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Abstract

Background: Porphyromonas gingivalis in subgingival dental plaque, as part of a mature biofilm, has
been strongly implicated in the onset and progression of chronic periodontitis. In this study using
DNA microarray we compared the global gene expression of a P. gingivalis biofilm with that of its
planktonic counterpart grown in the same continuous culture.

Results: Approximately 18% (377 genes, at 1.5 fold or more, P-value < 0.01) of the P. gingivalis
genome was differentially expressed when the bacterium was grown as a biofilm. Genes that were
down-regulated in biofilm cells, relative to planktonic cells, included those involved in cell envelope
biogenesis, DNA replication, energy production and biosynthesis of cofactors, prosthetic groups
and carriers. A number of genes encoding transport and binding proteins were up-regulated in P.
gingivalis biofilm cells. Several genes predicted to encode proteins involved in signal transduction
and transcriptional regulation were differentially regulated and may be important in the regulation
of biofilm growth.

Conclusion: This study analyzing global gene expression provides insight into the adaptive
response of P. gingivalis to biofilm growth, in particular showing a down regulation of genes involved
in growth and metabolic activity.

Background

The gram-negative obligate anaerobe Porphyromonas gingi-
valis, in subgingival dental plaque, has been strongly
implicated in the onset and progression of chronic perio-
dontitis, a disease characterized by the destruction of the
tooth supporting (periodontal) tissues [1,2]. There is
increasing evidence that P. gingivalis is also associated
with systemic diseases such as atherosclerosis [3,4] and

preterm birth [4]. P. gingivalis is an asaccharolytic organ-
ism that relies on the catabolism of amino acids for energy
production and growth [5]. An array of virulence factors
has been associated with P. gingivalis pathogenicity,
including proteases, adhesins, fimbriae and capsular
polysaccharide [6,7]. The persistence of P. gingivalis in
subgingival plaque for periods sufficiently long enough to
elicit disease is inherently dependent on it surviving as
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part of a mature biofilm. Although mutational analyses
have been employed to study genes associated with bio-
film development by P. gingivalis [8-14], very little is
known about the nature of P. gingivalis physiology and the
crucial regulatory processes occurring in the mature P. gin-
givalis biofilm and how this relates to pathogenicity. In
our laboratory we have devised a reproducible continuous
culture method to grow biofilm and planktonic cells
simultaneously in the same fermentor vessel. Using this
approach we have compared the cell envelope proteome
of P. gingivalis W50 biofilm and planktonic cells [15]. In
this current study, we have expanded our investigation of
these cells, comparing the global gene expression within
DP. gingivalis biofilm and planktonic cells using microarray
analysis.

Methods

Continuous culture conditions and biofilm formation

The growth and physical characterization of the biofilm
and planktonic cells analysed in this study have been
described in Anget al. [15]. The continuous culture system
allows the simultaneous co-culture of planktonic cells and
biofilm cells under identical growth conditions [15].
Briefly, the methods used were as follows. To produce bio-
film and planktonic cells for RNA harvest P. gingivalis was
grown in continuous culture, in duplicate, using a Bioflo
110 fermentor with a total volume of 400 mL (New
Brunswick Scientific, Edison, NJ, USA) in BHI medium
supplemented with 5 mg mL-! cysteine hydrochloride and
5.0 pg mL! haemin. Growth was initiated by inoculating
the fermentor vessel with a 24 hour batch culture (100
mL) of P. gingivalis grown in the same medium. After a 24
h incubation the media reservoir pump was turned on
and the media flow adjusted to give a dilution rate of 0.1
h-1(mean generation time of 6.9 h). The temperature of
the vessel was maintained at 37°C and the pH at 7.4 + 0.1.
The culture was continuously gassed with 5% CO, in 95%
N,. Optical density readings (ODgs ,m) and purity of the
culture were analyzed daily. Biofilm could be seen to be
forming on the fermentor vessel walls and on glass micro-
scope slides that were fixed to the vessel walls. Each P. gin-
givalis W50 culture was maintained for 40 days until
harvesting. Planktonic cells were harvested by rapidly
pumping them out of the fermentor vessel. The micro-
scope slides were then removed from the fermentor vessel
for examination of biofilm thickness and cell viability.
The biofilm was rinsed twice with cold PGA buffer [16] to
remove contaminating planktonic cells and then removed
by scraping with a spatula and suspended in cold PGA
buffer in a 50 mL centrifuge tube. PGA buffer contained
10.0 mM NaH,PO,, 10.0 mM KCl, 2.0 mM citric acid,
1.25 mM MgCl,, 20.0 pM CaCl,, 25.0 uM ZnCl,, 50.0 uM
MnCl,, 5.0 pM CuCl,, 10.0 pM CoCl,, 5.0 uM H3BO,, 0.1
uM Na,MoO,, 10 mM cysteine-HCI with the pH adjusted
to 7.5 with 5 M NaOH.
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Biofilm characterization

