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Abstract
Background: Enteropathogenic Escherichia coli (EPEC) produce attaching/effacing (A/E) lesions on
eukaryotic cells mediated by the outer membrane adhesin intimin. EPEC are sub-grouped into
typical (tEPEC) and atypical (aEPEC). We have recently demonstrated that aEPEC strain 1551-2
(serotype O non-typable, non-motile) invades HeLa cells by a process dependent on the expression
of intimin sub-type omicron. In this study, we evaluated whether aEPEC strains expressing other
intimin sub-types are also invasive using the quantitative gentamicin protection assay. We also
evaluated whether aEPEC invade differentiated intestinal T84 cells.

Results: Five of six strains invaded HeLa and T84 cells in a range of 13.3%–20.9% and 5.8%–17.8%,
respectively, of the total cell-associated bacteria. The strains studied were significantly more
invasive than prototype tEPEC strain E2348/69 (1.4% and 0.5% in HeLa and T84 cells, respectively).
Invasiveness was confirmed by transmission electron microscopy. We also showed that invasion of
HeLa cells by aEPEC 1551-2 depended on actin filaments, but not on microtubules. In addition,
disruption of tight junctions enhanced its invasion efficiency in T84 cells, suggesting preferential
invasion via a non-differentiated surface.

Conclusion: Some aEPEC strains may invade intestinal cells in vitro with varying efficiencies and
independently of the intimin sub-type.
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Background
Enteropathogenic Escherichia coli (EPEC) are important
human intestinal pathogens. This pathotype is sub-
grouped into typical (tEPEC) and atypical (aEPEC) EPEC
[1-3]. These sub-groups differ according to the presence of
the EAF plasmid, which is found only in the former group
[1,3]. Recent epidemiological studies have shown an
increasing prevalence of aEPEC in both developed and
developing countries [4-9].

The main characteristic of EPEC's pathogenicity is the
development of a histopathologic phenotype in infected
eukaryotic cells known as attaching/effacing (A/E) lesion.
This lesion is also formed by enterohemorrhagic E. coli
(EHEC), another diarrheagenic E. coli pathotype whose
main pathogenic mechanism is the production of Shiga
toxin [10]. The A/E lesion comprises microvillus destruc-
tion and intimate bacterial adherence to enterocyte mem-
branes, supported by a pedestal rich in actin and other
cytoskeleton components [11]. The ability to produce
pedestals can be identified in vitro by the fluorescence
actin staining (FAS) assay that detects actin accumulation
underneath adherent bacteria indicative of pedestal gener-
ation [12]. The genes involved in the establishment of A/
E lesions are located in a chromosomal pathogenicity
island named the locus of enterocyte effacement (LEE)
[13]. These genes encode a group of proteins involved in
the formation of a type III secretion system (T3SS), an
outer membrane adhesin called intimin [14], its translo-
cated receptor (translocated intimin receptor, Tir), chaper-
ones and several other effector proteins that are injected
into the targeted eukaryotic cell by the T3SS [15,16].

Differentiation of intimin alleles represents an important
tool for EPEC and EHEC typing in routine diagnosis as
well as in pathogenesis, epidemiological, clonal and
immunological studies. The intimin C-terminal end is
responsible for receptor binding, and it has been sug-
gested that different intimins may be responsible for dif-
ferent host tissue cell tropism (reviewed in [17]). The 5'
regions of eae genes are conserved, whereas the 3' regions
are heterogeneous. Thus far 27 eae variants encoding 27
different intimin types and sub-types have been estab-
lished: 1, 2, 1, 2 (R/2B), 3, 1, 2,  (/2O), 1,
2 (R/2), 3, 4, 5 (B), , 1, 2, , 1, 2 (R/2), ,
, B, B, , ,  and  [[18-26] and unpublished data].

