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Abstract
Background: The oomycete Aphanomyces astaci is regarded as the causative agent of crayfish
plague and represents an evident hazard for European crayfish species. Native crayfish populations
infected with this pathogen suffer up to 100% mortality. The existence of multiple transmission
paths necessitates the development of a reliable, robust and efficient test to detect the pathogen.
Currently, A. astaci is diagnosed by a PCR-based assay that suffers from cross-reactivity to other
species. We developed an alternative closed-tube assay for A. astaci, which achieves robustness
through simultaneous amplification of multiple functionally constrained genes.

Results: Two novel constitutively expressed members of the glycosyl hydrolase (GH18) gene
family of chitinases were isolated from the A. astaci strain Gb04. The primary amino acid sequence
of these chitinase genes, termed CHI2 and CHI3, is composed of an N-terminal signal peptide
directing the post-translational transport of the protein into the extracellular space, the catalytic
GH18 domain, a proline-, serine-, and threonine-rich domain and a C-terminal cysteine-rich
putative chitin-binding site. The A. astaci mycelium grown in a pepton-glucose medium showed
significant temporal changes in steady-state CHI2 and CHI3 mRNA amounts indicating functional
constraint. Their different temporal occurrence with maxima at 48 and 24 hours of incubation for
CHI2 and CHI3, respectively, is in accordance with the multifunctionality of GH18 family members.
To identify A. astaci-specific primer target sites in these novel genes, we determined the partial
sequence homologs in the related oomycetes A. frigidophilus, A. invadans, A. helicoides, A. laevis, A.
repetans, Achlya racemosa, Leptolegnia caudata, and Saprolegnia parasitica, as well as in the relevant
fungi Fusarium solani and Trichosporon cutaneum. An A. astaci-specific primer pair targeting the novel
genes CHI2 and CHI3 as well as CHI1 - a third GH18 family member - was multiplexed with primers
targeting the 5.8S rRNA used as an endogenous control. A species was typed unambiguously as A.
astaci if two peaks were concomitantly detected by melting curve analysis (MCA). For sensitive
detection of the pathogen, but also for quantification of agent levels in susceptible crayfish and
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carrier crayfish, a TaqMan-probe based real-time PCR (qPCR) assay was developed. It targets the
same chitinase genes and allows quantification down to 25 target sequences.

Conclusion: The simultaneous qualitative detection of multiple sequences by qPCR/MCA
represents a promising approach to detect species with elevated levels of genetic variation and/or
limited available sequence information. The homogenous closed-tube format, reduced detection
time, higher specificity, and the considerably reduced chance of false negative detection achieved
by targeting multiple genes (CHI1, CHI2, CHI3, and the endogenous control) at least two of which
are subject to high functional constraint, are the major advantages of this multiplex assay compared
to other diagnostic methods.

Sensitive quantification achieved with TaqMan qPCR facilitates to monitor infection status and 
pathogen distribution in different tissues and can help prevent disease transmission.

Background
Oomycetes are a group of filamentous, unicellular heter-
okonts. They are fungus-like in their growth form, adsorp-
tive and parasitic lifestyles and formation of spores, but
are relatively closely related to photosynthetic algae such
as brown algae and diatoms [1]. Among oomycetes, also
known as water molds, there are economically important
pathogens that comprise severe pests, like Phytophthora
infestans [2,3] causing potato late blight, A. euteiches caus-
ing seedling blight or legumes root rot [4], A. astaci [5], -
the causative agent of crayfish plague, and several fish
pathogens from the genera Aphanomyces [6], Achlya and
Saprolegnia [7]. There is also at least one species with
zoonotic potential, namely Pythium insidiosum - the etio-
logic agent of the human disease pythiosis insidiosii,
which can be life-threatening [8]. The oomycetes A. astaci
and Phytophthora cinnamomi are listed among the world's
100 worst invasive species (Global Invasive Species Data-
base: http://www.issg.org/database, alphabetical list as of
November 2008).

The crayfish plague, representing the most severe disease
among Asian, Australian, and European crayfish species,
is caused by the oomycete A. astaci (Saprolegniales, Oomyc-
etes). Crayfish plague-associated die-offs in Austrian
waters were first reported in 1879 [9] and in the 1920s
[10], and continue sporadically into the present. An esti-
mated 80% of all native Austrian crayfish populations dis-
appeared in the 20th century (Pöckl, personal
communication). A high percentage of these die-offs are
associated with crayfish plague, which represents one of
the major threats to the recovery of populations of native
crayfish species in Central Europe [11]. For example, Asta-
cus astacus, formerly a very abundant species in Europe, is
now considered threatened by the International Union
for Conservation of Nature and Natural Resources
(IUCN) [12]. In many countries this economically valua-
ble crayfish is on the Red List and its current harvest is
probably less than 10% of the harvest rate before intro-
duction of the crayfish-plague pathogen [13,14]. A. astaci

was introduced from North America, where various spe-
cies harbour the pathogen without showing clinical signs
of infection. Crayfish-plague outbreaks among such pop-
ulations often occur only under stress conditions. The
introduction of resistant North American species like the
signal crayfish (Pacifastacus leniusculus), the red-swamp
crayfish (Procambarus clarkii) and the spiny-cheek crayfish
(Orconectes limosus) http://www.issg.org/database has
established a permanent reservoir for the pest in Europe.
The transmission of the pathogen occurs via crayfish
cadavers, crayfish-feeding fish [15], fish scales [16] and all
kinds of equipment, which have been in contact with con-
taminated water [10]. The adaptive life style, high fecun-
dity, and resistance to the pathogen make introduced
crayfish species a potent bioinvador and the most danger-
ous vector for pathogen transmission.

Biflagellated secondary zoospores, measuring 8 × 12 m,
represent the infective unit of A. astaci. They target host tis-
sue by various mechanisms including chemotaxis [17,18]
on soft parts of the crayfish integument, especially at the
joints, the bottom side of the abdomen and even near the
eyestalks [19] as well as fresh wounds [20]. Once
zoospores reach the upper lipoprotein-layer of the cray-
fish cuticle, they discard their flagellae, and develop a pen-
etration peg, that weakens the lipid layer enzymatically
[21]. Soon after the germ tube has penetrated the cuticle
by mechanical force, the developing hyphae begin to
secrete chitinases and proteases [22]. In this phase differ-
ent chitinases [18] jointly degrade chitin polymers in
order to release nutrients and facilitate further growth
mainly parallel to the chitin fibrils of the endocuticula
[23]. Based on their substrate affinity these enzymes can
be classified into three groups: (i) endochitinases, which
randomly cleave glycosidic linkages, generating free ends
and long chitooligosaccharides that are processed by (ii)
exochitinases (chitobiosidases), which release diacetylchi-
tobiose (chitobiose) and (iii) N-acetylglucosaminidases
(chitobiases), which hydrolyse chitobiose or release N-
acetylglucosamine monomer from chitin chains [24,25].
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High-level production of extracellular chitinase in the
absence of substrate is one of the most prominent features
of the specialised crayfish-parasite A. astaci [26,18]. The
GH18 family-chitinase Chi1 was the first chitinase
described for A. astaci [18]. Here we selected two addi-
tional members of this gene family as targets for an A.
astaci-specific diagnostic assay. GH18 chitinases can be
divided into three clusters, two of which (A and B) differ-
entiated before the appearance of the eukaryotic lineage
[27]. For example, fungal GH18 families comprise
between one and twenty genes represented by members of
all three clusters [28]. We demonstrate the temporally reg-
ulated expression of two novel members of the A. astaci-
GH18 family. This functional constraint was regarded as a
basic criterion for the development of a closed-tube diag-
nostic method for qualitative and quantitative detection
of A. astaci. In conclusion, simultaneously targeting mul-
tiple chitinase sequences including the novel, functionally
constrained chitinase sequences, facilitates a robust anal-
ysis of clinical samples with a maximum reduced chance
of false-negative detection.