The viability of cells comprising the biofilms that were on
the glass microscope slides were determined using LIVE/
DEAD® BacLight™ stain as per manufacturer instructions
(Invitrogen) with visualized using confocal laser scanning
microscopy (CLSM) essentially as described by Loughlin
et al. [17]. CLSM was done using an Axiovert 200 M
inverted microscope (Carl Zeiss Pty Ltd. Germany) fitted
with a Zeiss LSM 510 META Confocal scan head. Imaging
was carried out using the 458/477/488 nm Argon and 543
nm HeNe laser lines and a 63x C-Apochromat® water
immersion lens. Live and dead cells in the stained bio-
films were quantified using COMSTAT software [18] with
the viability of the biofilm obtained by averaging the
number of live cells over the entire z-stack [15]. Biofilm
thickness was also measured using light microscopy [15].

Total RNA extraction

P. gingivalis W50 biofilm and planktonic samples (40 mL)
were immediately added to 0.125 volume of ice-cold Phe-
nol solution (phenol saturated with 0.1 M citrate buffer,
pH 4.3, Sigma-Aldrich, Inc. Saint Louis, MO). The mixture
was centrifuged and the pellet suspended in 800 pL of ASE
lysis buffer (20 mM Na acetate, 0.5% SDS, 1 mM EDTA
pH 4.2) and transferred into a 2 mL microcentrifuge tube.
An equal volume of ice cold Phenol solution was added
and the mixture was vortexed for 30 s before incubation at
65°C for 5 min. The mixture was then chilled on ice for 3
min after which of 200 uL of chloroform was added and
mixed by brief vortexing. The mixture was centrifuged at
16,100 x g and the aqueous phase collected and extracted
using a Phenol solution/chloroform (1:1 vol:vol) mix.
The RNA in the aqueous phase was precipitated by addi-
tion of 700 pL of 4 M LiCl and incubated overnight at -
20°C. Samples were then thawed and the total RNAs were
pelleted by centrifugation. The pellet was washed with
cold 70% ethanol, air dried and suspended in 50 pL of
0.1% diethylpyrocarbonate treated water. The samples
were then treated with DNase I (Promega, Madison, WI)
and purified using RNeasy Mini columns (Qiagen, Valen-
cia, CA) according to protocols supplied by the manufac-
turer. The quality of the total RNA was verified by
analytical agarose gel electrophoresis and the concentra-
tion was determined spectrophotometrically.

Microarray analyses

Reverse transcription reactions contained 10 pg of total
RNA, 5 pg of random hexamers, the first strand buffer [75
mM KCl, 50 mM Tris-HCI (pH 8.3), 3 mM MgCl,], 0.63
mM each of dATP, dCTP, and dGTP, 0.31 mM dTTP (Inv-
itrogen Life Technologies, Carlsbad, CA) and 0.31 mM
aminoallyl dUTP (Ambion, Austin TX), 5 mM DTT, and
800 u of SuperScript III reverse transcriptase (Invitrogen).
The reaction mixture was incubated at 42°C for 2 h. The
RNA was hydrolysed by incubation with 0.5 M EDTA and
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1 M NaOH at 65°C for 15 min and the sample neutralized
with 1 M HCI before purification of the cDNA with
QIAquick columns (Qiagen). The cDNAs were coupled
with monoreactive Cy3 or Cy5 (40 nmol) (Amersham
Biosciences, Piscataway, NJ) in the presence of 0.1 M
NaHCO; for 60 min at room temperature. The labeled
cDNAs were purified using QIAquick columns (Qiagen),
combined and vacuum dried. Samples were then sus-
pended in hybridization buffer containing 50% forma-
mide, 10x SSC (150 mM sodium citrate, pH 7.0 and 1.5
M NaCl), 0.2% SDS and 1 pg pl-! salmon sperm DNA.

