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Abstract

Background: Pathogens tolerate stress conditions that include low pH, oxidative stress, high salt
and high temperature in order to survive inside and outside their hosts. Lipopolysaccharide (LPS),
which forms the outer-leaflet of the outer membrane in Gram-negative bacteria, acts as a
permeability barrier. The lipid A moiety of LPS anchors it to the outer membrane bilayer. The MsbB
enzyme myristoylates the lipid A precursor and loss of this enzyme, in Salmonella, is correlated with
reduced virulence and severe growth defects that can both be compensated with extragenic
suppressor mutations.

Results: We report here that msbB (or msbB somA) Salmonella are highly sensitive to physiological
CO, (5%), resulting in a 3-log reduction in plating efficiency. Under these conditions, msbB
Salmonella form long filaments, bulge and lyse. These bacteria are also sensitive to acidic pH and
high osmolarity. Although CO, acidifies LB broth media, buffering LB to pH 7.5 did not restore
growth of msbB mutants in CO,, indicating that the CO,-induced growth defects are not due to
the effect of CO, on the pH of the media. A transposon insertion in the glucose metabolism gene
zwf compensates for the CO, sensitivity of msbB Salmonella. The msbB zwf mutants grow on agar,
or in broth, in the presence of 5% CO,. In addition, msbB zwf strains show improved growth in low
pH or high osmolarity media compared to the single msbB mutant.

Conclusion: These results demonstrate that msbB confers acute sensitivity to CO,, acidic pH, and
high osmolarity. Disruption of zwf in msbB mutants restores growth in 5% CO, and results in
improved growth in acidic media or in media with high osmolarity. These results add to a growing
list of phenotypes caused by msbB and mutations that suppress specific growth defects.
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Background

Lipopolysaccharide (LPS), the most abundant molecule
on the surface of Gram-negative bacteria, acts as a perme-
ability barrier and renders the outer-leaflet of the outer
membrane (OM) relatively impermeable to hydrophobic
antibiotics, detergents [1], and host complement [2]. LPS
consists of three major components: lipid A, core polysac-
charides and O-linked polysaccharides. Lipid A, with its
fatty acid anchors [lauric, myristic and sometimes pal-
mitic acid], is an endotoxin primarily responsible for
TNFo-mediated septic shock. The addition of muyristic
acid to the lipid A precursor is catalyzed by the enzyme
MsbB [3].

It has been shown that msbB Salmonella serovar Typhimu-
rium exhibits severe growth defects in LB and sensitivity to
bile salts (MacConkey) and EGTA-containing media.
However, compensatory suppressor mutants can be iso-
lated that grow under these conditions. One of these sup-
pressor phenotypes results from a mutation in somA, a
gene of unknown function [4]. msbB Salmonella Typhimu-
rium strains have recently been developed as potential
anti-cancer agents that possess impressive anti-tumor
activity in mice [5]. In a phase I clinical study msbB Salmo-
nella were shown to be safe in humans when administered
i.v. However, bacteria were rapidly cleared from the
peripheral blood of humans and targeting to human
tumors was only observed in few patients at the highest
dose levels of 3 x 108 CFU/m2and 1 x 10°/m2[6]. Toso et
al. [6] noted that YS1646 (suppressed msbB strain, see
below) grew best in air without added CO,,.

The potential to grow in acidic and CO,-rich environ-
ments is a hallmark of pathogenic bacteria, enhancing
persistence within phagocytes and survival inside the
host. Sensitivity to CO, and low pH of msbB Salmonella
strains might explain poor colonization of tumors, which
often contain high levels of CO, and lactic acid [7,8] due
to the Warburg effect, also known as aerobic glycolysis,
whereby glucose uptake is elevated while oxidative phos-
phorylation is reduced, even in the presence of oxygen.
Our previous work on suppressors of msbB Salmonella
raised the possibility that secondary mutations could sup-
press sensitivity to 5% CO, and acidic conditions.

Here we report that the growth of msbB Salmonella is
highly inhibited (greater than 3-log reduction in plating
efficiency) in a 5% CO, atmosphere in LB media as well as
under low pH conditions when compared to wild-type
Salmonella. Furthermore, several CO, resistant clones were
selected from an msbB Salmonella transposon library
(Tn5). Three mutations were mapped and all were shown
to contain the Tn5 marker in the zwf gene, which encodes
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the enzyme glucose-6-phosphate-dehydrogenase and is
tightly linked to the msbB gene.

Results

CO, sensitivity of msbB Salmonella

CO, sensitivity was first observed when YS1646, an msbB
purl Suwwan deletion strain of Salmonella Typhimurium,
was plated on blood or LB plates and incubated in a 5%
CO, incubator (Caroline Clairmont, personal communi-
cation; Toso et al., 2002). Suwwan deletion strains lack
~100 genes in the 17.7 to 19.9 Cs region of the chromo-
some [9]. In our studies, plating identical amounts (e.g.,
100 pl of a 105 dilution of a culture grown under non-
selective conditions) to duplicate plates incubated at
37°C in either air or 5% CO,, few or no colonies of
YS1646 were observed after 16 hours of incubation at
37°C in 5% CO, (Figure 1). However, by plating more
cells, the presence of a few resistant colonies could be
detected, as we obtained 3.3 x 108 CFU/ml on plates incu-
bated in air and 1.7 x 10> CFU/ml on plates incubated in
the presence of 5% CO,, a greater than 3 log reduction.
This CO, sensitivity, first observed in YS1646, is also
observed in a simple msbB mutant (see below). In con-
trast, wild-type Salmonella Typhimurium (ATCC 14028
and LT2), Salmonella Typhi (CS029, ATCC 33458), and
Escherichia coli (MG1655, near-wild type K-12) are resist-
ant to 5% CO, (ATCC 14028: Figure 1; other strains: data
not shown). Interestingly, msbB E. coli (KL423) was not
sensitive to CO, (not shown), consistent with there being
physiologically relevant differences between the E. coli
and Salmonella in regard to the loss of MsbB function, as
has been previously observed [4]. These differences
obscure or compensate for obvious growth defects in
msbB E. coli.

