif-
ferences in nodule number (5 + 1) and morphological
parameters in comparison to seedlings inoculated with
wild-type M. loti. The presence of bacteria inside nodules
was verified by light microscopy (see Additional file 2).
Green foliage was indicative of functional symbiosis.

The occurrence in M. loti cells of homeostatic control of
the internal Ca?2+ activity was then verified by preliminary
Ca2* measurement assays in a luminometer after in vivo
reconstitution of apoaequorin. Unperturbed exponen-
tially growing rhizobial cells showed a steady-state intrac-
ellular free Ca2+ concentration ([Ca2+];) residing in the
submicromolar range (around 500 nM) (see Additional
file 2), demonstrating a tight regulation of [Ca2*];. No
luminescence was detected either in cultures of the non-
recombinant strain incubated with coelenterazine or in
recombinant cells that had not been exposed to coelenter-
azine (data not shown), confirming that the recorded sig-
nal was due only to Ca2+-dependent light emission from
aequorin.
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Environmental stimuli are sensed through transient [Ca?*],
elevations by M. loti

To further validate the experimental system, abiotic stim-
uli which are known to trigger [Ca2+]; changes in both
plants [23] and cyanobacteria [18,19] were applied to
apoaequorin-expressing M. loti cells. A mechanical pertur-
bation, simulated by the injection of isoosmotic cell cul-
ture medium, resulted in a rapid Ca2* transient increase
(1.08 + 0.24 pM) that decayed within 30 sec (Fig. 1A).
This Ca2* trace, which is frequently referred to as a "touch
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response”, is often observed after the hand-operated injec-
tion of any stimulus [24]. A similar Ca2* response charac-
terized by an enhanced Ca2+ peak of 2.14 + 0.46 uM was
triggered by a simple injection of air into the cell suspen-
sion with a needle (Fig. 1A).

Cold and hypoosmotic shocks, caused by supplying three
volumes of ice-cold medium and distilled water, respec-
tively, induced Ca?+ traces with distinct kinetics, e.g. dif-
ferent height of the Ca2+ peak (1.36 + 0.13 uM and 4.41 +
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Ca?* measurements in M. loti cells stimulated with different physico-chemical signals. Bacteria were challenged
(arrow) with: A, mechanical perturbation, represented by injection of an equal volume of culture medium (black trace) or 10
volumes of air (grey trace); B, cold shock, given by 3 volumes of ice-cold culture medium (black trace); control cells were stim-
ulated with 3 volumes of growth medium kept at room temperature (grey trace); C, hypoosmotic stress, given by injection of
3 volumes of distilled water (black trace); salinity stress, represented by 200 mM NaCl (grey trace); D, different external Ca?*
concentrations. These and the following traces have been chosen to best represent the average results of at least three inde-

pendent experiments.
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0.51 uM, respectively) and rate of dissipation of the Ca2*
signal (Fig. 1B and 1C). As a control, cells were stimulated
with three volumes of growth medium at room tempera-
ture, (Fig. 1B) resulting in a Ca2+ trace superimposable on
that of the touch response (Fig. 1A). These findings elim-
inate the possible effect of bacterial dilution on changes in
Ca?+* homeostasis.

Challenge of M. loti with a salinity stress, which has
recently been shown to affect symbiosis-related events in
Rhizobium tropici [25], resulted in a [Ca2+]; elevation of
large amplitude (3.36 + 0.24 pM) and a specific signature
(Fig. 1C).

Variations in the extracellular Ca2+ concentration deter-
mined the induction of transient Ca2?+ elevations whose
magnitude was dependent on the level of external Ca2+.
After a rapidly induced increase in [Ca2*];, the basal Ca2+

level was gradually restored with all the applied external
Ca?* concentrations (Fig. 1D), confirming a tight internal
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homeostatic Ca2* control, as previously shown for other
bacteria [14,18].

All the above results indicate that aequorin-expressing M.
loti cells comprise a functionally valid system with which
to investigate the involvement of Ca2* in intracellular
transduction of environmental stimuli.