P. gingivalis microarrays were kindly provided by The
Institute for Genomic Research (TIGR) (now The J. Craig
Venter Institute). Each microarray consisted of 1907 70-
mer oligonucleotides spotted in quadruplicate on a glass
slide (CMT-GAPS; Corning, Corning, N.Y.). Detailed array
information can be viewed at http://www.tigr.org and
http://www.brop.org. A total of four slides were used for
each planktonic-biofilm pair, where the cDNAs were
labeled with the alternative dye and hybridized to the
microarray slides using a dye-swapping design.

Slides were prehybridized at 42°C in 5x SSC, 0.1% SDS
and 2% bovine serum albumin for 2 h and then briefly
rinsed with distilled water and isopropanol. Slides were
dried by centrifugation for 3 min at 1,500 x g. The labeled
c¢DNAs hybridization mix was heated to 100°C for 2 min
before adding to the DNA microarray. Each array was cov-
ered with a coverslip and placed inside a hybridization
chamber (Corning Incorporated Life Sciences, Acton,
MA). Hybridization was carried out in a 42 °C water bath
for approximately 16 h after which the coverslips were
removed and the slides washed in 2x SSC, 0.1% SDS at
42°C. The arrays were washed at room temperature once
with 0.1x SSC, 0.1% SDS for 10 min, four times for 1 min
in 0.1x SSC, and then rinsed with distilled water followed
by 100% ethanol. The arrays were dried immediately by
centrifugation (3 min, 1,000 x g).

Image and data analysis

The hybridized arrays were scanned using an Agilent
G2565AA microarray scanner system (Agilent Technolo-
gies, Santa Clara, CA). Imagene 6.0 software (Biodiscov-
ery, Los Angeles, CA) was used for spot finding, signal-
background segmentation, and intensity quantification.
The intensity of each spot was local background corrected
using GeneSight 4.1 (Biodiscovery) and the resultant data
were log transformed such that the mean value for each
channel (Cy3 and Cy5) had a log ratio of zero. The signal
intensities for each dye swap hybridization were com-
bined and the average log ratios were used for all further
analysis. The data were normalized using intensity
dependent Lowess normalization [19] per spot and per
slide to remove the intensity-dependent deviation in the
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log, (ratio) values. Identification of differentially regu-
lated genes was performed using the GeneSight 4.1 confi-
dence analyzer [based on an ANOVA approach of Kerr et
al [20]]. This statistical analysis uses replicate spots to esti-
mate an empirical distribution of noise. The constructed
noise model is then used to determine the statistical meas-
ures for the likelihood of false positives above or below a
certain expression ratio. The differentially regulated genes
were identified at 99% confidence intervals with a cut-off
value of log, > 0.6 or log, < -0.6. These values correspond
to approximately 1.5 fold up- and down-regulated genes,
respectively, a ratio considered biologically relevant
[21,22]. The stringent 99% confidence interval was
selected to reduce the chance of false positive genes to 1%
(P-value < 0.01). All DNA microarray work in this study
was in compliance with MIAME guidelines and all data
have been deposited under accession number E-TABM-
467, in the ArrayExpress databases http://www.ebi.ac.uk/

arrayexpress.

Validation of microarray data by real time, reverse
transcription-PCR

Total RNA (1 pg) was reverse transcribed to cDNA using
SuperScript III First Strand Synthesis Supermix (Invitro-
gen) in the presence of random primers (50 ng) according
to the manufacturer's recommendations. Real time-PCR
was carried out using a Rotor-Gene 3000 (Corbett
Research, Sydney, Australia). The primers for the real-time
analysis (Table 1) were designed using Primer3 software
http://primer3.sourceforge.net/. The lengths of the prim-
ers were 18 to 20 nucleotides and the amplified products
between 109 and 130-bp. The amplification efficiency of
each primer set was determined empirically by using
c¢DNA template dilutions over four orders of magnitude.
The amplification efficiency for each primer set varied
between 95.4% and 106.6%, showing that the amplicons
were generated with comparable efficiency.