Results
Strain identification
Two putative A. astaci strains were recovered from healthy
signal crayfish in two small streams in the Austrian prov-
ince of Burgenland (Gb04 - Ganaubach and Z12 - Zöbern-
bach). A third strain (GKS07) was isolated from the
subabdominal cuticle of a moribund noble crayfish spec-
imen collected during an acute crayfish-plague outbreak
in the lake „Gleinkersee” (Austrian province: Upper Aus-
tria) in March 2007 (Table 1). ITS-sequence data and con-
stitutive chitinase secretion specific for A. astaci
(Additional file 1) confirm the assumed species assign-
ment for all three strains. The strain Gb04 was used to
identify two new chitinase genes, test for their functional
constraint and finally to develop the diagnostic assay for
A. astaci.

The Aphanomyces strain LK29 was isolated from a healthy
signal crayfish (Pacifastacus leniusculus). Physiological and
genetic evidence showed that the strain does not fit into
any previously identified group of A. astaci. It exhibited
properties like repeated zoospore emergence and lack of
sexual reproduction commonly associated with parasitic
species. In contrast to A. astaci, the strain LK29 does not
express chitinase constitutively during growth or sporula-
tion. Phylogenetic analysis of ITS sequences (Additional
file 1A) demonstrated clustering within the A. laevis-rep-
etans clade [29]. In addition, a Blastn search with the
28SrDNA sequence of LK29 (GenBank:GQ152606, this
work) showed close homology to A. laevis (99%, Gen-
Bank:AF320584), but clear difference (97% identity) to
the A. astaci strains Hö, FDL, GB04 and Z12 (AF320583,
AF320582, GQ374534, GQ374535, respectively). Until

their taxonomic status is fully elucidated the new isolate
was assigned to A. repetans. This species is not capable of
killing crayfish following standardised experimental
infection and is characterised by a high growth rate, and
germination in response to nutrients [30].

Sequence determination of the novel A. astaci genes CHI2 
and CHI3
Fungal species contain one to twenty GH18 chitinase fam-
ily genes [28]. In order to develop a robust diagnostic
assay for A. astaci, we asked whether the chitinolytic sys-
tem of the pathogen would contain multiple genes of this
ancient gene family widely expressed in archea, prokaryo-
tes and eukaryotes [31].

As indicated by the two cross-reacting bands detected in
western-blot analysis with antibodies raised against the
catalytic GH18 domain, A. astaci contains more than one
chitinase-like protein (Figure 1). Therefore, we attempted
to identify homologous genes using PCR amplification
with consensus primers targeting the amino acid motifs
DSWND and AGSW (Figure 2). For various A. astaci
strains representing all four genotype groups described
(type A: L1, Sv, Ra; B: Hö, Yx, Ti; C: Kv; D: Pc; [32]) and
the Austrian strain Gb04 isolated in this work (Table 1),
partial GH18 domain sequences were amplified and sub-
sequently sequenced. Analysis revealed a mixture of
sequences derived from two new chitinase genes (CHI2
and CHI3, see below), as concluded by retrospective eval-
uation. Only synonymous substitutions were found in
these genes (data not shown). Starting from the consensus
sequence obtained for the "core" of CHI2 and CHI3
mRNAs, their complete mRNA sequences were identified
by Rapid Amplification of cDNA Ends (RACE)-PCR and
submitted to the GenBank (accessions FJ439177 and
FJ386997, respectively).

Genomic DNA amplified with gene specific primers
designed near the start and stop codons of CHI2 and
CHI3, yielded fragments of 1810 bp and 1617 bp for
CHI2 and CHI3, respectively. Subsequent sequence analy-
sis performed with a primer-walking strategy (data not
shown) confirmed the absence of the consensus sequence
for exon-intron junctions (5'-GTRNGT...YAG-3' [33]) and
identity of cDNA and genomic sequences (Gen-
Bank:DQ974157 and FJ457089 for genomic sequences of
CHI2 and CHI3).

Characterization of cDNA and deduced amino acid 
sequences of CHI2 and CHI3
Without the poly(A) tail, the cDNA sequences of CHI2
and CHI3 measure 1807 and 1591-bp in length and
exhibit a relatively high guanine and cytosine base con-
tent of 59.9% and 60.3%, respectively, a typical feature of
oomycete genes [34]. CHI2 and CHI3 code for open read-
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ing frames of 596 and 522 amino acids (Figure 2) with
molecular masses of 64.0 kDa and 56.7 kDa and isoelec-
tric points of pH 6.14 and 6.63 predicted for the mature
secreted enzymes Chi2 and Chi3 (see below), respectively.
The mRNAs possess an identical 42-bp 5' untranslated
region (UTR) carrying the major part of the oomycete con-
sensus sequence for the start site of transcription (TAT-
TCAATTTGCCAT, [33]). The 3' UTRs of CHI2 and CHI3
contain the polyadenylation signal WAUAAC (W = A or T)

[35] (Additional file 2). In both genes the translation start
codon is part of the eukaryotic consensus ACCATGA [33].
The enzymes are predicted to be cleaved by signal pepti-
dase between positions A20 and A21 producing a hydro-
phobic signal peptide of 20 amino acids (Figure 2).

Overall, the deduced amino acid sequences of CHI2 and
CHI3 are highly homologous with an identity of up to
79.0% (overlapping residues 1 to 596 and 1 to 522,

Table 1: Biological material used in this work.