Host plant root exudates induce in M. loti a Ca?* signal
required for activation of nodulation genes

Root exudates from the symbiotically compatible legume
L. japonicus were collected from 3-week-old seedlings
axenically grown in water and applied to M. loti cells. The
dose used for Ca2* measurements was in the range that
induced significant expression of nodA, nodB, nodC genes
in M. loti (Fig. 2A). This concentration was found to trig-
ger a transient [Ca2*]; change characterized by a very rapid
increase (1.38 + 0.23 uM Ca?+) followed by a second sus-
tained major Ca2+ peak (2.01 + 0.24 uM) at about 10 min
(Fig. 2B), with a slow decay within the considered time
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Effect of plant root exudates and tetronic acid on [Ca?*], and nod gene expression in M. loti. A, Analysis of gene
expression by semi-quantitative RT-PCR during control conditions (lane |, white bars) and after | h treatment with L. japonicus
root exudates (lane 2, black bars) or 1.5 mM tetronic acid (lane 2, striped bars). Relative transcript abundance was normalized
against 16S rRNA. Data are the means + SEM of three independent experiments. B, Monitoring of [Ca2*];, changes in M. loti
cells challenged (arrow) with L. japonicus root exudates (black trace) or 1.5 mM tetronic acid (grey trace).

Page 4 of 11

(page number not for citation purposes)



BMC Microbiology 2009, 9:206

interval (30 min). The observed induction of transient
[CaZ*]; changes in M. loti cells suggests a Ca2*-mediated
perception of signalling molecules contained in host
plant root exudates.

Flavonoids are components of root exudates that play a
prominent role as inducers of structural nod genes in
rhizobia. Although flavonoids have been detected in L.
japonicus seeds [26], those that specifically activate the
expression of nod genes in M. loti have not yet been iden-
tified [27,28]. The most common flavonoids, known as
nod gene inducers in other rhizobia (10 uM naringenin,
luteolin, daidzein, kaempferol, quercetin dehydrate) were
not able to trigger transient Ca2+ elevations in M. loti (data
not shown). Tetronic acid, an aldonic acid previously
reported to promote Nod factor biosynthesis in M. loti
[29], was found to induce a detectable Ca2+ response (Fig.
2B). The kinetics of the Ca2+ trace was similar to that
induced by crude root exudates, with a prompt Ca2+ spike
(1.36 + 0.16 uM Ca?*) and a subsequent flattened dome
(maximal Ca2+value of 1.29 + 0.08 pM reached around 15
min after the elicitor application). Notably, this second
phase of the Ca?* transient induced by tetronic acid only
partially accounted for the larger Ca2+* increase recorded
with the whole L. japonicus root exudates (Fig. 2B). Like-
wise, the level of nod gene expression induced by tetronic
acid was found to be lower (though significantly different
from the control, P < 0.05) than that generated by total
root exudates (Fig. 2A).

Pretreatment of rhizobial cells with the extracellular Ca2+
chelator EGTA for 10 min effectively inhibited both the
transient Ca2+ elevation (Fig. 3A) and nod gene activation
(Fig. 3B) induced by L. japonicus root exudates. This indi-
cates that the main source of the observed Ca2+ response
is the extracellular medium, and that the elevation in
[Ca2+]; is required for nod gene induction. Cell viability,
monitored by the BacLight Bacterial viability assay, was
not altered by incubation with the Ca2+ chelator (Fig. 3C).
The expression of both constitutive (glutamine synthetase
IT and 16S rRNA) and inducible (aequorin) genes was not
significantly affected by EGTA treatment (Fig. 3D and 3E),
ruling out possible general effects of extracellular Ca2+
chelation on gene induction.

To check host specificity of the Ca2+ signal, metabolite
mixtures exuded by the non-host legumes soybean and
Vicia sativa subsp. nigra were tested. After an initial rapid
and steep Ca?*rise (1.77 + 0.34 uM), shared also by the
response to L. japonicus root exudates, the Ca2+ transients
triggered by non-host exudates show very different kinet-
ics, such as a slow rate of decay of the Ca2+ level (Fig. 4A
versus Fig. 2B). Pretreatment with EGTA also blocked
these transient Ca2+ elevations (data not shown). The dis-
tinct Ca2+ signature activated by non-host legumes,

http://www.biomedcentral.com/1471-2180/9/206

together with the lack of activation of nod genes (Fig. 4B),
suggests the possibility of Ca2+-mediated perception by M.
loti of molecules other than nod gene inducers, such as
non-specific chemoattractants or other signalling mole-
cules, e.g. proteins [30,31] or plant cell wall fragments
released during the detachment of border cells from the
root tip [32], activating a different Ca2+ signalling path-
way. Further confirmation of the specificity of the host
plant-induced Ca2+ signalling comes from the complete
absence of any detectable Ca?+ change and nod gene tran-
scriptional activation by root exudates from a non-legume
(tomato) (Fig. 4A and 4B).