The real time-PCR reaction contained 12.5 pL of Platinum
SYBR Green qPCR SuperMix-UDG (Invitrogen), 0.2 uM of
each gene-specific primer and 5 puL of cDNA template. The
cycling conditions were 50°C for 2 min, 95°C for 2 min,
then 40 cycles of 95°C for 155, 58°C for 30 s, and 72°C
for 30 s. Negative controls of distilled water and total RNA
samples were included in each run. All reactions were car-
ried out in triplicate and melting curve analysis indicated
that in each reaction a single product was amplified.

PG0347 encoding a putative UDP-glucose 4-epimerase,
galE, was selected as normalizer for all reactions. The crit-
ical threshold cycle, Cfor each gene was generated by the
Rotor-Gene 6 software (Corbett Research) and the relative
expression ratio of the selected genes calculated and ana-
lyzed using the relative expression software tool (REST)

http://www.gene-quantification.info[23]. Each real time-
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Table I: Primers used for real-time reverse transcription PCR

http://www.biomedcentral.com/1471-2180/9/18

Gene ID Forward primer 5'-3' Reverse primer 5'-3'

PGO158 TTCTTTTGGTGGACGATGTG GAGGGACGCTTGGTAACG
PG0270 TCGCAAGCCAAGCAAATAC GAGATAGGGTGCGATGGTTG
PG0347 TCGGCGATGACTACGACA CGCTCGCTTTCTCTTCATTC
PG0553 CCGATGGCAATACGAGCCGC ATAGCCGGGGCACAGAGGGC
PG0593 CAAAAGGTCGCTCCACTCA GTTCGCCACGATCATTCAC
PG0914 TCATCGCTCGCAGTAAGAAC CTGAATACCGAATCCCCATC
PG1055 AGCCAACAGGAGATGGAGTG TCAAGTCGGAGTGCGAAAA
PGI1431 CGCAGACCAATCGCATAAG CAGAATAGCCATCGCACAGA
PG1432 CCATGCAGCAAGGAGATACA TAGTGTCGAGGGCCATTTTC

PCR reaction was performed using the biological replicate
total RNA samples that were used for microarray analysis.

Results and Discussion

P. gingivalis W50 growth in continuous culture and biofilm
formation

P. gingivalis is a slow growing anaerobe that even in rich
media has a generation time of 4.65 h [24]. In the contin-
uous culture system we employed here P. gingivalis W50
replicated with a mean generation time of 6.9 h and
reached steady state approximately 10 days after inocula-
tion. The cell density of the culture remained constant,
after it had reached steady state, at an OD;5 ,,, of 2.69 +
0.21 and 2.80 + 0.52 for the first and second biological
replicates respectively. Robust biofilm was obtained on
the vertical surfaces of the fermentor vessel walls and at 40
days of culture the planktonic and biofilm cells from the
fermentor vessel were harvested for analysis. The glass
microscope slides that were fixed to the fermentor vessel
walls were used for physical characterization of the bio-
film. CLSM revealed that the surface of the biofilm fea-
tured variable structures and the average percentage of
viable cells within the biofilm was 91.2 + 7.3% [15]. The
biofilms were on average 240 + 88 um thick. Our contin-
uous culture system allowed us to obtain a direct paired
comparison of transcriptomic profiles of both the plank-
tonic and biofilm grown cells that were cultivated in the
same fermentor vessel and therefore were subjected to
identical gross environmental influences (such as media
composition and temperature).

Identification of genes differentially regulated during
biofilm growth

Microarray hybridizations were conducted using the
paired planktonic cell and biofilm total RNA samples
obtained from the two independent continuous cultures.
For each culture planktonic cell and biofilm pair, four
technical replicates of array hybridizations were per-
formed (2 array slides for each dye swap) yielding 16
measurements per gene as each gene was represented in
quadruplicate on each slide. We designated all genes with

an average expression ratio of 1.5-fold (up or down) dif-
ferentially regulated, a threshold reported to be biologi-
cally significant [21,22]. Moreover, we used the GeneSight
4.1 (Biodiscovery) confidence analyzer to discriminate
genes that had a 99% likelihood of being differentially
regulated at above or below the 1.5 threshold.