CO, sensitivity was found in all msbB Salmonella strains
tested so far, indicating that CO, sensitivity is a direct
result of the lack of lipid A myristoylation (data not
shown, see list of strains in Table 1). Consistent with these
results, normal growth in CO, was completely restored
when msbB was expressed from a plasmid
(pSM21(msbB+)) (see Table 1).

The somA (for EGTA and salt resistance) and Suwwan
deletion (for EGTA, salt, and galactose-MacConkey
resistance) msbB suppressors do NOT suppress sensitivity
to 5% CO,

Two msbB Salmonella strains with secondary mutations
that allow faster growth are YS873 and YS1646. YS873 has
a loss-of-function mutation in somA [4] and YS1646 has a
large deletion, referred to as the Suwwan deletion [9], that
includes somA plus ~100 other genes. The somA mutation
in YS873 suppresses growth defects on EGTA and salt-con-
taining media [4] and the Suwwan deletion in YS1646

Page 2 of 13

(page number not for citation purposes)



BMC Microbiology 2009, 9:170

Air

14028 (wt)

YS1646
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Figure |

Sensitivity and resistance to CO, shown by compar-
ing colony forming units (CFUs). Each strain was grown
overnight in LB broth and diluted 10¢fold, and then 100 pl
was spread on each plate and incubated. Upper panel: wild
type Salmonella (14028) on LB media in air (left) or 5% CO,
(right). Lower panel; YS1646 on LB media in air (left) or 5%
CO, (right).

suppresses sensitivity to EGTA, salt, and galactose MacCo-
nkey media [9]. However, neither the somA mutation nor
the Suwwan deletion suppresses MsbB-mediated sensitiv-
ity to 5% CO, (Suwwan deletion in YS1646, Figure 1;
somA in YS873, see below). As shown in Figure 1, when
plating identical dilutions containing greater than 100
CFU onto LB agar from an MSB broth culture of YS1646
and wild type Salmonella, no YS1646 colonies are detected
after 24 hours of incubation in 5% CO, at 37°C. Since we
have not yet identified all of the genes within the Suwwan
deletion that are responsible for the suppressor pheno-
type, we focused our study on YS873, which has clearly
defined mutations in msbB and somA.

CO, resistant mutations are detected at high frequency in
msbB somA Salmonella

Subsequent experiments revealed that spontaneous CO,
resistant mutants are detected when higher numbers of
YS873 bacteria are plated and incubated under 5% CO,
conditions. The mutation frequency of spontaneous CO,
mutants from an MSB broth culture was determined to be
~3 out of 104 (not shown), which is similar to the fre-
quency that EGTA and galactose MacConkey suppressor
mutations arise in msbB Salmonella [4].

A loss-of-function mutation in zwf suppresses CO,
sensitivity

In our preliminary studies, several spontaneous CO,
resistant mutants were isolated that showed a high degree
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of instability. Therefore, we subsequently focused on the
use of Tn5 mutagenesis, which is known to generate stable
insertions primarily associated with null mutations. To
screen for a mutation that would compensate for CO, sen-
sitivity, a random Tn5 insertion library of YS1646 was cre-
ated and selected on LB agar in 5% CO,. 9 clones were
isolated, of which we determined the insertion sites in
three of the clones using a genome-walking method. All of
the Tn5 insertions identified were located in the monocis-
tronic zwf gene. Two of the insertions (clones 14.2 and
32.2) were identical (possible siblings), located after open
reading frame nucleotide 1019, and the third (clone 37.2)
was located at after base pair 1349. Because we focused
our screening on Tn5 insertions, we do not know if other
mutagenesis methods would have isolated clones with
mutations in other genes. zwf encodes glucose-6-phos-
phate-dehydrogenase, an enzyme of the pentose-phos-
phate-pathway (PPP). In this pathway, Zwf converts
glucose-6-phosphate, from glycolysis, to 6-phosphoglu-
conate, generating NADPH + H. The subsequent reaction,
catalyzed by Gnd, converts 6-phosphogluconate to ribu-
lose-5-phosphate, generating NADPH + H and CO, (Fig-
ure 2). A non-polar deletion (see materials and methods)
was created in zwf (Azwf82) using the pCVD442 vector
[10] to test if the phenotypes arise from loss of the zwf
gene or a polarity effect. The zwf non-polar deletion was
found to exhibit the same CO, growth phenotypes as the
zwf Tn5 insertions. Subsequent experiments use the non-
polar deletion in zwf in 14028 and YS873. A loss-of-func-
tion mutation in zwf results in smaller colony size than
zwf* strains on agar media in both wild type and msbB
genetic backgrounds.