Discussion

Even though Ca?+-based signal transduction processes are
well-established to underpin plant cell responses to rhizo-
bial informational molecules, a possible involvement of
Ca2* as a messenger in rhizobia in response to plant sym-
biotic signals has not hitherto been considered. We
approached this issue by constructing a M. loti strainex-
pressing the bioluminescent Ca2+ indicator aequorin. The
highly sensitive and reliable aequorin-based method is
widely used to monitor the dynamic changes of [Ca2*]; in
both eukaryotic [33] and bacterial [18,16] living cells and
represents to date the tool of choice for monitoring Ca2+
changes in cell populations [11]. The effectiveness of this
recombinant technique has been verified at more than
one level, and the results obtained demonstrate the utility
of aequorin as a probe to study the early recognition
events in thizobium-legume interactions from the bacte-
rial perspective.

The generation of a well-defined and reproducible Ca2+
transient in M. loti cells in response to root exudates of the
host plant L. japonicus containing nod gene inducers is
indicative of Ca2+* participation in sensing and transducing
diffusible host-specific signals. It cannot be ruled out that
the biphasic pattern of the Ca2* trace (Fig. 2B), monitored
by the aequorin method, may be due to an instantaneous
synchronized Ca2+ increase in cells immediately after
stimulation, followed by a sustained Ca2+ response prob-
ably due to the sum of asynchronous oscillations occur-
ring in single cells. Ca2* oscillations, considered as a
universal mode of signalling in eukaryotic cells [34-36]
have been proposed to occur in bacteria as well [37].

The significant inhibition of nod gene expression obtained
when the Ca?* elevation is blocked indicates that an
upstream Ca2+ signal is required for nod gene activation.
The Ca2+ dependence of nod gene expression strongly sug-
gests that the [Ca?*]; change, evoked by L. japonicus exu-
dates, represents an essential prerequisite to convey the
plant symbiotic message into rhizobia. All the above
results fulfil the criteria required to demonstrate that a
Ca?* transient is a crucial intermediate in a stimulus-
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Figure 3 (see previous page)

Effect of EGTA on the Ca?* response and nod gene expression induced by L. japonicus exudates. A, M. loti cells
were treated with L. japonicus root exudates (black trace) or pretreated with 5 mM EGTA 10 min before adding L. japonicus
root exudates (grey trace). B, Top: RT-PCR analysis of control cells (lane ), cells treated for | h with L. japonicus root exu-
dates (lane 2) and cells pretreated with 5 mM EGTA 10 min before treatment with L. japonicus exudates (lane 3). Bottom: Rel-
ative percentage of nod gene induction in response to L. japonicus exudates in M. loti cells pretreated (striped bars) or not (black
bars) with 5 mM EGTA. Normalization of transcript abundance was done against 16S rRNA. Data are the means + SEM of
three independent experiments. C, Viability, monitored with the BacLight Bacterial Viability kit, of M. loti cells in control condi-
tions or incubated with 5 mM EGTA for | h 10 min. As positive control, cells were treated with 70% isopropanol. Live cells flu-
oresce green, dead cells fluoresce red. Bar = 10 um. D, Top: RT-PCR analysis of the expression of the housekeeping gene
glutamine synthetase Il (GSIl) in M. loti cells in the absence (-) or presence (+) of 5 mM EGTA. Bottom: Relative transcript abun-
dance of GSIl was normalized against 16S rRNA. Bars represent SEM. E, Top: RT-PCR analysis of the inducible aequorin (aeq)
gene in M. loti cells in the absence (-) or presence (+) of 5 MM EGTA and | mM IPTG. Bottom: Relative transcript abundance
of aeq was normalized against 16S rRNA. Bars represent SEM.

response coupling [23] and confirm that Ca2*signalling is
operating in bacteria [5].

The inability of root exudates from non-host legumes and
non legumes to duplicate the response induced by L.
japonicus exudates (encoded in a distinct Ca2* transient
and downstream gene expression) further supports the
symbiotic specificity of the host legume-induced Ca?+ sig-
nature. The possible relatedness to legume-rhizobium
symbiosis of the signals contained in non-host legume
exudates is supported by the absence of any Ca2+* response
to non-legume exudates. In non-host legume root exu-
dates M. loti cells may sense signalling molecules related

A

to the symbiotic process but not strictly specific to the
compatible host-microsymbiont pair, which may enable
rhizobia to distinguish non-host from compatible plants.