In HeLa and HEp-2 cells, tEPEC expresses localized adher-
ence (LA) (with compact bacterial microcolony forma-
tion) that is mediated by the Bundle Forming Pilus (BFP),
which is encoded on the EAF plasmid. In contrast, most
aEPEC express the LA-like pattern, which is often detected
in prolonged incubation periods (with loose microcolo-
nies) [[2], reviewed in [3]]. However, during the character-
ization of an aEPEC collection, Vieira et al. [27] detected

9 strains that formed characteristic LA on HeLa cells
despite the absence of BFP. Further studies showed that
these strains also lacked the adhesin-encoding genes of
other diarrheagenic E. coli pathotypes [28]. Therefore, an
exemplary strain (aEPEC 1551-2) was studied in further
detail. Subsequently, it was shown that in this strain the
LA pattern actually corresponded to an invasion process
mediated by the interaction of the intimin sub-type omi-
cron [29]. The clinical significance of these findings in the
pathogenicity of aEPEC in vivo is currently unknown.

Despite the fact that EPEC is generally considered an
extracellular pathogen, some studies have shown limited
invasion of intestinal epithelium of humans and animals
by tEPEC in vivo [30,31]. Moreover, it has been demon-
strated that some tEPEC and aEPEC strains are able to
invade distinct cellular lineages in vitro [32-36]. Due to
variations in the protocols used to determine the invasion
indexes, it is difficult to compare the extent of the reported
invasion ability among strains of tEPEC and aEPEC
pathotypes. Furthermore, in the literature there are only a
few studies on the ability of aEPEC strains to invade intes-
tinal cells [34,35]. Most tEPEC and aEPEC invasion stud-
ies have been performed on HEp-2 [32,36,37], and
polarized intestinal Caco-2 cells [33,35]. Invasion studies
with aEPEC and intestinal T84 cells, which are phenotyp-
ically similar to human colon epithelial cells are still lack-
ing. Since aEPEC is a heterogeneous pathotype [3,5,28],
additional analysis of the invasive ability of aEPEC strains
in vitro are necessary. These data could contribute to eval-
uate whether the invasion capacity might be considered as
an additional virulence mechanism in other aEPEC
strains. Therefore, in this study, we evaluated aEPEC
strains expressing intimin sub-types omicron and non-
omicron regarding their ability to invade HeLa and differ-
entiated intestinal T84 cells. The eukaryotic cell structures
involved in the initial steps of entry of aEPEC 1551-2 were
also examined.

Results and Discussion
Recent studies have shown that aEPEC consist of a heter-
ogeneous group of strains, some of which could represent
tEPEC strains that lost the EAF plasmid (or part of it),
EHEC/STEC strains that lost stx phage sequences, or even
E. coli from the normal flora that had gained the LEE
region [2,27,38-40]. It remains to be elucidated whether
these strains bear additional and/or specific virulence
properties that are not present in tEPEC.

Recently, it has been shown that aEPEC strain 1551-2
invades HeLa cells in a process dependent on intimin
omicron [29]. The aEPEC 1551-2 invasive index was
about 3 folds that of tEPEC prototype strain E2348/69
tested in the same conditions. However, it is not known
whether other aEPEC strains expressing intimin omicron
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or other intimin sub-types are also invasive. In the present
study this issue was investigated.

In order to identify the intimin sub-type of four strains
carrying unknown intimin sub-types, a fragment of the 3'
variable region of the eae gene from the four aEPEC strains
included in this study was amplified and sequenced
(Table 1). Four different intimin types were identified: 2
(theta),  (sigma),  (tau) and upsilon (Table 1). We have
detected in aEPEC strains 4281-7 and 1632-7 (serotypes
O104:H- and O26:H-, respectively) two new intimin genes
eae- and eae- upsilon that showed less than 95% nucle-
otide sequence identity with existing intimin genes. Fur-
thermore, a third new variant of the eae gene (theta 2 - 2)
was identified in the aEPEC strain 1871-1 (serotype
O34:H-). The complete nucleotide sequences of the new
eae-2 (FM872418), eae- (tau) (FM872416) and eae-
upsilon (FM872417) variant genes were determined. By
using CLUSTAL W [41] for optimal sequence alignment,
we determined the genetic relationship of the three new
intimin genes and the remaining 27 eae variants. A genetic
identity of 90% was calculated between the new eae-
(tau) variant and eae-2 (gama2), eae- (theta) and eae-
(sigma) genes. The eae-upsilon showed a 94% of identity
with eae-1. The eae-2 (theta-2) gene is very similar
(99%) to eae- of Tarr & Whittam [20] and to eae-2 of
Oswald et al. [19].