Species Isolate: reference Origin (year, location) Issue addressed

A. astaci type 1 L1 Astacus astacus
(1962, Sweden)

CHI, MCA, TaqMan

A. astaci type 1 Ra A. astacus
(1973, Sweden)

CHI

A. astaci type 1 Sv A. astacus
(1970, Sweden)

CHI, MCA, TaqMan

A. astaci type 2 Hö A. astacus
(1974, Sweden)

CHI, Chi activity, Western, PCR

A. astaci type 2 Ti A. astacus
(1970, Sweden)

CHI

A. astaci type 2 Yx A. astacus
(1973, Sweden)

CHI

A. astaci type 3 Kv1 Pacifastacus leniusculus
(1978, Sweden)

CHI

A. astaci type 4 Pc Procambarus clarkii
(1992, Sweden)

CHI

A. astaci GB04
(CBS 121.537)

P. leniusculus
(2004, Ganaubach, Austria)

CHI, PHYLO, RACE, GX, MCA, TaqMan

A. astaci GKS07
(CBS 121.538)

A. astacus
(2007, Gleinkersee, Austria)

PHYLO

A. astaci Z12
(CBS 117.160)

P. leniusculus
(2004, Zöbernbach, Austria)

PHYLO

A. frigidophilus NJM 9665
(ATCC 204464): [6,61]

egg of Onchorhynchus masou (1996, Japan) CHI, MCA, TaqMan

A. frigidophilus SAP472: [30] Austropotamobius pallipes (2008, Spain) CHI
A. invadans WIC: [6] Brevoortia tyrannus

(2004, USA)
CHI, MCA, TaqMan

A. laevis CBS 107.52 unknown
(1952, unknown)

CHI, MCA, TaqMan

A. helicoides CBS 210.82 unknown
(1982, former USSR)

CHI, MCA, TaqMan

A. repetans LK29 P. leniusculus
(2004, Leithakanal, Austria)

CHI, PHYLO

A. irregularis CBS 278.81 pond
(1981, The Netherlands)

CHI, MCA, TaqMan

Achlya racemosa CBS 578.67 unknown
(1967, Great Britain)

CHI

Leptolegnia caudata CBS 680.69 unknown
(1969, Canada)

CHI, MCA, TaqMan

Saprolegnia parasitica CBS 540.67 fish hatchery
(1967, Great Britian)

CHI

Aspergillus sp. not assigned horse food
(2004, Vienna, Austria)

MCA

Fusarium solani CBS 181.29 unknown
(1929, Germany)

CHI

Trichosporon cutaneum DSM 70675 sulfite liquor waste CHI

Western: western-blot analysis, CHI: partial sequencing of homologous chitinase gene(s), RACE: rapid amplification of cDNA ends, PHYLO: 
determination of ITS nrDNA sequences for phylogenetic analysis, GX: temporal gene expression of Chi2 and Chi3, MCA: qPCR/MCA for qualitative 
detection of A. astaci, TaqMan: TaqMan qPCR
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respectively). The proline-, serine-, and threonine-rich
domain [36] of Chi2 contains extra residues resulting in
an extended amino acid sequence of the whole protein
compared to Chi3 (Figure 2). This domain also represents
the most heterologous part of the enzymes regarding pri-
mary sequence. Chi2 and Chi3 possess an oomycete-type
catalytic GH18 domain (A21 to G400/403, Figure 3). It
contains a conserved chitin-binding (CB) site [37] (CB
site 1 in Figure 2), and an active site consensus [LIVMFY]
- [DN] - G - [LIVMF] - [DN] - [LIVMF] - [DN] - x - E (Prosite
no. PS01095) being variant at one position (Additional
file 3). The catalytic-site residues D154, D156 and E158
are putatively required for catalytic activity [27]. A second
putative, highly homologous CB site was identified in the
C-terminal part of the chitinases (CB site 2 in Figure 3). It
contains four cysteines, instead of the five residues found
in a diatom chitinase (GenBank:EED92972) or six in
most insect chitinases [38].

Chi2 and Chi3 sequences contain sites for amidation, N-
myristoylation or O-linked glycosylation (Additional file
4). The latter type of glycosylation predicted for the C-ter-
minal protein parts occurs often at serine and threonine
residues that would otherwise be phosphorylated; one
illustration of the complex interplay among eukaryotic
post-translational modification systems [39]. N-glycosyla-
tion at N165/165 (site: NDS) and N296/298 (site: NFT)
was predicted for Chi2/Chi3, respectively. These post-
translational modifications may account for the discrep-

ant masses deduced from primary protein sequences and
calculated on the basis of the electrophoretic mobility
(Figure 1). Putative sites for C-linked glycosylation (C-
mannosylation, [39]) were not found. The tripeptide
'RGD' mediating cell adhesion (R81 to D83) was pre-
dicted for Chi2. Potential sites for phosphorylation at ser-
ine, threonine and tyrosine residues are listed in the
Additional file 4.

Temporal mRNA expression analysis for CHI2 and CHI3
Next, we verified that target genes selected for the DNA-
based diagnostic crayfish-plague assay are subject to func-
tional constraint. This could be assumed if temporal
expression of target genes significantly changes during
physiological conditions relevant to the infection in vivo.

The CHI2 and CHI3 mRNA copy numbers expressed in
the A. astaci mycelium, grown in chitin-free culture were
quantified over three days at intervals of twelve hours
using one-step qRT-PCR. A partial sequence of the nuclear
gene NDUFV1 encoding the mitochondrial protein
NADH dehydrogenase (ubiquinone) flavoprotein 1,
which is part of mitochondrial respiratory chain complex
I, was identified in this work (data not shown, Gen-
Bank:EU500726). We used this sequence as target for an
endogenous positive control qRT-PCR assay reporting
deviations in extraction, reverse transcription and PCR
amplification including mRNA integrity, quality, and
quantity. Overall, levels of NDUFV1 mRNA changed only
slightly across the time points studied (< 2.5-fold), includ-
ing, however, expression changes which were near or
below the level of significance (p = 0.05) but not match-
ing the temporal expression patterns of the chitinases. In
detail, the dynamic growth of the mycelium during the
first hours in drop culture (12 to 24 hours, [18]) was
reflected by the higher NDUFV1 expression found after 12
and 24 hours of culture (P = 0.03 and 0.07, respectively).
Mycelium growth reached its plateau after 72 hours of
incubation. The decreasing energy requirement and the
beginning of autolytic processes at this stage are reflected
by a lower NDUFV1-transcript copy number (P = 0.05 for
expressions at 72 and 24 hours).

The chitinase genes CHI2 and CHI3 were both constitu-
tively expressed in mycelium grown in a medium lacking
the substrate chitin. However, different mRNA amounts
and temporal expression patterns, including the time
point at which the maximum level was reached, were
observed (Figure 4). Most prominent was the significant
maximum in the CHI2 mRNA level reached after 48 hours
(P = 0.013).

Analogous to data obtained for CHI1 [18], we demon-
strated, exemplarily for CHI3, that neither the amplitude
of expression nor its pattern was influenced by substrate

Western-blot analysis of chitinfree PG1-supernatant of a ten-day old A. astaci (strain Hö) broth cultureFigure 1
Western-blot analysis of chitinfree PG1-supernatant 
of a ten-day old A. astaci (strain Hö) broth culture. 
Two bands of about 100 kDa and slightly below this size 
were detected by antibodies A1 and A2 raised against 
epitopes in the catalytic domain of the first A. astaci GH18 
chitinase family member Chi1.
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addition (0.6% colloidal chitin instead of glucose, data
not shown).