Plant root exudates contain a pool of molecules, both
stimulatory and inhibitory, of potential relevance to the
molecular signal exchange between the two partners [3].
The use of entire natural mixtures secreted by plant roots
represents the first step in the evaluation of rhizobium
reactions to plant factors, providing information on the
global Ca2+* responses occurring in the bacterial partner
early in the symbiosis, even before a physical contact
between the two interacting organisms. Further insights
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Monitoring [Ca?*]; and nod gene expression in response to non-host legume and non-legume root exudates.
Bacteria were challenged with root exudates from soybean (A, black trace; B, lane 2), V. sativa subsp. nigra (A, grey trace; B,
lane 2) and tomato (A, light grey trace; B, lane 2). Control cells were treated with cell culture medium only (B, lane I).
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into the dynamics of the activated Ca?+ change may come
from the comparison with the Ca2+* responses obtained by
using fractionated root exudates or purified molecules.
This would enable to assess the possible placement of the
Ca?* signal within the NodD-flavonoid gene expression
paradigm [38] in different species of rhizobia.

Conclusion

The above results demonstrate that M. loti cells sense host
plant symbiotic cues through Ca2?+and indicate that acti-
vation of nod genes requires an upstream Ca2+* signal.
Transgenic rhizobium strains expressing aequorin can be
used as a novel approach to the dissection of early events
in legume-rhizobium symbiosis, that may shed light on a
previously uninvestigated facet - bacterial Ca2+signalling -
of the two-way partner signal exchange and transduction.

Methods

Chemicals

Native coelenterazine was purchased from Molecular
Probes (Leiden, The Netherlands). Molecular biology rea-
gents were purchased from Promega Co. (Madison, WI,
USA), Qiagen (Hilden, Germany) Clontech (Mountain
View, CA, USA) and Invitrogen (Paisley, UK). Tetronic
acid was obtained from Titolchimica (Rovigo, Italy). Fla-
vonoids (naringenin, luteolin, daidzein, quercetin dehy-
drate) and all other reagents were obtained from Sigma-
Aldrich (St. Louis, MO, USA).

Bacterial strains and growth conditions

Mesorhizobium loti strain USDA 3147Twas kindly provided
by Peter Van Berkum (USDA, Beltsville MD) and was
grown in minimal BIII medium [39] with or without 30
pg/ml kanamycin, as appropriate, at 28°C with shaking
(170 rpm). E. coli was grown in LB medium at 37°C.

Cloning of the apoaequorin gene and introduction into M.
loti

The terms aequorin and apoaequorin refer to the biolumi-
nescent protein with and without, respectively, the pros-
tethic group coelenterazine. The apoaequorin cassette,
given by the apoaequorin ¢cDNA fused to the first 27
nucleotides encoding hemoagglutinin (HA1-AEQ) [40]
was amplified by PCR with primers designed to obtain a
5' Xbal site and to leave out the ATG start codon, already
present into the Py, promoter of the expression vector
pDB1 [22]. The correct translation frame was maintained
by adding a nucleotide between the 5' Xbal site and the
apoaequorin gene. The primers used to obtain the
apoaequorin cassette were: 5'-CCTACTCTAGATAAGCTT-
TATGATGTTCCT-3'and  5'TGATAGCATGCGAATTCAT-
CAGTGTTITAT-3"'. PCR was run with the following
parameters: 5 min at 94 °C as start step; 30 s at 94°C, 30 s
at58°C, 1sat 72°C for 30 cycle and 5 s at 72°C as a final
step using PLATINUM® Tag DNA polymerase (Invitro-

http://www.biomedcentral.com/1471-2180/9/206

gen). To obtain a 3' Xbal site, the amplicon was then
cloned into the pCR 2.1 plasmid by using TA Cloning®
technology (Invitrogen), originating p2.1AEQ. Digestion
with Xbal of this intermediate plasmid released the HA1-
AEQ coding region, which was then ligated into the Xbal
site of pDB1 under the control of the strong isopropylp-D-
thiogalactoside (IPTG)-inducible synthetic promoter P,
The apoaequorin gene containing construct (pAEQ80, see
Additional file 1) was mobilized to M. loti 31477 from E.
coli by triparental conjugation using plasmid pRK2013 as
helper [41]. Transconjugants were selected on BIII agar
containing 50 pg/ml kanamycin.