Gluconate prevents suppression of CO, sensitivity by zwf

Zwf catalyzes the first step of the pentose phosphate path-
way (PPP). PPP produces NADPH for anabolic pathways
and the molecules generated by this pathway serve as
building blocks for nucleotides, sugars, amino acids, and
vitamins [11]. As shown in Figure 2, Zwf catalyzes the
conversion of glucose-6-phosphate to 6-phosphogluco-
nate. 6-phosphogluconate can also be formed from gluco-
nate by gluconate kinase [12], which bypasses the PPP's
requirement for Zwf (Figure 2). The addition of gluconate
to media thereby allows for the production of 6-phos-
phogluconate in the absence of Zwf. The enzyme gluco-
nate-6-phosphate dehydrogenase (Gnd) then
decarboxylates 6-phosphogluconate, converting it from a
6-carbon to a 5-carbon (ribulose-5-phosphate) sugar and
releasing CO, gas. Perhaps a threshold of CO, must be
passed to inhibit the growth of msbB Salmonella and a loss-
of-function mutation in zwf allows for the CO, level to
remain below this threshold. Previous reports of zwf E. coli
show reduced CO, production when grown in minimal
media with acetate or pyruvate as a carbon source. How-
ever, zwf E. coli produced more CO, than wild type when
grown in minimal media with glucose [13,14]. Further
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Table I: Bacterial strains and plasmids
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Strain or plasmid Parental strain Genotype Derivation or source

S. enterica serovar Typhimurium

14028 14028 Wild type ATCC 14028

14028Azwf 14028 Azwf82 Replacement of zwf gene with Azwf82 by
homologous recombination

14028 gnd 14028 gnd-189:Mud) (KanR) P22:-DM4483 x 14028 — KangR

YS1646(=VNP20009) 14028 AmsbB2 Apurl ASuwwan 19,311

VNP20057 YSl646 AmsbB2 Apurl zwf81:Tn5 (KanR) ASuwwan YS1646 x P22 Tn5 pool (on 14028) — selection
on LB plates in 5% CO,

YSI 14028 msbB [ :Qtet [4]

YS| msbB* YSI msbB [ ::Qtet/pSM2 ImsbB* (AmpR) Plasmid pSM21 [4] into YSI

YSI zwf(=YSI1) YSI msbB [:Qtet zwf-Tn5 (KanR) P22:-VNP20057 x YSI — Kan,oR

YS873 14028 msbB I ::Qtet somA | zbjl0:Tnl0 [4]

YS873 msbB* (=YS8731) YS873 msbB [::Qtet somA| zbjl0:Tn10/pSM21msbB* (AmpR) Plasmid pSM21 [4] into YS873

YS873 zwf(=YS8732) YS873 msbB|:Qtet somA| zbjl0:Tnl0 zwf8/:Tn5 (KanR) P22-VNP20057 x YS873 — Kan,R

YS873 Azwf (=YS8733) YS873 msbB|::Qtet somA | zbjl0:Tnl0 Azwf82 Replacement of zwf81:Tn5 gene in YS873zwf
with Azwf82 by homologous recombination

YS873 gnd (=YS8734) YS873 msbB [:Qtet somA| zbjl0:Tn |0 gnd-189::Mud] (KanR) P22:DM4483 x YS873 — Kan, R

LT2 LT2 Wild type ATCC 15277

DM4483 LT2 gnd-189:Mud] (KanR) Gift of Diana Downs and Eugene I. Vivas, U. of
Wisconsin

YS501 LT2 recD541:Tn|0dCm hsdSA29 hsdSB12 1 hsdL6 metA22 [5]

metE55 | trpC2 ilv-452 HI1-b H2-e,n,x fla-66 nmi(-) rpsL120
xyl-404 galE7 19

Salmonella enterica serovar Typhi

CS029

Salmonella enterica serovar Typhi

ATCC 33458

E. coli K-12 MG1655 MG1655 F- |- rph-1 [32]

KL423 MG1655 F- |- rph-1 msbB/[:: QCm [4]

pCVD442 AmpR [10]

pCVD442Azw(82 AmpR This study

pSP72 AmpR Promega Corporation

pSP72lacZ lacZ, AmpR This study

pSM21 msbB, AmpR 4
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studies will be required to clarify the production of CO,
by Salmonella grown in Luria-Bertani-based media and its
contribution to CO, sensitivity.

To test whether zwf's suppressive effects result from its role
in PPP pathway products and not from some unknown
function, we observed the effect of gluconate on CO, sen-
sitivity in our mutants. Growth of YS873 zwf was tested on
LB-0 plates containing 0.33% gluconate in ambient air
and 5% CO, (Figures 31 and 3]). As we hypothesized,
YS873 zwf was not able to grow on LB-0 gluconate in 5%
CO,. Thus, we confirmed that the zwf's suppression of
CO, sensitivity results from its known enzymatic step in
the PPP pathway. We also found a new phenotype for
unsuppressed msbB Salmonella: YS1 does not grow on LB-
0 agar in the presence of 0.33% gluconate (Figure 31). To
test if the production of 6-phosphogluconate or a down-
stream PPP metabolite is responsible for mediating CO,
resistance, we tested for CO, resistance in a YS873 gnd-
189::Mud] mutant (Gnd catalyzes the second step of the
PPP pathway, Figure 2) and found that the strain
remained CO, sensitive (data not shown). Therefore, we
conclude that the production of 6-phosphogluconate, by
either Zwf or gluconate kinase, contributes to CO, sensi-
tivity in an msbB genetic background.

zwf mutation suppresses both msbB-induced CO,
sensitivity and osmotic defects

For further analysis of the msbB zwf phenotype, the zwf
(zwf81::Tn5) mutation was transduced into msbB (YS1)
and msbB somA (YS873) genetic backgrounds to generate
strains YS1 zwf and YS873 zwf respectively. As shown in
the replica plate series of Figure 3, growth of unsuppressed
YS1 is inhibited on LB (Figure 3A) and LB-0 gluconate
(Figure 3I) but it grew well on MSB and LB-0 agar (Figures
3C and 3E), confirming the results of Murray et al. [4]. In
contrast, growth of YS1 on MSB and LB-0 agar is com-
pletely inhibited when the plates are incubated in the
presence of 5% CO,. The introduction of the zwf mutation
completely compensates for the phenotype and allows the
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bacteria to grow under 5% CO, on all three media (Fig-
ures 3B, 3D and 3F). However, it does not rescue YS1 from
gluconate sensitivity (Figure 3I).