Assay development for qualitative and quantitative 
detection of A. astaci in clinical samples based on 
chitinase gene sequences
Compared to other crayfish-afflicting oomycetes, perma-
nent chitinase expression and activity represents a unique
feature of A. astaci [18,40]. Due to the assumed functional
constraints demonstrated by the significant alterations of
temporal gene expression (Figure 4), its chitinolytic sys-
tem was chosen as a target for the development of a diag-
nostic test.

qPCR/MCA
A BLASTp search with the deduced amino acid sequence
of CHI1 as query identified two conserved motifs within
the GH18 chitinase domain (83-DSWND and 229-MTY-
DLAGSW, Figure 2). The nucleotide sequences of these
motifs were used as target sites for the design of degener-
ated PCR primers. Using these primers we were able to
amplify and sequence the homologous sequences of nine
strains from eight oomycete species and two fungi which
are known to live on or in proximity of crayfish (species

and GenBank accessions in Figure 5a). On the basis of
these sequences, we designed a diagnostic primer pair
producing a 93 bp-amplicon from each of the three
related chitinase genes (CHI1: [18], CHI2 and CHI3: this
work, Figure 5a). Its melting temperature of 86.7°C in
MCA was regarded as criterion for identification of an A.
astaci strain. For assay robustness the chitinase primer pair
was multiplexed with primers targeting the 5.8S rRNA
gene as an endogenous control (Additional file 5) and
yielding a peak in MCA at 81.5 to 83.5°C depending from
the species investigated.

The qPCR/MCA assay was tested for specificity against the
oomycetes A. frigidophilus, A. invadans, A. laevis, A. heli-
coides, A. irregularis, and Leptolegnia caudata. Only the
endogenous control was recorded, but not the A. astaci-
specific chitinase peak.

qPCR/MCA-based detection of A. astaci was used to eluci-
date several spontanous crayfish mortalities in Austrian
waterbodies. In detail, A. astaci was identified as causative
agent of acute crayfish-plague outbreaks among noble
crayfish inhabiting a small unnamed pond-system (Hart-
berg, district Hartberg, province Styria), in the noble cray-

Domains completeley homologous in the novel chitinases Chi2 and Chi3 as well as in the first A. astaci chitinase (Chi1, Gen-Bank:AJ416354, [18]) were selected as primer target sites in the diagnostic assays for A. astaciFigure 2
Domains completeley homologous in the novel chitinases Chi2 and Chi3 as well as in the first A. astaci chitinase 
(Chi1, GenBank:AJ416354, [18]) were selected as primer target sites in the diagnostic assays for A. astaci. In blue: 
primer target sites. Note that only the homologous part of Chi1 is shown. The chitinase-like protein Clp mRNA (Gen-
Bank:FJ439176) was amplified from cDNA, but failed to amplify from genomic DNA for unknown reasons (data not shown). 
Chi1 peptide sequences selected to generate antibodies for Western blot analysis are underlined. Highly conserved motifs in 
the GH18 domain (grey boxes) were selected as primer target sites to identify the homologous genes of related oomycetes 
and relevant fungi (see text). Dots indicate missing sequence homology. The triangle marks the signal peptide cleavage site in 
Chi2 and Chi3. The catalytic-site residues D154, D156 and E158 putatively required for catalytic activity [27] are indicated by 
vertical arrows. Residues given as red or black letters represent mismatches and conservative changes, respectively. The con-
served cysteines in the CB site 2 are highlighted in bold.
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The A. astaci chitinases Chi2 and Chi3 possess an oomycete type-GH18 catalytic domainFigure 3
The A. astaci chitinases Chi2 and Chi3 possess an oomycete type-GH18 catalytic domain. Maximum likelihood 
phylogenetic analysis was performed with TreePuzzle using the diatom Thalassiosira pseudonana as an outgroup. Oomycete and 
fungal sequences are given in blue and grey, respectively. GenBank accession numbers of partial or complete amino acid GH18 
domain sequences are indicated in parentheses. The scale bar represents 0.1 substitutions per site. The numbers at the nodes 
are quartet puzzling values indicating the frequencies of occurrence for 1,000 replicate trees and can be interpreted in much 
the same way as bootstrap values. The group A-V - one of six separate fungal groups classified [27,28] - showing the closest 
homology to the sequences identified in this work, is represented by two members. An asterisk denotes partial sequences.

Significant changes of temporal expression of CHI2 and CHI3 mRNAsFigure 4
Significant changes of temporal expression of CHI2 and CHI3 mRNAs. The transcript abundance changes during 72 
hours of growth in chitinless, liquid PG-1 medium. The significant differences in temporal expression indicate functional con-
straint and are in accordance with the plurifunctionality of GH18 family members, respectively. Error bars (only the positive 
error bar is shown) represent the standard errors of the mean obtained from three independent time-course experiments. 
The asterisk designates significance at p < 0.05.
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Qualitative and quantitative detection of the oomycete A. astaciFigure 5
Qualitative and quantitative detection of the oomycete A. astaci. A: Diagnostic qPCR/MCA primers (blue arrows) 
target A. astaci-specific sites in the homologous chitinase genes CHI1, CHI2 and CHI3, but not homologous sequences of related 
oomycetes and fungi. Parentheses contain GenBank accession numbers. Dots and letters represent identical and substituted 
nucleotides compared to the A. astaci sequence, respectively. B: Qualititative detection of A. astaci by qPCR/MCA. The left and 
right peaks are derived from amplification of the endogenous control, and the chitinase genes CHI2 &CHI3, respectively. Red 
plot: A. astaci, blue plot: A. frigidophilus. C: Quantitative detection of A. astaci by TaqMan qPCR. The standard curve of the assay 
demonstrates quantification down to 25 copies.
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fish-pond Bäckerteich (Velden am Wörthersee, district
Villach-Land, province Carinthia), in the brook Hahntrat-
tenbach near St. Andrä (district Wolfsberg, province Car-
inthia) known for its large stone crayfish population and
in a noble crayfish population of the lake Gleinkersee
(Roßleithen, district Kirchdorf an der Krems, province
Upper Austria). A. astaci was also detected by MCA in
necrobiopsy pools each derived from up to five eutha-
nised signal crayfish specimens collected at the streams
Ganaubach, Zöbernbach, Strem, Tauchenbach and Güns
(province Burgenland). Clinical samples tested positive
by MCA were subjected to pathogen isolation. In case of
isolation failure the qPCR/MCA amplicon was sequenced.

TaqMan qPCR
For sensitive detection of the pathogen, but also for quan-
tification of agent levels in susceptible crayfish and carrier
crayfish, a TaqMan-probe-based qPCR assay was devel-
oped. TaqMan qPCR uses the same primers as qPCR/MCA
except the additional nucleotide at the very 5' end of the
reverse primer compared to qPCR/MCA. Using amplicon
standards with known copy numbers spiked into genomic
crayfish DNA, a quantitative detection limit of 25 target
sequences was determined (Figure 5c). No amplication,
i.e. CT > 50, was obtained for A. frigidophilus, A. invadans,
A. leaevis and A. irregularis, In the case of the oomycete
species A. helicoides and Leptolegnia caudata a cross-ampli-
fication signal corresponding to 28 and 44 copies was
detected, respectively.

Discussion
Qualitative detection of two or multiple target sequences
by MCA has been reported before. Single-tube SNP geno-
typing [41], sex determination [42], identification of
methylation in promoter sequences [43] or the simultane-
ous detection of multiple pathogens [44,45] are exempla-
rily mentioned.

In this work we have used MCA of multiplex qPCR [46]
for rapid species identification of the crayfish-plague
pathogen A. astaci in a closed-tube format. The diagnostic
assay for qualitative detection is highly discriminative,
robust, inexpensive, and reliable.