Growth kinetics of the recombinant strain

To determine the effect of the plasmid presence and of
apoaequorin expression on bacterial cell growth, M. loti
wild-type or containing pAEQ80 (plus or minus IPTG)
were grown in 30 ml of BIII medium (supplemented or
not with 30 ug/ml kanamycin, as appropriate) as
described above. Growth was determined by monitoring
turbidity at 600 nm.

In vitro L. japonicus nodulation tests

In vitro nodulation studies were carried out as described
by [42]. Briefly, seeds of L. japonicus B-129 GIFU were
transferred after sterilization on 0.1% Jensen medium
solidified with 1% agar. Inoculation with bacterial sus-
pensions of M. loti wild-type or containing pAEQS80
(5107 cells/root) was carried out 4 days after seed germi-
nation. Lotus seedlings, before and after infection, were
grown at 24°C with 16 h light and 8 h dark. Growth and
nodulation pattern were monitored for 4 weeks after inoc-
ulation. Microscopy observations were carried out with a
Leica MZ16 stereomicroscope equipped with a DFC 480
photocamera. To check the actual occurrence of bacteria
inside the nodules, they were squeezed and the content
stained with 5 pg/ml 4'6-diamino-2-phenylindole
(DAPI). Samples were observed with a Leica DMR fluores-
cence microscope. Images were acquired with a Leica
IM500 digital camera.

Expression of apoaequorin

A loopful of M. loti USDA 31477 pAEQ80 grown on BIII
plates was used to inoculate 30 ml of BIII medium supple-
mented with 30 pug/ml kanamycin and 1 mM IPTG and
grown at 28°C overnight, until an absorbance at 600 nm
of approximately 0.25 was reached (after about 18 h).

In vitro reconstitution of apoaequorin to aequorin

M. loti suspension cultures (300 ml) were grown to mid-
exponential phase (Agg nm = 0.25), pelletted by centrifu-
gation at 3000 g for 10 min at 4°C, washed twice with
fresh medium, and finally resuspended in 2 ml reconstitu-
tion buffer (Tris-HCl 150 mM, EGTA 4 mM, supple-
mented with 0.8 mM phenylmethylsulfonyl fluoride, pH
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8.0). Bacteria were lysed by 3 cycles (30 s each) of sonica-
tion at 35 Hz (Fisher Sonic, Artek Farmingdale, NY, USA),
each followed by 30 s on ice. Non lysed bacteria were pel-
letted and discarded by centrifugation (1600 g for 15 min
at 4°C). Protein concentration in the supernatant was
estimated using the Bio-Rad (Hercules, CA) protein assay
according to manufacturer's instructions. Total soluble
proteins were resuspended at 1 pg/pl in reconstitution
buffer and incubated with 1 mM B-mercaptoethanol and
5 uM coelenterazine for 4 h in the dark at 4°C. Aequorin
luminescence was detected from 50 pl of the in vitro aequ-
orin reconstitution mixture, containing 25 pg of total sol-
uble protein diluted 1:2 with the same buffer and
integrated for a 200 s time interval after the addition of an
equal volume of 100 mM CaCl,.

In vivo reconstitution of apoaequorin to aequorin
Mid-exponential phase cells (30 ml) were harvested by
centrifugation at 2300 g for 15 min at room temperature
and the cell pellet was washed twice in 5 ml BIII medium
with intermediate centrifugation as described above. Cells
were then incubated in BIII medium containing 5 uM coe-
lenterazine in the dark for 1 h 30 min under shaking. After
two washes as above, cells were resuspended in BIII
medium and allowed to recover for 10 min prior to Ca2+
measurement experiments.

Root exudate production

Seeds of Lotus japonicus GIFU ecotype, soybean, Vicia sativa
subsp. nigra and tomato were surface sterilized and
allowed to germinate for three days on moistened filter
paper at 24°C in the dark. Subsequently, seedlings were
transferred aseptically on polystyrene grids covered with
nylon meshes in sterile plastic containers containing dif-
ferent volumes of sterile H,0, depending on the seed and
seedling size (on average 5 ml of H,O per seedling). After
3 weeks of germination crude root exudates were col-
lected, filtered and lyophilized. The pellet was resus-
pended in BIIl medium (50 pl per single root exudate) for
cell treatments.