When NaCl in LB plates is substituted with sucrose at iso-
osmotic concentrations (Figures 3G), growth of YS1 is
also inhibited, indicating osmosensitivity of YS1. Interest-
ingly, introduction of the zwf mutation improves growth
of YS1 on LB and on LB-0 5% sucrose agar, indicating that
the zwf mutation can partially compensate for the msbB-
induced osmotic growth defect.

MSB media contains high levels of divalent cations, which
have been proposed to increase lateral interactions
between the phosphate groups of neighboring lipid A
molecules [15]. Based on Murray et al.'s finding [16] that
a decrease in electrostatic repulsion between the phos-
phates of lipid A can help to compensate for the lack of
the myristic acid residue, we investigated whether Mg2+
and Ca2* would protect against the detrimental effects of
5% CO,. On agar plates, Mg?+ and Ca2*showed partial
protection in YS873 (Figure 3D).

YS873, which contains the EGTA and salt resistance sup-
pressor mutation somA [4], grows well on LB (Figure 3A),
MSB (Figure 3C), LB-0 (Figure 3E) and LB-0 sucrose (Fig-
ure 3G) agar plates in air, but not when the plates are incu-
bated in 5% CO, (Figures 3B, 3D, 3F, and 3H). In
contrast, the strain YS873 zwf is able to grow on all of
these media in CO,, indicating that the zwf mutation can
compensate for the growth defect of msbB strains in CO,
(Figure 3). Subsequent experiments were performed using
the YS873 (msbB somA) genetic background because
unsuppressed msbB Salmonella can not grow under mam-
malian physiological salt conditions [4].

msbB somA Salmonella are sensitive to CO, in LB and
LB-0 broth

Figure 4 shows the growth of wild type ATCC 14028,
14028 zwf, YS873, and YS873 zwf in LB and LB-0 broth,

Glucose Gluconate
NADP* NADPH +H NADP* NADPH+H
Glucose-6-P —{ Zwf |—— 6-Phosphogluconate Gnd | — Ribulose-5-P

Figure 2

Co,

Steps of the Pentose Phosphate Pathway (PPP) highlighting the relationship of the Zwf enzyme, gluconate,

and Gnd-based production of CO,,.
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incubated in the presence or absence of 5% CO,. As
shown in Figure 4, the growth of YS873 (Figure 4A), but
not ATCC 14028 (Figure 4C) is greatly impaired in LB
broth in the presence of 5% CO,. A significant decrease in
CFU is observed (Figure 4A), indicating that YS873 cells
lose viability in the presence of 5% CO, in LB broth.
When a loss-of-function mutation in zwf is incorporated
into YS873, no loss in viability is observed under identical
conditions, although there is a longer lag phase of growth
(Figure 4A). In LB-0 broth, there are no growth defects in
14028 or 14028 zwf (Figure 4D). For YS873 and YS873
zwf, the growth defects in LB-0 in the presence of 5% CO,
are attenuated in comparison to those observed in LB
broth. There is no decrease in viability in YS873 in LB-0 in
5% CO,, although there is impaired growth in both
YS873 and YS873 zwf in LB-0 in the presence of CO, com-
pared to growth in the absence of CO, (Figure 4B).

YS873 has severe morphological defects in LB broth under
5% CO, conditions that are suppressed by a loss-of-
function mutation in zwf

Since our results show that msbB Salmonella lose viability
in the presence of 5% CO, (Figure 4), we examined msbB
mutants grown in the presence of 5% CO, to determine if
there are any defects in cell morphology or chromosome
segregation. Differential interference contrast (DIC)
microscopy shows striking morphological defects under
CO, conditions (Figure 5K), with long, bulging filamen-
tous YS873 cells. DAPI staining shows no apparent chro-
mosomal segregation defects, as no cells lacking DNA
were observed (Figure 5L). However, the cell directly
under the "K" and "L" labels appears to be lysing (see
thick arrow).

L%

LB
Co, CO,

LB

Figure 3

MSB MSB LB-0
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As shown in Figures 50 and 5P, zwf suppresses the severe
morphological defects in YS873 grown in LB in the pres-
ence of 5% CO,. Many cells are elongated but lack gross
morphological defects. Growth in LB in a 5% CO, envi-
ronment caused wild type ATCC 14028 Salmonella to
form minicells, with minicells (see thin arrows) account-
ing for ~15% of the cells (21/144) (Figure 5C and 5D as
compared to Figures 5A and 5B). As seen in Figure 5E and
5F, 14028 zwf exhibits ~21% minicell formation in LB
broth, even without CO, (20/95 cells). Thus, we conclude
that both CO, and Zwf can, either directly or indirectly,
affect cell division.