A total of 561 and 568 genes were identified to be differ-
entially regulated (1.5 fold or more, P-value < 0.01)
between the biofilm and planktonic cells of the first and
second replicates respectively (data not shown). Of the
identified genes, 377 belonged to a common data set
(67% and 66% of the total genes identified for the first
and second replicates respectively). Of the 377 genes in
the common dataset 191 were up-regulated and 186 were
down-regulated (see Additional files 1 and 2). This repre-
sents approximately 18% of the P. gingivalis genome.

To validate the microarray data real time-PCR of selected
genes PGO0158, PG0270, PGO0593, PG0914, PG1055,
PG1431 and PG1432 was performed. Six of the genes
were selected from the up-regulated group and one from
the down-regulated group in biofilm cells. The expression
of galE was detected to remain unchanged during biofilm
and planktonic growth (data not shown) and was used for
normalization. There was a high correlation between the
expression ratios determined by both methods (R? =
0.9002) (Fig. 1).

Although in some studies the differential expression of
only a small percentage of the genome has been suggested
following comparison of gene expression in biofilm and
planktonic cells [25-28] differential expression of a large
number of genes has been demonstrated in other studies.
For example, in Escherichia coli, using gene-fusion studies,
38% (out of 446 clones) underwent altered expression
during biofilm development [29]. Sauer and co-workers
demonstrated that more than 50% (over 800 proteins) of
the Pseudomonas aeruginosa proteome was differentially
regulated between planktonic growth and the fully mature
biofilm [30]. Moreover, DNA microarray analysis indi-
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Correlation between microarray and real-time PCR. Correlation between microarray and real-time-PCR gene expres-
sion ratios determined for biofilm versus planktonic cells. The log,-transformed microarray and real-time-PCR ratios were
used to determine the Spearman Rank correlation coefficient (r = 0.86, p < 0.01).

cated that up to 22% (a total of 580 genes) of the Staphy-
lococcus aureus genome underwent expression changes
during mature biofilm growth [31].

Factors shown to be relevant to P. gingivalis homotypic
biofilm formation and heterotypic biofilm formation
with Streptococccus gordonii include InlJ, an internalin fam-
ily-related protein [13], the minor fimbrial protein Mfal
[32], CIpXP [33] and the low molecular weight tyrosine
phosphatase Ltpl [34]. In the sequenced P. gingivalis
strain W83 [35] and in our laboratory strain W50 (data
not shown) the mfal gene encoding Mfal has been inter-
rupted by an insertion of the mobile element ISPg4. The
microarray data indicated that in strain W50 biofilm cells
there was increased expression of PG0176 which is the 5-
prime region of mfal. Thus there is an indication that in
P. gingivalis strains where mfal is intact and Mfal pro-
duced that the minor fimbrillin may be upregulated in a
biofilm. P. gingivalis coaggregation with S. gordonii medi-
ated by Mfal is suggested to be relevant to P. gingivalis host
colonizaton [36]. Increased Mfal production may in
some strains improve host colonization, but for strains
such as W50 it would not play a role in their pathogenesis.
Differential expression of the genes encoding InlJ

(PG0320) and ClIpXP (PG0417, PG0418) was not
observed in the current study.

The predicted cellular roles of the differentially regulated
DP. gingivalis gene products in this study encompass wide-
spread functional categories (Fig. 2). However, 40% (77)
of the up-regulated genes and 31% (58) of the down-reg-
ulated genes were annotated as encoding hypothetical or
conserved hypothetical proteins. Genes encoding proteins
with similarity to experimentally identified proteins with
unknown functions accounted for about 10% of the dif-
ferentially expressed genes.