High discrimination was aimed at since new Aphanomyces
ITS sequences, probably representing new Aphanomyces
spp. and including sequences closely related to A. astaci
were reported [47,48]. Current molecular techniques for
A. astaci detection based on ITS sequences suffer from a
lack of specificity ([47,48], Additional file 6), or are labo-
rious and time-consuming due to agarose electrophoresis
and subsequent amplicon sequence analysis [11]. To facil-
itate unambiguous species identification, we considered
the unique feature of constitutive chitinase gene expres-
sion of A. astaci, not found in closely related Aphanomyces

species [18,26]. In a search for additional GH18 family
members the novel chitinase genes CHI2 and CHI3 were
identified in this work. The genes differ in their 3' UTRs
including variant putative polyadenylation signals. Their
temporal mRNA expressions change differently during
mycelium growth in chitin-free medium. The deduced
extracellular protein sequences are different in proline-,
serine-, and threonine-rich domain size, and either pos-
sess or lack a putative cell attachement site. This speaks in
favour of a joint action during the infection process.
Therefore, we regarded CHI2 and CHI3 as different mem-
bers of the GH18 gene family rather than allelic
sequences. Altogether, three genes (CHI1, CHI2 and
CHI3) encoding constitutively expressed GH18 chitinases
in the absence of chitin were identified as unique charac-
teristics of A. astaci and selected as targets for species-spe-
cific detection.

Assay robustness, characterised by a low risk of false neg-
atives related to genotypic variation of pathogenic strains,
was another issue for assay design. This was especially
important since A. astaci belongs to the group of asexual
organisms, for which a low level of genetic variation turns
out to be the exception rather than the rule [49]. We
argued that targeting one or even several functionally con-
strained sequences would restrict the genotypic variations
allowed. The novel chitinase genes CHI2 and CHI3 being
functionally constrained as concluded from their signifi-
cant changes in temporal mRNA expression during
growth (Figure 4) were regarded to be appropriate candi-
dates to achieve this aim. Together with the first member
of the GH18 gene family of A. astaci (CHI1: [18]) they
served as targets in the diagnostic assays based on qPCR/
MCA or TaqMan qPCR. In the qPCR/MCA-based assay for
qualitative detection, a further level of robustness was
achieved by multiplexing with a primer pair targeting the
5.8S rRNA gene as an endogenous control. This DNA
sequence is naturally present at multiple copies [50] and
harbours two completely homologous primer target sites
in each experimental oomycete species (Figure 5a). The
simultaneous amplification of this 5.8S rRNA sequence
controling for the DNA extraction and amplification steps
reduces the chance of false negative detection due to insuf-
ficient sample quality. The chitinase gene targets and the
endogenous control can be considered to be present at
comparable copy numbers [50,28]. Therefore, if non-lim-
ited primer concentrations are applied like here, the
simultaneous amplification of more than one target in a
single PCR, i.e. multiplexing, leads to competition
between multiple targets for a finite number of reagents.
Representing a welcomed side effect, this further enhances
assay discrimination (see above). Co-amplification of an
endogenous control adds another level to assay robust-
ness and represents an improvement compared to the
ITS1-based TaqMan minor-groove binder qPCR assay for
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A. astaci-detection reported recently [51]. Coextraction of
an homologous (competitive) internal positive control
(IPC) with the clinical samples and coamplification in the
qPCR or qPCR/MCA assays with the same primers used
for the target DNA ensures accurate control of the entire
molecular assay and represents the state of the art for
internal controls. It was shown that the addition of an IPC
at levels resulting in 100 copies per PCR did not affect the
amplification of the target sequence [52,53]. A competi-
tive IPC compatible with the qPCR/MCA and TaqMan
qPCR assays developed in this work is presented as Addi-
tional file 7.

Another level of diagnostic uncertainty in the assay devel-
oped for A. astaci detection [51] is added by the use of a
synthetic amplicon mimicking one of the closest relatives,
A. frigidophilus. This approach supposes the intragenomic
homogeneity of the ITS regions which has already been
rebutted in many organisms [54,55]. The addition of a
minor-groove binder to a TaqMan probe in the assay
reported by Vralstad et al. allows to use shorter probes.
However, probe cost increases by about 2.5-fold com-
pared to our conventional TaqMan qPCR designed for
quantitative detection. It also elevates the chance of detec-
tion failure when varying genotypes are present. Gener-
ally, the avoidance of false negatives represents a major
challenge in molecular diagnostics. Particularly, in Taq-
Man qPCR assays the possibility of false-negative testing
poses a substantial problem because mutations within the
probe-binding site can prevent annealing of the probe and
subsequent detection [56,57]. For example, TaqMan
qPCR failed to detect any target with more than two muta-
tions at the probe-binding site in contrast to a dye-based
assay [56]. The dilemma of false-negative detection due to
probe-binding site variation can be overcome, for exam-
ple, by combining a DNA probe with a fluorescent, dou-
ble-stranded DNA-binding dye for specific nucleic acid
quantification by probe-based qPCR and MCA [58]. In
this case the dye would report a detection failure if the
probe-binding site of a clinical specimen is mutated.
However, "compensation" for mutations in the probe-
binding site is no longer an issue if only two instead of
three regions of conserved sequence are required for assay
design as in the dye-based qPCR/MCA developed in this
work. If very limited prior target sequence information
exists from a population of interest like in our case, a dye-
based detection approach represents a favourable strategy
for species confirmation.

A welcomed side effect of dye- instead of probe-mediated
monitoring is the cost reduction for screening clinical
samples.

Last but not least, the reliability of the diagnostic assay
was proven on a set of relevant related pathogens and dur-

ing an acute crayfish-plague outbreak in the small, noble
crayfish (Astacus astacus) population inhabiting the lake
"Gleinkersee" located at an altitude of about 800 meters
above sea level at the foothills of the Austrian Alps. In
addition to qPCR/MCA typing (not shown), the presence
of the pathogen A. astaci was independently confirmed by
ITS-sequence analysis and testing for constitutive chiti-
nase activity (A. astaci-strain GKS07 in Additional file 1).
Finally, the A. astaci strain GKS07 was isolated on PG-1
agar from an infected noble crayfish. Numerous crayfish
individuals were found to be affected but were still alive
during the outbreak of late March 2007. At that time the
ice of the lake Gleinkersee was melting and the physiolog-
ical activities of both pathogen and victim would have
been expected to be at a minimum. These circumstances
strongly indicated the acuteness of the outbreak. The sus-
picion of a deliberate introduction of the pathogen could
not be confirmed by an inquiry led by the local criminal
investigation department. Fish stocking performed in
autumn 2006 may be the most likely source of disease
transmission.

Sensitive quantitative detection of the crayfish-plague
pathogen is currently of increasing importance for screen-
ing natural non-native crayfish populations or for certify-
ing a pathogen-free status of hatchery fish before
introduction into natural habitats or aquaculture facili-
ties. Samples of fish transport water including sediments
can be filtered via membrane filters [59] and subsequently
screened by TaqMan qPCR (see Results and Additional file
8). This circumvents pathogen transmission via transport
water, fish faeces, mucus and scales.

Conclusion
The identification of two new chitinase genes showing
specific patterns of constitutive temporal expression in the
absence of substrate has facilitated the development of a
discriminative, robust and reliable method for qualitative
and quantitative detection for A. astaci.