Quantitative assessment of bacterial invasion was per-
formed with all strains, but different incubation-periods
were used to test aEPEC strains (6 h) and tEPEC E2348/69
(3 h), because the latter colonizes more efficiently (estab-
lishes the LA pattern in 3 h) than aEPEC strains [3] and
induce cell-detachment after 6 h of incubation (not
shown). The quantitative gentamicin protection assay
confirmed the invasive ability of aEPEC 1551-2 in HeLa
cells and showed that 4 of the other 5 aEPEC strains stud-
ied were also significantly more invasive than tEPEC
E2348/69 (Fig. 1A). The percentages of invasion found

varied between 13.3% (SE ± 3.0) and 20.9% (SE ± 2.4),
respectively, for aEPEC strains 4051-6 (intimin omicron)
and 0621-6 (intimin sigma). When compared to tEPEC
E2348/69 (intimin alpha 1) (1.4% ± 0.3), the invasion
indexes of all strains were significantly higher (p < 0.05),
except for aEPEC strain 4281-7 (intimin tau, 2.4% ± 0.3).
These data confirmed that invasion of HeLa cells is not
exclusively found in strains expressing intimin sub-type
omicron. However, different degrees of cell invasion were
observed (including strains expressing intimin omicron).
Although all aEPEC strains studied were devoid of known
E. coli genes supporting invasion [27], they are heteroge-
neous regarding the presence of additional virulence
genes [5]. However, it remains to be evaluated whether
the invasion ability as shown for aEPEC 1551-2 [29] of
other aEPEC strains could be associated with the intimin
sub-type. Furthermore, differences in invasion index
could also be related to the presence of other factors, such
as LEE and non-LEE effector proteins or expression of
additional virulence genes. Alternatively, the affinity of
both intimin and a specific Tir counterpart could influ-
ence the degree of manipulation of the cytoskeleton thus
favoring less or more pronounced invasion.

In order to identify the host cell structures and processes
that might be involved in HeLa cells invasion by aEPEC
1551-2, we treated the cells with reagents affecting the
cytoskeleton such as cytochalasin D (to disrupt actin
microfilament formation) or colchicine (to inhibit micro-
tubule function) prior to infection. Optical microscopy
analysis revealed that treatment with cytochalasin D did
not affect bacterial adhesion (data not shown). However,
significantly decreased invasion by aEPEC 1551-2 (from
13.4% ± 4.1 to 1.2% ± 1.0 and 0.4% ± 0.3) was detected,
as observed with the invasive S. enterica sv Typhimurium
control strain (from 81.3% ± 4.2 to 55.9% ± 4.9 and
35.1% ± 7.1) and S. flexneri (from 68.9 ± 10.7 to 15.9 ±
9.5 and 11.2 ± 5.1). These results indicate that a func-
tional host cell actin cytoskeleton is necessary for aEPEC

Table 1: Characteristics of the aEPEC strains studied.

Strain Serotype Intimin Type Adherence pattern FAS test

HeLa cells T84 cells

0621-6 ONT:H-  * LA + +
1551-2 ONT:H- o LA + +
1632-7 O26:H- Upsilon ** DA + +
1871-1 O34:H- 2 ** LAL + +
4051-6 O104:H2 o AA + +
4281-7 O104:H- ** LAL + +