[-galactosidase assays confirm cell lysis in LB in the
presence of 5% CO,

Microscopy (Figure 5K and 5L) suggested that some
YS873 cells were lysing in LB in the presence of 5% CO,.
To test if the decrease in CFU observed in YS873 in LB in
the presence of 5% CO, resulted from cell lysis, a plasmid
expressing -galactosidase was electroporated into YS873
and YS873 zwf and the cells were grown in LB in the pres-
ence or absence of CO,. As shown in Figure 6, after 6
hours of growth, significant cell lysis is observed in YS873
grown in the presence of 5% CO, as measured by the
release of the cytoplasmic enzyme B-galactosidase. Fur-
thermore, a loss-of-function mutation in zwf significantly
reduces cell lysis in YS873. No significant cell lysis is
observed in the absence of CO,.

CO, sensitivity does not result from increased acidification
of LB media and zwf suppresses sensitivity to acidic pH in
LB broth

During this study, we observed that the pH of LB broth
dropped from pH 7.0 to pH 6.6 after equilibration in 5%

m,

E | J

LB-0

LB-0 LB-0 LB-0
CO, Sucrose Sucrose Glucon. Glucon.

LB-0

Co, Co,

zwf mutation suppresses both msbB-induced CO, sensitivity and osmotic defects. Double velvet replica plates with
different media were used to indicate the ability of small patches of bacteria (3 each) to grow. The strains used are listed on the
left. Growth conditions (all at 37°C) included: A, LB media in air; B, LB media in 5% CO,; C, MSB media in air; D, MSB media in
5% CO,; E, LB-0 media in air; F, LB-O media in 5% CO,; G, LB-0 media containing sucrose (total 455 miliosmoles) in air; H, LB-
0 media containing sucrose in 5% CO,; |, LB-0 + gluconate (glucon.) in air; J, LB-0 + gluconate in 5% CO,.
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CO,. Since CO, can acidify bicarbonate buffered media,
we tested whether part of the CO, sensitivity was due to
acidification of the media. Thus, to test if increased or
decreased pH would alter sensitivity to CO, in LB broth,
we buffered LB broth to pH 7.6, or 6.6, and cultures were
grown in the presence or absence of 5% CO,. As shown in
Figure 7, wild type ATCC 14028 and ATCC 14028 zwf
grow normally under all conditions in LB broth in the
absence (Figure 7C) or presence (Figure 7D) of 5% CO,.
In contrast, the growth of YS873 is significantly impaired
when the pH of LB is 6.6, with no significant increase in
CFU after 6 hours (Figure 7A), whereas when the pH of LB
is 7.6, YS873 grows well (Figure 7A). A loss-of-function
mutation in zwf allows for YS873 to grow well in LB broth
at a pH of 6.6 (Figure 7A). 5% CO, inhibited the growth
0f YS873 and YS873 zwf in LB pH 6.6 and 7.6 (Figure 7B).
Although zwf protects against 5% CO, in LB broth pH 6.6

Growth in LB

1.0E+10

A

1.0E+09

1.0E+08

1.0E+07

cfu/ml

1.0E+06

1.0E+05

1.0E+04

0 1 2 3 4 5 6
time [hours]

1.0E+10

1.0E+09

1.0E+08

1.0E+07

cfu/ml

1.0E+06

1.0E+05

1.0E4+04

0 1 2 3 4 5 6
time [hours]

Figure 4

cfu/ml

cfu/ml
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(Fig 7B), it does not significantly improve survival in the
presence of 5% CO, in LB broth pH 7.6 (Figure 7B), sug-
gesting that an acidic pH is a component for zwf to sup-
press msbB-mediated sensitivity to 5% CO,.

[-galactosidase assays confirm cell lysis in LB broth, pH
6.6, in air

To test if the loss of growth of YS873 in LB broth pH 6.6
was the result of cell death or simply the result of inhibi-
tion or delay of cell division, B-galactosidase release was
measured. As shown in Figure 8A, significant cell lysis
occurs after growth of YS873 for 8 hours in LB broth, pH
6.5 but not pH 7.5 (pH shifted slightly [+/-0.1 units| dur-
ing autoclaving). Furthermore, a loss-of-function muta-
tion in zwf significantly reduces cell lysis of YS873 grown
in LB broth pH 6.5. This reduction in cell lysis, as meas-
ured by release of the cytoplasmic enzyme B-galactosi-

Growth in LB-0
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msbB confers growth sensitivity in liquid media under CO, conditions containing physiological amounts of salt
and this is suppressed by zwf. Two sets of Salmonella strains (YS873 and YS873 zwf; 14028 and 14028 zwf) were grown on
either LB (A and C) or LB-0 (B and D) in either air or 5% CO,.
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dase, correlates with increased CFU/ml numbers observed
in YS873 zwf (as compared to YS873) grown in LB broth,
pH 6.6 (Figure 7A).

zwf reduces YS873 cell lysis in the presence of 5% CO, in
LB broth pH 6.6, but not pH 7.6

Since we observed that YS873 lysed when there was no net
growth in LB broth pH 6.5 while maintaining a relatively
constant CFU/ml, we investigated if cell lysis occurs in
YS873 zwf, which also exhibits little net growth with a rel-
atively constant CFU/ml in the presence of 5% CO, in LB
broth pH 6.6 or 7.5 (Figure 7B). Growth curves for these
strains indicated that there was a decrease in CFU/ml
when YS873 was grown in LB broth pH 6.6 in the pres-
ence of 5% CO,, but that CFU/ml remained relatively
constant if a loss-of-function mutation in zwf was present
or if the pH of LB broth was 7.5 (Figure 7B). Figure 8 (8
hours) shows that significant cell lysis, as indicated by
release of the cytoplasmic enzyme B-galactosidase, occurs
when YS873 is grown in the presence of 5% CO, at pH 6.6
or 7.6, and in YS873 zwf grown in the presence of 5% CO,
in LB pH 7.5. YS873 zwf exhibited significantly less lysis in
the presence of 5% CO, in LB broth pH 6.6, showing that
a loss-of-function mutation in zwf significantly suppresses
sensitivity to CO, at neutral (as shown in Figure 6) or
slightly acidic pH (Figure 8B). Again, we found that signif-
icant cell lysis can occur with a relatively constant CFU/ml
(Figure 8B: YS873 zwf in LB pH 7.6).