Methods
Biological material
Isolates of Oomycetes and related fungi used to validate the
molecular assays were either obtained from The Centraal-
bureau voor Schimmelcultures (CBS) Fungal Biodiversity
Centre (Utrecht, The Netherlands), the German Collec-
tion of Microorganisms and Cell Cultures (DSMZ)
(Braunschweig, Germany), the American Type Culture
Collection (ATCC) or cultured from lesioned tissue by
standard methods [60,61]. The A. astaci-types 1 to 4 were
purchased from Lage Cerenius (Uppsala University, Upp-
sala, Sweden). Javier Diéguez-Uribeondo (Real Jardín
Botánico CSIC, Madrid, Spain) provided the A. frigido-
philus isolate SAP472 [29]. A DNA aliquot of A. frigido-
philus NJM 9665 [6,62] and A. invadans WIC [6] was
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obtained from Mark W. Vandersea (Center for Coastal
Fisheries and Habitat Research, National Ocean Service,
National Oceanic Atmospheric Administration, Beaufort,
North Carolina, USA).

The Austrian A. astaci strains Gb04, Z12, and the A. rep-
etans strain Lk29 were isolated from dissected melanised
spots found in the integument of signal crayfish [19]. The
A. astaci strain GKS07 was grown out of a moribund noble
crayfish collected during an acute crayfish-plague out-
break. Melanised necrobiopsies were incubated in pep-
tone-glucose (PG1) medium (3 g/l glucose, 6 g/l peptone,
0.37 g/l KCl, 0.17 g/l MgCl2·6H2O, 0.15 g/l CaCl2·2H2O,
20 mg/l FeCl3·6H2O, 44 mg/l Na2EDTA, 13 mM sodium
phosphate buffer (pH 6.3); [63]) for three days at 18°C
[19] in a humidified chamber and subcultured every two
weeks on PG1 agar medium. The same growth and sub-
culturing conditions were applied to the strains obtained
from the culture collections.

Fungal contamination of oomycete culture encountered
when culturing the A. astaci strain Z12 and the A. repetans
strain LK29 were overcome as follows. A piece of agar cul-
ture was incubated for one day at 20°C in autoclaved
pond water (pH 6.5 to 7) collected at the central biotop of
the University campus. This depletion of nutrients
induced the sporulation of the oomycete [64]. Under an
inverted microscope the swimm spores were aspired into
a 100 L Gilson pipette and re-cultured on PG1 agar
medium.

A fungus isolated from horse food was assigned to
Aspergillus sp. based on morphological evaluation and
added to the strain collection of the Institute of Bacteriol-
ogy, Mycology and Hygiene (University of Veterinary
Medicine, Vienna).

An overview on the biological material used in this work
is presented in Table 1.

Species assignment of Austrian Aphanomyces strains
ITS sequences of nuclear rDNA were analysed to allow
species assignation of the Austrian A. astaci strains GB04,
GKS07, and Z12 as well as of the A. repetans strain LK29
(Table 1, Additional file 1). For this purpose DNA was
extracted from 25 mg drop culture mycelium using the
DNeasy Tissue Kit (Qiagen, Hilden, Germany). A DNA
fragment of about 1,000 bp was amplified and sequenced
using the universal primers V9D (5'-TTACGTCCCT-
GCCCTTTGTA) [65] and LSU266 (5'-GCATTC-
CCAAACAACTCGACTC, [66]). Sequences obtained were
compared with reference homologs of Aphanomyces [29]
retrieved from GenBank. For sequence alignment the
CodonCode Aligner software (version 3.0.1; CodonCode,
Dedham, USA) was used. Molecular phylogenetic rela-

tionships were reconstructed using default settings in a
program package for quartet-based maximum-likelihood
analysis (TREE-PUZZLE, version 5.2 [67]) and TreeView
for graphical illustration [68].

Additional evidence for species assignation was obtained
from sequence analysis of the large subunit ribosomal
RNA gene using the primers nuLSU-5' (5'-CGCTGATTTT-
TCCAAGCCC) and nuLSU-3' (5'-GAGATAGGGAG-
GAAGCCATGG) for amplification and sequencing.

Thus far A. astaci represents the only species within the
genus Aphanomyces known to produce significant
amounts of chitinase in chitin-free medium [18]. This
unique feature was additionally used for species assign-
ment. In detail, chitinase activity accumulated in broth
culture supernatant was measured in a reaction volume of
100 L containing 5 mM sodium-phosphate buffer (pH
7), 180 M 4-methylumbelliferyl--D-N,N',N''-triacetyl-
chitotrioside (4-MU-chitotrioside; Sigma-Aldrich, Vienna,
Austria) as substrate, and 75 l of supernatant [18]. Fol-
lowing incubation at room temperature for 10 min, the
fluorescence intensity was evaluated under UV light.

DNA isolation from mycelium of oomycetes
The mycelium was transferred to a 2 ml-extraction tube
containing 0.7 g Precellys® ceramic beads of 1.4 mm diam-
eter (Peqlab Biotechnology, Erlangen, Germany) and 180
l buffer ATL, the lysis buffer of the DNeasy® Blood & Tis-
sue Kit (Qiagen, Hilden, Germany). Samples were
homogenised twice for 15 s at 5000 rpm using the MagNA
Lyser (Roche). Further isolation was performed according
to the protocol "Purification of Total DNA from Animal
Tissues (Spin-Column Protocol)" provided by the manu-
facturer.

De novo sequencing of partial GH domain using 
degenerate PCR primers
Partial GH18 domains of chitinases from various A. astaci
strains representing all four genotype groups described (A:
L1, Sv, Ra; B: Hö, Yx, Ti; C: Kv; D: Pc; [32]), the Austrian
strain Gb04 isolated in this work and six related oomycete
species (A. laevis, A. helicoides, A. repetans, A. irregularis,
Saprolegnia parasitica, Achlya racemosa, Leptolegnia caudata
(Table 1) were amplified using the primers SEQ685F (5'-
CCGGAGACTCGTGGAACGAC) and SEQ1159R (5'-
TTGCTCCAGCTGCCCGC). Primers targeting the amino
acid motifs DSWND and AGSW, respectively, amplified
an approximately 475-bp product by qPCR. The 20-L
reaction consisted of 0.4 × EvaGreen™ dye (Biotium, Hay-
ward, USA), 4 mM MgCl2, 200 M of each dNTP, 375 nM
of each primer, 2 l template DNA, 1 U GoTaq® DNA
polymerase - a proprietary formulation of Taq DNA
polymerase (Promega, Madison, USA), and 1 × Colorless
GoTaq® Flexi Reaction Buffer (Promega) not containing
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magnesium. Amplification was performed in the Rotor-
Gene 6000 (Corbett Life Science, Sydney, Australia) using
denaturation for 4 min at 94°C, amplification for 35
cycles (1 min at 94°C, 1 min at 63°C and 1 min at 72°C),
and final elongation of 7 min at 72°C followed by MCA.