E2348/69 O127:H6 1 LA + +

Adhesion pattern detected on HeLa cells: localized adherence (LA), localized adherence like (LAL), aggregative adherence (AA) and diffuse 
adherence (DA) (Vieira et al., 2001). (*) Strains that had eae gene sequenced in this study and (**) strains that carry new intimin subtypes (GenBank 
accession numbers: 1871-1 (FM872418); 4281-7 (FM872416) and 1632-7 (FM872417).
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1551-2 uptake (Fig. 2A). In addition, this suggests that A/
E lesion formation may be necessary for the invasion
process since inhibition of actin polymerization resulted
in both prevention of A/E lesion formation and decreased
invasion. In contrast, aEPEC 1551-2 adherence (not
shown) and invasion (Fig. 2B) were unaffected by colchi-
cine cell treatment (invasion indexes of 6.2% ± 0.9 and

7.8% ± 0.6, non-treated and treated, respectively). This
indicates that the microtubule network is not involved in
the invasion process. As expected, S. enterica sv Typhimu-
rium (25.0% ± 10.6 and 17.5% ± 10.2, respectively), and
S. flexneri (22.1% ± 4.0 and 33.2% ± 7.1, respectively),
were neither affected by treating cells with colchicine.

Invasion of epithelial cells by aEPEC and tEPEC strainsFigure 1
Invasion of epithelial cells by aEPEC and tEPEC 
strains. A) Percent of invasion in HeLa cells. B) Percent of 
invasion in T84 cells. Monolayers were infected for 6 h 
(aEPEC) and 3 h (tEPEC). Results of percent invasion are 
expressed as the percentage of cell associated bacteria that 
resisted killing by gentamicin and are the means ± standard 
error from at least three independent experiments in dupli-
cate wells. *significantly more invasive than prototype tEPEC 
E2348/69 (P < 0.05 by an unpaired, two-tailed t test).

Invasion of HeLa (epithelial) cells by aEPEC 1551-2 after treatment with cytoskeleton polymerization inhibitorsFigure 2
Invasion of HeLa (epithelial) cells by aEPEC 1551-2 
after treatment with cytoskeleton polymerization 
inhibitors. A) Cytochalasin D; B) Colchicine. Monolayers 
were infected for 6 h (aEPEC) and 3 h (tEPEC). S. enterica sv 
Typhimurium and S. flexneri were used as controls and mon-
olayers were infected for 4 h and 6 h, respectively. Results as 
percent invasion are means ± standard error from at least 
three independent experiments performed in duplicate. * P < 
0.05 by an unpaired, two-tailed t test.
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HeLa cells are derived from a human uterine cervix carci-
noma. They are widely used to study bacterial interactions
with epithelial cells yet they do not represent an adequate
host cell type to mimic human gastrointestinal infections.
To examine whether aEPEC strains would also invade
intestinal epithelial cells, we infected T84 cells (derived
from a colonic adenocarcinoma), cultivated for 14 days
for polarization and differentiation, with all 6 aEPEC
strains. The ability of these strains to promote A/E lesions
in T84 cells was confirmed by FAS (Table 1). In the gen-
tamicin protection assays performed with these cells, 5 of
6 strains were significantly more invasive than the proto-
type tEPEC strain E2348/69 (Fig. 1B). The exception was
aEPEC 4051-6 (1.5% ± 1.2) that showed similar invasion
index as tEPEC E2348/69 (0.5% ± 0.2). The invasion
indexes of the 5 aEPEC strains varied from 5.8% ± 1.7
(aEPEC 4281-7) to 17.8% ± 3.1 (aEPEC 1632-7). These
results demonstrate that besides invading HeLa cells,
aEPEC strains carrying distinct intimin subtypes invade
epithelial cells of human intestinal origin to different lev-
els. Interestingly, the aEPEC invasion indexes were signif-
icantly higher than that of tEPEC E2348/69, but this
comparison should be made with caution since the incu-
bation-periods used were different. Nonetheless, it has

already been demonstrated that tEPEC is unable to effi-
ciently invade fully differentiated intestinal epithelial cells
[42]. To confirm invasiveness, we examined T84 cells
infected with aEPEC strains by transmission electron
microscopy (TEM). This approach confirmed that 5 out of
6 aEPEC strains tested promoted A/E lesion formation
and were also internalized (Fig. 3A and 3B). Under the
conditions used, although some tEPEC E2348/69 cells
were intra-cellular, most remained extra-cellular and inti-
mately attached to the epithelial cell surface (Fig. 3C).
Except for aEPEC strains 4281-7 in HeLa cells and 4051-6
in T84 cells, the remaining four strains tested were more
invasive than tEPEC E2348/69 and showed heterogene-
ous invasion index in both HeLa and T84 cells.