Ca?* measurements with recombinant aequorin

Aequorin light emission was measured in a purpose-built
luminometer. Bacteria (50 pl) were placed, after aequorin
reconstitution, in the luminometer chamber in close
proximity to a low-noise photomultiplier, with a built-in
amplifier discriminator. The output of the discriminator
was captured by a THORN-EMI photon counting board
(Electron Tubes Limited, Middlesex, UK) and the lumi-
nescence data were converted off-line into Ca2* concentra-
tion values by using a computer algorithm based on the
Ca?+ response curve of aequorin [40]. All stimuli were
administered to cells by using a light-tight syringe through
the luminometer port. The experiments were terminated
by lysing the cells with 15% ethanol in a Ca2+-rich solu-
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tion (0.5 M CaCl, in H,0) to discharge the remaining
aequorin pool. For experiments performed in the pres-
ence of different external Ca2+ concentrations, cells were
extensively washed and resuspended in buffer A (25 mM
Hepes, 125 mM NaCl, 1 mM MgCl,, pH 7.5), as described
by [16]. When needed, cells were pretreated for 10 min
with 5 mM EGTA.

Bacterial cell viability assay

Bacterial cell viability was monitored by the LIVE/DEAD®
BacLight™ Bacterial Viability kit (Molecular Probes),
according to manufacturer's instructions. This fluores-
cence-based assay use a mixture of SYTO 9 and propidium
iodide stains to distinguish live and dead bacteria. Bacte-
ria with intact cell membranes stain fluorescent green,
whereas bacteria with damaged membranes stain fluores-
cent red. Samples were observed with a Leica 5000B fluo-
rescence microscope. Images were acquired with a Leica
300F digital camera using the Leica Application Suite
(LAS) software.

Semi-quantitative RT-PCR experiments

M. loti cells grown to mid-exponential phase and treated
as for CaZ* measurement experiments (see above) were
incubated for 1 h with plant root exudates, tetronic acid or
cell culture medium only (as control). To stabilize RNA,
bacteria were treated with the RNA protect Bacteria Rea-
gent (Qiagen). Bacterial cell wall was then lysed with 1 pg/
ml lysozyme (Sigma) in TE buffer. Total RNA was first
extracted using RNeasy Mini kit (Qiagen) and, after
DNAse I treatment (Promega), quantified. RNA (5 ug)
was primed with Random Decamers (Ambion), reverse
transcribed with PowerScript Reverse Transcriptase (Clon-
tech) and diluted 1:5. 5 pl of diluted first-strand cDNA
were used as a template in a 50 ul PCR reaction solution.
Reverse transcription (RT)-PCR was performed with 5 pl
diluted first-strand cDNA. The oligonucleotide primers
were designed against nodA, nodB, nodC and glutamine
synthetase II (GSII) sequences from M. loti [43] and the
aequorin gene (aeq) from Aequorea victoria [44], using
Primer 3 software. To amplify 16S rRNA gene, Y1 and Y2
primers were used [45].

The thermal cycler was programmed with the following
parameters: 20 s at 94°C, 30 s at 68°C and Advantage 2
Polymerase mix (Clontech) was used as Taq polymerase.
PCR reactions were allowed to proceed for different
number of cycles to determine the exponential phase of
amplification. Densitometric analysis of ethidium bro-
mide-stained agarose gels (0.5 pg/ml) was performed
using QuantityOne software (Bio-Rad). RT-PCR experi-
ments were conducted in triplicate on three independent
experiments. The primer sequences used to obtain ampli-
cons were: 5'-TATGAGCCGACCGGAGCCTITAAT-3' and
5'-CCGTATAGACCGAGTTCAGCGACAA-3' for nodA, 5'-
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ATACTCGATGTGCTGGCGCAAAAT-3" and 5'-GCCTGGT-
TCGCCTCAAATACTITCAC-3" for nodB, 5'-CCACCTTAC-
GATCCTGATGCTGAAA-3"' and 5'-CAATATTCTGGCCAAT
CACGTCCAA-3' for nodC, 5'-ACCGAGACITACGGCATC-
GACATC-3' and 5'-GCGACGCCATAGCTAAACTITGTTCC-
3" for GSII, 5'-TAACCTTGGAGCAACACCTGAGCAA-3'

5'-ATACGGATGAGCGITGGTTCGTTIT-3'for  aequorin,
Y1 (5'-TGGCTCAGAACGAACGCTGGCGGC-3') and Y2
(5'-CCCACTGCTGCCTCCCGTAGGAGT-3') for 16S
rRNA. Amplicons were sequenced by BMR Genomics
(Padova, Italy).
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