Amplicons from Fusarium solani and Trichosporon cuta-
neum, representing fungi, were obtained with the degener-
ate primer SEQuni-F (5'-CGCCGGAGAYTCTTGGAAYGA,
Y = C or T) in combination with the primer SEQuni-R (5'-
CCAGCATAGTCGTAGGCCAT) targeting the amino acid
motifs xxDSWND and MTDYAG, respectively.

Agarose gel electrophoresis was used to the determine
amplicon size. The MSB® Spin PCRapace Kit (Invitek, Ber-
lin, Germany) was used for amplicon purification in case
of a single band showing the expected length. Multiple
bands were excised from the gel and purified with the Xact
DNA Cleanup kit (genXpress, Wiener Neudorf, Austria).

The BigDye® Terminator sequencing chemistry (Applied
Biosystems, Foster City, USA) was used for sequence anal-
ysis of amplicons performed at VBC Genomics Bioscience
Research GmbH (Vienna, Austria).

Identification and phylogenetic analysis of GH18 domains
The GH18 domain in the amino acid sequences of CHI2
and CHI3 were identified using the Reversed Position Spe-
cific Blast (rpsblast) search modus and the conserved
domain database [69]. Domain sequences were aligned to
GH18 domain sequences of related species with the Clus-
talW alignment program implemented in the graphical
multiple sequence alignment editor SeaView version 4
[70]. Quartet-based maximum likelihood analysis for
aligned amino acid sequences was performed using TreeP-
uzzle with default settings [67]. The graphical display of
the phylogram was generated as described above.

Western blot analysis of A. astaci culture supernatant
The peptides DEFKTLPWKAE and LYEDPNHPPGAKY
were selected from the deduced amino acid sequence of
the A. astaci gene CHI1 (GenBank:AJ416354). Conjugates
of these peptides with bovine serum albumin (BSA) were
obtained from PSL GmbH (Heidelberg, Germany). Cou-
pling to BSA was achieved via the SH group of a cysteine
residue introduced at the C terminus of the peptide to be
synthesised. Conjugates were used for the production of
polyclonal rabbit serum antibodies served as primary
antibodies. Peroxidase-labelled goat anti-rabbit IgG anti-
bodies (K&P Laboratories, Gaithersburg, USA) were used
as secondary antibodies.

Western-immunoblot analysis was performed as follows.
The A. astaci strain Hö was grown in broth culure. The cul-
ture supernatant was boiled for 5 min in a buffer consist-

ing of 25 mM Tris-HCl (pH 6.8), 2.2% sodium dodecyl
sulfate (SDS), 15% glycerol and 0.001% bromophenol
blue. Insoluble debris was removed by centrifugation.
Proteins were resolved by SDS-polyacrylamide gel electro-
phoresis on a 12% polyacrylamide Tris-glycine gel and
electroblotted onto a polyvinylidene difluoride (PVDF)
membrane (Bio-Rad Laboratories, Hercules, USA) using a
tank blot system (Bio-Rad). The Opti-4CN™ substrate
detection kit (Bio-Rad) was used for colorimetric detec-
tion of secondary antibodies conjugated to horseradish
peroxidase.

Determination of complete cDNA- and genomic-DNA 
sequences for CHI2 and CHI3
Mycelium derived from the A. astaci-strain Gb04 was
grown in liquid PG1 medium for three days and trans-
ferred to fresh medium for another 24 h. Total RNA was
isolated from mycelium using the Plant and Fungi Proto-
col provided with the RNeasy Plant Mini Kit (Qiagen).
Treatment with DNase I (Promega, Mannheim, Germany)
was performed at 37°C for 40 min according to the sup-
plier's instructions. The complete cDNA sequences of
CHI2 and CHI3 were generated by RACE-PCR using the
5'/3' RACE Kit (Roche Applied Science, Vienna, Austria).

To amplify genomic sequences corresponding to the
cDNAs determined, we designed primers in the region of
the start and stop codons of CHI2 and CHI3. The com-
mon forward primer (Chi5'f: 5'-AGCAAACTGCAACAAG-
CATG) targeting a region immediately upstream of the
start codon of putative CHI2 and CHI3 genomic
sequences, was combined with a gene-specific reverse
primer binding adjacent to the stop codon (Chi2.3'r: 5'-
GGGCACCAGATGAACGACGC or Chi3.3'r: 5'-ACTAA-
CATACACAACGAATGCGC for CHI2 and CHI3, respec-
tively). The matching fragment size between cDNA and
respective DNA sequences shown by agarose gel electro-
phoresis, and the identity of genomic and cDNA
sequences identified by a primer-walking strategy (data
not shown), were considered as experimental demonstra-
tion for the absence of intronic sequences within CHI2
and CHI3 genes.

In silico analysis of amino acid sequences deduced from 
CHI2 and CHI3
Multiple matching subsegments in two protein sequences
were identified with the LALIGN program http://
www.ch.embnet.org/software/LALIGN_form.html imple-
menting the algorithm of Huang & Miller [71].

The theoretical isoelectric points for the protein sequences
were calculated using the Protein Isoelectric Point menu
within the Sequence Manipulation Suite [72].
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The presence and location of signal peptide cleavage sites
in the amino acid sequences of CHI2 and CHI3 were pre-
dicted with the SignalP 3.0 Server http://www.cbs.dtu.dk/
services/SignalP;[73]). Protein phosphorylation at serine,
threonine or tyrosine residues was predicted with the Net-
Phos 2.0 Server [74]. Putative sites for amidation, N-myr-
istoylation and cell attachment were identified by a
protein pattern search against the Prosite database http://
www.expasy.org/prosite/; [75]). O-, N-, and C-glyco-
sylated sites were predicted with EnsembleGly - a web
server for prediction of O-, N-, and C-linked glycosylation
sites with ensemble learning [39].

Transcript quantification by real-time reverse 
transcription PCR (qRT-PCR)
Propagules of the strain Gb04 were grown in PG1
medium for three days, washed in fresh medium for 2 min
and transferred to another portion of fresh medium (time
point 0). Twelve, 24, 36, 48 or 72 hours later the myc-
elium was shortly washed with distilled water, quick-fro-
zen in liquid nitrogen and stored at -80°C. RNA was
isolated from three independent samples grown per time
point.

For quantification of transcript mass expressed from the
chitinase genes CHI2 and CHI3 as well as the endogenous
positive control NDUFV1, sense strand transcript stand-
ards were generated by in vitro transcription from a PCR
product template tailed with the T7 phage promoter
sequence. In more detail, for template construction a min-
imum sequence of 19 bases (5'-TAATACGACTCACTAT-
AGG) required for efficient transcription was selected out
of the 23 nt T7 phage promoter sequence and added to the
5' end of the respective PCR primer. In vitro transcription
was performed with the RNAMaxx™ High Yield Transcrip-
tion Kit (Stratagene, Amsterdam, The Netherlands)
according to the manufacturer's instructions. Transcrip-
tion was terminated by adding 1 l DNase I (10 units/l
RQ1 RNase-Free DNase, Promega) and incubation at
37°C for 40 minutes. The amount of the in vitro transcript
was determined by UV-absorbance measurement per-
formed at 260 nm on a GeneQuantII RNA/DNA Calcula-
tor (Pharmacia Biotech, Cambridge, UK). Ten-fold serial
dilutions were used as absolute concentration standards.