The physiology of the biofilm

The down-regulation of many genes involved in cell enve-
lope biogenesis, biosynthesis of cofactors, prosthetic
groups and carriers and other cellular processes was
observed in this study (Fig. 2). Similarly, many genes
involved in energy production, DNA replication, fatty acid
and phospholipid metabolism and central intermediary
metabolism were also down-regulated. Taken together,
these observations suggest a down-turn in cell replication
and a slowed growth rate in biofilm cells.
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Genes differently expressed in P. gingivalis W50 biofilm. Genes differentially expressed in P. gingivalis W50 biofilm cells
relative to planktonic cells (1.5 fold or more, P-value < 0.01) grouped by TIGR functional role categories. A, amino acid biosyn-
thesis; B, biosynthesis of cofactors, prosthetic groups, and carriers; C, cell envelope; D, cellular processes; E, central intermedi-
ary metabolism; F, DNA metabolism; G, disrupted reading frame; H, energy metabolism; |, fatty acid and phospholipid
metabolism; ], mobile and extrachromosomal element functions; K, protein fate; L, protein synthesis; M, purines, pyrimidines,
nucleosides and nucleotides; N, regulatory functions; O, signal transduction; P, transcription; Q, transport and binding proteins;
R, unknown function; and S, hypothetical or conserved hypothetical proteins.

The primary indication of the slowing of cell replication
in the biofilm was the down-regulation of genes encoding
proteins involved in chromosome replication such as
DnaA (PG0001), the primosomal protein n' PriA
(PG2032), single-stranded binding protein  Ssb
(PG0271), the DNA polymerase III alpha subunit DnaE
(PG0035) and the DNA polymerase III beta subunit
DnaN(PG1853). Also down-regulated in biofilm cells
were genes encoding homologues of proteins involved in
DNA repair and recombination, MutS [37] (PG0412),
radA [38] (PG0227) and recN [39,40] (PG1849). The bio-
film cells also displayed up-regulation of a putative trans-
lational regulator, RecX (PG0157) that in E. coli has been
shown to inhibit RecA activity which is important in
homologous recombination and in the SOS pathway of
DNA repair and mutagenesis [41].

The down-regulation of a significant number of genes
associated with cell envelope biogenesis (see Additional
files 1 and 2) also suggests that the growth rate was
reduced in biofilm cells. The slower growth rate of cells in
a biofilm has been previously attributed to restricted pen-
etration of nutrients and helps explain the relative resist-
ance of biofilms to antibiotics targeting growth [42,43].
As biofilm cells exhibit a slower growth rate then the need
for energy would decrease correspondingly. Indeed, the
transcriptomic data showed that expression of seven genes
involved in the glutamate catabolism pathway, one of the
key sources of energy for P. gingivalis [44], were simultane-
ously down-regulated in biofilm cells. One down-regu-
lated gene in this pathway was PG1812 which is predicted
to encode the alpha subunit of 2-oxoglutarate oxidore-
ductase, an enzyme located at the branching point in this
pathway between butyrate and propionate end-products.
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Three genes PG0690, PG1075 and PG1076 encoding 4-
hydroxybutyrate CoA-transferase, the coenzyme A trans-
ferase beta subunit and acyl-CoA dehydrogenase (short-
chain specific) respectively, that are in the pathway branch
that produces butyrate, were down-regulated, as were a
cluster of genes encoding a methylmalonyl-CoA decar-
boxylase (PG1608-1612) that is part of the pathway
branch that produces propionate.

Signal transduction, regulatory and transcription genes

It has been well established that two-component signal
transduction systems (TCSTSs) play an important role in
biofilm formation in many bacteria, including E. coli [45],
Enterococcus faecalis [46] and Streptococcus mutans [47].
Interrogation of the P. gingivalis W83 ORFs revealed only
6 putative TCSTSs. The transcriptomic analysis indicated
that one of these TCSTSs, comprising PG1431 and
PG1432, that encode a DNA-binding response regulator
of the LuxR family and a putative sensor histidine kinase
respectively, was up-regulated in biofilm cells. To date, the
involvement of signal transduction, transcriptional regu-
lators and other transcription factors in P. gingivalis bio-
film development has yet to be established.

Homologues of the TCSTSs PG1431 and PG1432 have
been found in P. gingivalis strain ATCC 33277 and were
designated fimR and fimS, respectively [48]. FimR and
FimS$ are known to regulate FimA-associated fimbriation
[48]. Comparative transcriptomic profiling of P. gingivalis
ATCC 33277 and its fimR deficient mutant indicated only
a limited number of genes were part of the fimR regulon
including PG1974, PG0644 (tlr) and the first gene of the
fim locus, PG2130 [49]. Binding of FimR upstream of
PG2130 initiates an expression cascade involving
PG2131-34. The transcriptomic data presented here do
concur with the possible positive regulation of PG1974 by
PG1431, however, they are in conflict with the role of
PG1431 in the positive regulation of the fim locus because
in strain W50 biofilms we observed decreased expression
of PG2133 and PG2134 with no differential expression of
fimA. Thus, the role of PG1431 and PG1432 in P. gingivalis
W50 biofilm growth may not be reflected in the earlier
study of P. gingivalis ATCC 33277 FimS and FimR
mutants.