Discussion

msbB Salmonella pleiotropy

The msbB gene was mutated to reduce the toxicity of Sal-
monella in mice and humans [5,6]. In order for these
strains to function within mammalian systems they must
be able to persist under normal mammalian physiological
conditions. In contrast to other reports [17-20], we found
msbB Salmonella to have striking growth defects, demon-
strating sensitivity to salt, EGTA, MacConkey media, and
polymyxin B sulfate [4,9,16]. Here we report additional
sensitivity to osmolarity, gluconate, acidic pH and 5%
CO, growth conditions. Significantly, msbB Salmonella are
sensitive to the conditions found within mammals, where
blood has significant levels of salt and CO,; we therefore
we screened for a suppressor of msbB-associated CO, sen-
sitivity.

zwf supresses CO, sensitivity in msbB Salmonella

Glucose-6-phosphate-dehdrogenase (encoded by zwf) cat-
alyzes the first enzymatic step in the pentose phosphate
pathway (PPP), which converts glucose-6-phosphate to 6-
phosphogluconate and NADPH + H. In E. coli, zwf is reg-
ulated by several mechanisms including anaerobic growth
[21], growth rate [22], weak acids as well as superoxide
[23]. Weak acids appear to regulate zwf through the mul-
tiple antibiotic resistance (mar) regulon, whereas super-
oxide exposure induces zwf through the Sox R/S regulon

http://www.biomedcentral.com/1471-2180/9/170

and contributes to DNA repair [24]. zwf mutants of Pseu-
domonas are hypersensitive to superoxide generating
agents such as methyl viologen [25].

Salmonella Typhimurium zwf might be regulated by a dif-
ferent set of environmental signals than E. coli. Superox-
ide, while clearly activating other SoxR/S regulated genes
like sodA and fumC, does not induce zwf transcription
[26]. S. Typhimurium zwf mutants have been shown to be
less virulent in mice and more sensitive to reactive oxygen
and nitrogen intermediates [27]. In general, it is thought
that the expression of zwf and subsequent generation of
NADPH helps cells to combat oxidative stress. Interest-
ingly, SoxS mutants of Salmonella are not attenuated in
mice [28], suggesting that even though zwf expression is
important for survival, superoxide generated responses
might not be required. In the case of msbB mutants, the
zwf mutation restores wild type growth under 5% CO, and
pH 6.5 conditions, suggesting that the expression of zwf is
detrimental for growth of msbB mutants in an acidic or
increased CO, atmosphere. Furthermore, our data show-
ing that a loss-of-function mutation in gnd (which pro-
duces the second enzyme of the PPP pathway, Figure 2)
does not suppress sensitivity to CO, suggests that the pro-
duction of 6-phosphogluconate, by either Zwf or gluco-
nate kinase, contributes to CO, sensitivity in msbB
Salmonella.

MsbB as a virulence factor?

Several publications cite MsbB as a virulence factor that is
necessary for both septic shock and the ability to invade
and persist in mammalian cells [5,17,29]. However,
owing to the fact that msbB Salmonella were tested under
5% CO, conditions, the lack of virulence may be partially
or fully due to the inability of msbB Salmonella to grow in
the presence of the 5% CO,. Further experimentation with
msbB zwf Salmonella will be necessary to determine which
virulence defects are attributable to msbB lipid A and those
that arise from sensitivity to 5% CO,. Based upon this
study and earlier studies on the sensitivity of zwf mutant
to superoxides, zwf may both reduce virulence on one
hand, yet potentiate growth under CO, conditions on the
other, further complicating virulence analyses.

Conclusion

Here, we report new growth defects in msbB Salmonella:
sensitivity to gluconate and growth in hypertonic, acidic
or 5% CO, conditions. These characteristics are in addi-
tion to the previously reported growth defects in the pres-
ence of salt, EGTA, polymyxin, or MacConkey media.
Previous studies showing that MsbB is a virulence factor
require further evaluation of the role that CO, sensitivity
plays. The potential for cryptic, spontaneous mutations
remains a possibility that should be addressed by re-trans-
duction under non-selective conditions followed by plat-
ing independently under CO, and ambient air. We have
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AIR
DIC DAPI

5% CO,
DIC _ DAPI

Figure 5

YS873 has severe morphological defects in LB broth
under 5% CO, conditions that are suppressed by a
loss-of-function mutation in zwf. DIC, Differential Inter-
ference Contrast; DAPI, 4'6-diamidino-2-phenylindole (DNA
stain); Thick arrows point to lysis; Thin arrows point to mini-
cells.

created an msbB somA zwf Salmonella strain that is resistant
to growth under acidic or 5% CO, conditions. This strain
contains a loss-of-function mutation in zwf, an enzyme in
the pentose phosphate pathway that produces CO, as it
converts a 6 carbon sugar to a 5 carbon sugar. The study of
the virulence of msbB zwf Salmonella will allow the deter-
mination of what types of virulence are attributable to
cells having an MsbB lipid A independent of sensitivity to
5% CO,, which is required for in vitro and in vivo virulence
assays.