The 10-l one-step qRT-PCR contained 125 nM of each
primer (5'-CCATCACGAACCCCCTTGAG and 5'-
GGGCACCAGATGAACGACG for CHI2, 5'-
GTGGCCCCATCACGAACC and 5'-ACTAACATA-
CACAACGAATGCGC for CHI3, 5'-TCGGCTGTCGCACT-
TCTACA and 5'-ATCCACCCCGTTCCTTCG for NDUV1),
75 nM TaqMan probe (Hexachloro-6-carboxyfluorescein
(HEX)-5'-CTGCGGCCAATGTACCCCTTGCC black-hole
quencher 1 (BHQ1) and 6-carboxyfluorescein (FAM)-5'-
TTGTTGCCCTTGCACTGGTCGCC-BHQ1 for NDUV1

and CHI2/CHI3, respectively), 0.1 l of the QuantiTect RT
Mix, 5 l of the 2 × QuantiTect Probe PCR Master Mix
(Qiagen) and 50 ng total RNA or 1 L in vitro transcript.
In minus RT controls the QuantiTect RT Mix was replaced
by water. Reverse transcription of one-step RT-PCR was
conducted at 50°C for 30 min followed by a 15 min-acti-
vation of the HotStartTaq DNA polymerase at 95°C and
amplification for 35 cycles (94°C for 20 s, 60°C for 1
min).

Qualitative detection of A. astaci using qPCR/MCA
The 20-l duplex qPCR/MCA contained 2 l 10 × PCR
buffer B (Solis BioDyne, Tartu, Estonia), 200 nM of for-
ward and reverse chitinase gene(s) primers (5'-TCAAG-
CAAAAGCAAAAGGCT and 5'-CCGTGCTCGCGATGGA),
125 nM of forward and reverse 5.8S rRNA primers (5'-
ATACAACTTTCAACAGTGGATGTCT and 5'-ATTCT-
GCAATTCGCATTACG, Figure 5a), 200 M of each dNTP
(Fermentas, St. Leon-Rot, Germany), 0.4 × EvaGreen™
(Biotium), 3.0 mM MgCl2, 1 U Taq DNA polymerase
chemically modified for "hot start" (Hot FirePol®; Solis
BioDyne, Tartu, Estonia) and 10 ng DNA template or
water in the case of the no-template control. QPCR/MCA
was performed on the StepOnePlus™ Real-Time PCR Sys-
tem (Applied Biosystems) run under the StepOne™ soft-
ware version 2.0. Polymerase activation (95°C for 15
min) was followed by amplification for 35 cycles (95°C
for 15 s, 59°C for 15 s and 72°C for 10 s). After an initial
denaturation step at 95°C for 15 s, amplicon melting was
recorded during a gradual increase of the temperature
from 60°C to 95°C.

Oligonucleotides (Sigma-Aldrich, Steinheim, Germany)
were designed with Primer Express Software Version 2.0
(Applied Biosystems). The difference between amplicon
melting temperatures was calculated using the Nearest
Neighbor mode implemented in the online oligonucle-
otide properties calculator OligoCalc [76].

Sensitive detection and quantification of A. astaci using 
TaqMan qPCR
Duplicate TaqMan qPCR was carried out in a total volume
of 20 l containing 2 l 10 × PCR buffer A2 (Solis Bio-
Dyne), 0.2 mM of each dNTP, 4 mM MgCl2, 300 nM of
each primer (Chi3-324f20 and AaChi-Tmr), 150 nM Taq-
Man probe (AaChi-FAM), 1 U HOT FIREPol DNA
polymerase (Solis BioDyne), 20 ng template DNA or
water in the case of the no-template control.

Reactions were amplified in the StepOnePlus™ Real-Time
PCR System (Applied Biosystems) under the StepOne™
software version 2.0 using thermal cycling conditions of
15 min at 95°C, followed by 50 cycles of 15 s at 95°C and
1 min at 64°C. A standard curve was generated by plotting
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the logarithm of the standards copy numbers versus meas-
ured CT values.

Isolation of spike-in DNA for use in serial dilutions
A crayfish sample extracted from the abdomen of Cherax
quadricarinatus (Australian red-claw crayfish) was trans-
ferred to a 2 ml-extraction tube containing 0.7 g Precellys®

ceramic beads of 1.4 mm diameter (Peqlab Biotechnol-
ogy, Erlangen, Germany) and 180 l buffer ATL, the lysis
buffer of the DNeasy® Blood & Tissue Kit (Qiagen). The
MagNA Lyser (Roche) was used for three mechanical lysis
cycles consisting of 30 s at 6,500 rpm followed by 60 s on
a cooling block held at 4°C. Further isolation was per-
formed according to the protocol "Purification of Total
DNA from Animal Tissues (Spin-Column Protocol)" pro-
vided by the manufacturer. DNA concentration was deter-
mined spectrophotometrically using the Hellma® TrayCell
(Hellma, Müllheim/Baden, Germany) on the Eppendorf
BioPhotometer 6131.

Generation of copy standards
A DNA template stock consisting of CHI1, CHI2 and CHI3
sequences was generated as follows. Genomic DNA from
chitinase sequences were amplified with the primers
Chi3-324f20 (5'-TCAAGCAAAAGCAAAAGGCT) and
AaChi-Tmr (5'-TCCGTGCTCGCGATGGA). Amplification
was evaluated by the signal generated from the TaqMan®

probe AaChi-FAM (5'-FAM-TCAACGTCCAC-
CCGCCAATGG-BHQ-1). Amplification was performed in
a total volume of 20 l containing 2 l 10 × PCR buffer A2
(Solis BioDyne), 0.2 mM of each dNTP, 4 mM MgCl2, 250
nM of each primer, 150 nM TaqMan probe, 1 U HOT
FIREPol® DNA polymerase (Solis BioDyne) and 20 ng
DNA or water in the case of the no-template control. DNA
denaturation and enzyme activation were performed for
15 min at 95°C. DNA was amplified over 50 cycles con-
sisting of 95°C for 15 s, 60°C for 1 min. QPCR was run
on StepOnePlus™ Real-Time PCR System (Applied Biosys-
tems) under the StepOne™ software version 2.0.

PCR fragments were purified with the MSB® Spin PCRap-
ace Kit (Invitek, Berlin, Germany).

The copy number of the target template was determined
spectrophotometrically using the Hellma® TrayCell
(Hellma, Müllheim/Baden, Germany) on the Eppendorf
BioPhotometer 6131. Serial dilutions of the target
sequence (108 to 102, 50, 25 and 12.5 copies per 2 l) pre-
pared in 10 ng/l C. quadricarinatus DNA were used to
determine the amplification efficiency and the quantita-
tive detection limit.

Statistical analysis of expression changes
A univariate one-way analysis of variance (ANOVA) with
Scheffè's post-hoc test was used to evaluate the signifi-

cance of changes in temporal mRNA expression. The
dependent variable was the log-transformed mRNA
amount. The time was considered a fixed effect. A value of
p < 0.05 calculated by the Scheffè's post-hoc test was
regarded as significant. The normality assumption was
tested using the Kolmogoroff-Smirnow test.
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