It is predicted that there are 29 orphan transcriptional reg-
ulatory proteins in P. gingivalis but only 4 of these were
differentially regulated in biofilm cells, one of which was
the down-regulated PG0270, oxyR. The remaining three
possible transcriptional regulators PG0173, PG0826 (of
the AraC family of transcriptional regulators) and PG2186
were found to be up-regulated. Members of the AraC fam-
ily of transcriptional regulators have been shown to be
important in carbon metabolism, stress response and vir-
ulence in other species (for review see Gallegos), [50] and

http://www.biomedcentral.com/1471-2180/9/18

in the regulation of quorum sensing signaling in P. aerugi-
nosa [51].

Sigma factors are the subunit of RNA polymerase respon-
sible for the recognition of the specific sequence of the tar-
get gene promoter [52] and are involved in the regulation
of diverse physiological processes, particularly virulence
[53,54] and biofilm formation [55,56]. The array data
indicated that three putative sigma factors of the 670 fam-
ily PG0594 (rpoD), PG1660 and PG1827 were differen-
tially regulated in biofilm cells. Both PG0594 and
PG1660 were up-regulated whilst PG1827 was down-reg-
ulated in biofilm cells. The observed differential expres-
sion of these sigma factors in biofilm cells may indicate
that these proteins are important regulators of P. gingivalis
during biofilm growth.

Genes encoding transport and binding proteins

Many genes predicted to encode transport and binding
proteins were up-regulated in biofilm cells (Fig. 2). Six of
these genes encode components of putative ABC trans-
porter systems (PG0280, PG0281, PG1175, PG1663,
PG2199 and PG2206). PG1175 and PG1663 are each pre-
dicted to be the inner membrane components of an ABC
transporter complex, each having an N-terminal trans-
membrane domain and a C-terminal ABC ATPase
domain. Interestingly, a RPSBLAST search based on the
conserved domain database CDD [57] revealed that
PG0280 and PG0281 encode putative permeases belong-
ing to the family which includes LolC that has been
shown to transport lipids across the inner membrane
[58].

Potential virulence determinants and hypothetical genes

The complete P. gingivalis genome sequence has revealed
a number of putative virulence determinants, several of
which were highly up-regulated in biofilm cells. These
include a putative sialidase (PG0352) and ADP-heptose-
LPS heptosyltransferase (PG1155) with an average fold
change of 3.22 and 2.58 respectively, a putative extracellu-
lar protease (PG0553) and thiol protease, tpr (PG1055)
[59] with average fold changes of 6.22 and 12.28 respec-
tively. We also observed an increased expression of the
gene encoding HtrA, a putative periplasmic serine pro-
tease (htrA; PG0593) with an average fold change of 2.96.
HtrA is known to play a role in biofilm formation of Strep-
tococcus mutans [60] and virulence in a variety of bacterial
species [61-63]. In P. gingivalis, HtrA has been shown to
confer protection against oxidative stress and be involved
in long term adaptation to elevated temperature [64,65].
HtrA has also been implicated in the modulation of the
activity of the gingipain cysteine proteinases at elevated
temperature but it is not essential for the maturation or
activation of the gingipains under normal conditions
[64]. Interestingly htrA occurs in a predicted operon
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upstream of rpoD. In Salmonella enterica serovar Typhimu-
rium [66,67] and Yersinia enterocolitica [68,69] an alterna-
tive sigma factor RpoE has been implicated in the
regulation of htrA and resistance to oxidative stress. Taken
together, these results suggest that perhaps HtrA in concert
with RpoD may be part of a stress response that is acti-
vated during P. gingvalis biofilm growth.