Methods

Bacterial strains, plasmids, phage and media

The bacterial strains and plasmids used in this study are
listed in Table 1. The Salmonella msbB insertion/deletion

http://www.biomedcentral.com/1471-2180/9/170

for tetracycline resistance was described by Low et al. [5].
P22 mutant HT105/1int201 (obtained from the Salmo-
nella Genetic Stock Center, Calgary, Canada) was used for
Salmonella transductions. Salmonella enterica serovar Typh-
imurium strains were grown on LB-0 or MSB agar or in LB,
LB-0, buffered LB or MSB broth. MSB media consists of LB
(Luria-Bertani media, [30]) with no NaCl and supple-
mented with 2 mM MgSO4 and 2 mM CaCl,. LB-0 is LB
media with no NaCl. Buffered LB pH 7.5 and pH 6.5 con-
sisted of LB-0 with 100 mM NaPO, adjusted to 455 mOs-
mol by adding NaCl. MSB broth and agar were used for
the growth of strains under non-selective conditions. LB-
0 agar was used when using selective antibiotics in trans-
ductions and transformations. Plates were solidified with
1.5% agar. LB-0 agar or MSB broth were supplemented as
needed with ampicillin (100 pg/ml) or kanamycin (20
pg/ml). Antibiotics were added to LB-0 agar after cooling
to 45 degrees Celsius.

Restoring msbB* genotype

In order to confirm that the observed CO, sensitivity
results simply from knocking out MsbB function, wild
type msbB was expressed from the msbB promoter using
plasmid pSM21 [4]. Purified plasmids were transformed
into electroporation-competent cells of strains YS1 and
YS873.

Growth Analysis

Phenotypes of strains were determined by replica plating.
Master plates were made on either MSB or LB-0 agar. Rep-
lica plating was performed using a double velvet tech-
nique [4]. Replica plates were incubated for 16 hours at
37°C. To generate growth curves, 3 ml broth tubes were
inoculated with single colonies and grown on a shaker
overnight at 37°C in air. Cells were diluted 1:1000 or
1:500 (p-gal strains) in LB broth. Cells were held on ice
until all inoculations were completed. Triplicate cultures
were then placed in a 37°C shaker with 250 rpm in air or
5% CO,. O.D.4,, was measured every 60 minutes and
dilutions of bacteria were plated onto MSB or LB agar
plates to calculate the number of colony forming units
(CFU) per ml.

Microscopic Observation

Strains 14028, 14028 zwf, YS873 and YS873 zwf were
grown for 6 hours, as described above for growth curves,
at 200 RPM. The cells were then fixed for microscopy
using a solution of 30 mM sodium phosphate buffer (pH
7.5) and 2.5% formaldehyde. Cell morphology was
observed with a Zeiss Axiovision microscope using differ-
ential interference contrast settings and DNA was detected
via DAPI fluorescence. Fixed cells were incubated with 2
pg/ml DAPI for 10 minutes in the dark and aliquoted
onto a 1% agarose pad.
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Figure 6

B-galactosidase release assays confirm cell lysis in LB
in the presence of 5% CO, and that zwf confers resist-
ance. Release of B-galactosidase from the cytosol of the bac-
teria was used to test if the decrease in CFU observed in
YS873, in LB in the presence of 5% CO,, resulted from cell
lysis. The strains were grown under either ambient air or 5%
CO, conditions.

Mutation Frequency Determination

A frozen stock of YS873 was streaked on MSB media and
incubated overnight at 37°C to isolate individual clones.
Triplicate 3 ml of LB broth were inoculated with inde-
pendent YS873 colonies. They were grown at 37°C in a
shaker over night. The tubes were then placed on ice and
diluted in 0.9% saline. 10-6 and 10-4 dilutions were
plated in duplicates onto LB agar and incubated in air and
CO, incubators respectively overnight at 37°C to calculate
the number of CFU per ml.

Transduction and Transformation

Salmonella P22 transductions were performed by the
method of Davis et al. [30], except that LB-0 plates supple-
mented with the appropriate antibiotic were used. EGTA
was not added to the antibiotic plates for transductions. A
BioRad Gene Pulser was used for electroporation with the
following settings: 2.5 kV, 1000 ohms and 25 uFD for
transformation of YS1 and 1.7 kV, 186 ohms and 25 puFD
were used for YS873, YS1646, and ATCC 14028 [4].

Tn5 mutagenesis and mapping

A library of transposons in YS1646 was made using the
EZ: TN <Kan-2> insertion kit from Epicentre (Madison,
WI). Over 56,000 kanamycin resistant (KanR) clones of
YS1646 were pooled. The pool was screened for mutation
rate and auxotrophy for different biosynthetic pathways
by replica plating onto minimal media and media con-
taining various pools of amino acids and bases [30]. Fol-
lowing selection for CO, resistance by plating dilutions to

http://www.biomedcentral.com/1471-2180/9/170

LB-Kan and incubating in 5% CO,, the colonies were
again pooled and a P22 lysate was generated and trans-
duced to a non-suppressed strain and purified for kan-
amycin resistance under non-CO, conditions in order to
separate spontaneous mutants from Tn5-based suppres-
sors. Transposon-associated Tn5 insertions were identi-
fied by replica plating in air and CO,. Mapping of the
insertion sites was performed by using the Genome-
Walker™ kit (Clonetech, Mountain View, CA) according to
the manufacture's instructions.