The majority of the differentially regulated P. gingivalis
genes were of unknown or poorly characterized function.
Three of the genes encoding the hypothetical proteins,
PG0914, PG0844, and PG1630 were also amongst the
most highly up-regulated genes in biofilm cells with an
average fold change of 11.69, 9.35 and 8.21 respectively.
RPSBLAST search indicated that some of the hypothetical
P. gingivalis proteins do have similarities to proteins of
known function such as HslJ, a heat shock protein
(PG0O706) and DegQ, a trypsin-like serine proteases
(PG0840) (Table 2).

Comparison of our microarray results with the cell enve-
lope proteome analysis of P. gingivalis W50 biofilm and
planktonic cells performed by Ang et al. [15], using the
same cells as in this study, indicates that 5 out of the 47
proteins that were of differential abundance in that study
correlate with the protein abundances (up or down-regu-
lated) that could be expected based on our microarray
data. While this correlation is modest, it is important to
bear in mind that protein cellular distribution, stability,
post-translation modifications and/or turnover may result
in measured protein abundances that differ from those
expected from the transcriptomic data [70-72]. Some P.
gingivalis proteins known to be associated with the outer
membrane and virulence of the bacterium, such as the
gingipains (RgpA and Kgp), HagA and CPG70, that were
of differential abundance in the proteome study of Ang et
al. [15] were not shown to be differentially expressed at
the transcript level in this study. One of these proteins, the
Lys-specific gingipain proteinase Kgp (PG1844) has been
shown to be a major virulence factor for P. gingivalis in
assimilating the essential nutrient haem [7]. In this cur-
rent study the Kgp transcript level was unchanged
between planktonic and biofilm growth. However, in the

http://www.biomedcentral.com/1471-2180/9/18

Ang et al. [15] study significantly less of the Kgp protein
was found on the cell surface in the biofilm relative to
planktonic cells. Kgp, along with other surface proteins, is
known to be released from the cell surface by as yet unde-
fined mechanisms to be present in the extracellular envi-
ronment. Hence the transcriptomic and proteomic data
from the same cells suggests that a major virulence factor,
Kgp, may be released from the surface of the biofilm cells
with no reduction in expression. This mobilization of a
major virulence factor involved in assimilation of an
essential nutrient may be an important survival mecha-
nism for P. gingivalis in a biofilm.

It must be noted that the study presented here is of P. gin-
givalis grown as a monospecies biofilm and not as part of
a multispecies biofilm as in subgingival dental plaque.
Nonetheless the study does provide useful insights into
the global events occurring when the bacterium is grown
as a biofilm for an extended period, reflective of the
chronic infection of the host. Analyses of P. gingivalis gene
expression when it is grown as part of a multispecies bio-
film are currently underway in our laboratory.

Conclusion

In this study, we have shown 18% of the P. gingivalis W50
genome exhibited altered expression upon mature bio-
film growth. Despite the intrinsic spatial physiological
heterogeneity of biofilm cells we were able to identify a
large subset of genes that were consistently differentially
regulated within our biofilm replicates. From the down-
turn in transcription of genes involved in cell envelope
biogenesis, DNA replication, energy production and bio-
synthesis of cofactors, prosthetic groups and carriers, the
transcriptomic profiling indicated a biofilm phenotype of
slow growth rate and reduced metabolic activity. The
altered gene expression profiles observed in this study
reflect the adaptive response of P. gingivalis to survive in a
mature biofilm.
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Table 2: Putative functions of selected genes annotated as hypothetical that were up-regulated in P. gingivalis W50 biofilm cells

ORF Putative gene product description and function*

PG0039 COGO0845; AcrA, Membrane-fusion protein; Cell envelope biogenesis, outer membrane

PG0706 COG3187; HslJ, Heat shock protein; Posttranslational modification, protein turnover, chaperones

PG0840 COGO0265; DegQ, Trypsin-like serine proteases, typically periplasmic, containing C-terminal PDZ domain; Posttranslational
modification, protein turnover, chaperones

PGI012 COGO0621; MiaB, 2-methylthioadenine synthetase; Translation, ribosomal structure and biogenesis

PGI1100 COG2971; N-acetylglucosamine kinase; Carbohydrate transport and metabolism

PG2139 COGI1399; Metal-binding, possibly nucleic acid-binding protein; General function prediction only

* Putative gene description and function were determined using RPSBLAST.
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