Construction of non-polar deletion in zwf

A non-polar deletion in zwf was generated by constructing
a pCVD442 vector capable of deleting the entire zwf cod-
ing region by homologous recombination with the Salmo-
nella chromosome [10]. Primers for PCR were designed
that would generate one product immediately upstream
of the 5' ATG start codon and a separate product immedi-
ately downstream of the 3' stop codon of the zwf coding
region. The two separate products could then be ligated
sequentially into the pCVD442 vector. The primers were:
zwf-5'-reverse:  5'-GTGTGAGCTCGTGGCITCGCGCGC
CAGCGG CGTTCCAGC-3' (with added Sacl), zwf-5'-for-
ward:  5-GTGTGCATGCGGGGGG CCATATA GG
CCGGGGATITAAATGTCATTCTCCITAGITAATCTCCTG
G-3' (with added Sphl), zwf-3' reverse: 5'-GTGTGCAT-
GCGGGGTTAATTAA GGGGGCGGCCGCATTT-
GCCACTCA C TCTTAGGTGG-3', and zwf-3'-forward: 5'-
GTGTGT CGACCCTCGCGCAGCGGCGCATCCG-
GATGC-3"). The primers also generate internal Notl, Pacl,
Sphl, Sfil, and Swal in order to facilitate cloning of DNA
fragments into the Azwf for stable chromosomal integra-
tion without antibiotic resistance. This vector is referred to
as pCVD442-Azwf. The presence of the deletion, in Amp$
Suck colonies, was detected by PCR using the following
primers:zwf-FL-forward: 5'-ATATTACTCCTGGCGACTGC-
3'and zwf-FL-reverse: 5'-CGACAATACGCTGTGTTACG-3'".
Wild type produces a 2,026 base pair product whereas the
mutant produces a 608 base pair (bp) product, a differ-
ence of 1418 bp, which corresponds to the size of the zwf
gene (1475 bp minus a 57 bp multiple cloning site that
replaces the open reading frame).

[-galactosidase Assay

For B-galactosidase expression, lacZ was cloned into the
high copy vector pSP72 (Promega) in E. coli, transformed
into Salmonella strains (via restriction defective Salmonella
strain YS501 [31], and screened for bright blue colonies
on LB agar containing 40 pg/ml X-gal. lacZ was cloned
from E. coli K-12 MG1655 [32] obtained from the Yale E.
coli Genetic Stock Center (New Haven, CT) by PCR using
the primers BGF1 5'-GATCGGATCCATGACCATGAT-
TACGGATTCACTGGC-3' and BGR1 5'-GATCAAGCTTIT-
TATTTTTGACACCAGACCAACTGG-3'. The PCR product
was cut with BamHI and HindlIII and cloned into the plas-
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zwf suppresses sensitivity to acidic pH in LB broth in air, and to 5% CO, in LB broth pH 6.6, but not pH 7.6.
Strains were grown in LB broth buffered to pH 6.6, or pH 7.6, in either air (A and C) or 5% CO, (B and D).

mid pSP72 (Promega, Madison, WI) which had been cut
with the same enzymes, transformed into DH5a, and
selected for bright blue colonies on LB-amp plates con-
taining 40 pg/ml X-gal. The plasmid was subsequently
transformed to the restriction minus methylation plus
strain YS501 before transforming other Salmonella strains.
f3-gal assays were performed according to the instructions
for the Galacto-Star™ chemiluminescent reporter gene
assay system (Applied Biosystems, Bedford, Massachu-
setts). Briefly, 1 ml of bacterial culture expressing p-gal
from pSP72lacZ was pelleted at 13,000 x g for 5 min.
Supernatants were filtered through a 0.2 um syringe filter
and then assayed immediately or frozen at -80°C until
assayed with no further processing. Cell pellets were
quickly freeze-thawed and suspended in 50 pl or 200 pl B-
PER™ bacterial cell lysis reagent (Pierce Chemical) con-
taining 10 mg/ml lysozyme (Sigma). Bacteria were
allowed to lyse for 10-20 min. at room temperature and

were then placed on ice. All reagents and samples were
allowed to adjust to room temperature before use. Filtered
supernatants and bacterial lysates were diluted as needed
in Galacto-Star™ Lysis Solution or assayed directly. 3-gal
standard curves were made by preparing recombinant p-
gal (Sigma, 600 units/mg) to 4.3 mg/ml stock concentra-
tion in 1x PBS. The stock was diluted in Lysis Solution to
prepare a standard curve of 100 ng/ml- 0.05 ng/ml in dou-
bling dilutions. 20 pl of standard or sample was added to
each well of a 96-well tissue culture plate. 100 pl of
Galacto-Star™ Subtrate, diluted 1:50 in Reaction Buffer
Diluent, was added to each well and the plate rotated gen-
tly to mix. The plate was incubated for 90 minutes at 25°C
in the dark and then read for 1 second/well in an L-max™
plate luminometer (Molecular Devices). Sample light
units/ml were compared to the standard curve and values
converted to units B-gal/ml. Percent release of B-gal was
determined by dividing units/ml supernatant by total
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Figure 8

-galactosidase release assays confirm cell lysis in LB
broth, pH 6.6, in air; zwf inhibits cell lysis in LB broth,
pH 6.6, in air and in LB broth, pH 6.6, but not pH 7.6,
in the presence of 5% CO,. Release of J-galactosidase
from the cytosol of the bacteria was used to test if the
growth defects observed in YS873 and YS873 zwf resulted
from cell lysis. Strains grown in LB broth at either pH 6.5, or
pH 7.5, under either ambient air (A) or 5% CO, (B) condi-
tions.

units/ml (units/ml supernatant + units/ml pellet). All
samples were assayed in triplicate.
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