It has been reported that the interaction between Afa/Dr
adhesins, expressed by strains of the diarrheagenic E. coli
pathotype diffusely adherent E. coli (DAEC), and 51
integrins also results in bacterial internalization [43].
Adaptation to the intracellular environment help bacteria
to avoid physical stresses (such as low pH or flow of
mucosal secretions or blood) and many other host
defense mechanisms including cellular exfoliation, com-
plement deposition, antibody opsonization and subse-

Transmission electron microscopy of infected polarized and differentiated T84Figure 3
Transmission electron microscopy of infected polarized and differentiated T84. A) aEPEC 1551-2, B) aEPEC 0621-
6 and C) prototype tEPEC E2348/69. Monolayers were infected for 6 h (aEPEC) and 3 h (tEPEC). aEPEC 1551-2 and 0621-6 
were selected because, according to the data in Fig. 1B, they presented an average invasion index as compared to the other 
strains studied. Arrows indicate bacterial-containing vacuoles.
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quent recognition by macrophages or cytotoxic T cells
[44]. Thus, the development of mechanisms for host cell
invasion, host immune response escape, intracellular rep-
lication and/or dissemination to the neighboring cells is
an important strategy for intracellular bacteria [44].

Tight junctions of polarized intestinal cells usually repre-
sent a barrier to bacterial invasion. Some studies have
shown increased invasion indexes when cells are treated
prior to infection with chemical agents that disrupt tight
junctions and expose receptors on the basolateral side
[35,45]. Similar observations have been made with bacte-
ria infecting undifferentiated (non-polarized) eukaryotic
cells [35,45]. These studies have shown a relationship
between the differentiation stage of the particular host
cells and the establishment of invasion [35,42,45]. There-
fore, in order to examine whether aEPEC strains could
also invade via the basolateral side of differentiated T84
cells, these cells were treated with different EGTA concen-
trations to open the epithelial tight junctions. The EGTA
effect was accessed by optical microscopy (data not
shown). Following this procedure, cells were infected with
aEPEC 1551-2 and tEPEC E2348/69. Infections with S.
enterica sv Typhimurium and S. flexneri were used as con-
trols. This treatment promoted a significant enhancement
of aEPEC 1551-2 and S. flexneri invasion, (Fig. 4) but S.
enterica sv Typhimurium and tEPEC E2348/69 invasion
indexes were not affected by the disruption of the epithe-
lial cell tight junctions as was also reported previously
[45].

To address a putative effect of EGTA on the invasion abil-
ity of the aEPEC strains we also cultivated T84 cells for 14
days on the lower surface of a Transwell membrane. In
this manner, bacterial contact with the basolateral cell sur-
face can be achieved without prior treatment of the T84
cells. Preparations were examined by TEM and the images
suggest enhanced bacterial invasion and show bacteria
within vacuoles (Fig. 5) confirming the results obtained
with EGTA treated T84 cells. Regarding tEPEC E2348/69,
no internalized bacteria was found in the microscope
fields observed. Enteropathogens may gain access to baso-
lateral receptors and promote host cell invasion in vivo by
transcytosis through M cells [46]. Alternatively, some
infectious processes can cause perturbations in the intesti-
nal epithelium, e.g., neutrophil migration during intesti-
nal inflammation; as a consequence, a transitory
destabilization in the epithelial barrier is promoted expos-
ing the basolateral side and allowing bacterial invasion
[47]. With regard to tEPEC, it has been reported that an
effector molecule, EspF is involved in tight junction dis-
ruption and redistribution of occludin with ensuing
increased permeability of T84 monolayers [48,49].
Whether EspF is involved in the invasion ability of the
aEPEC strains studied in vivo remains to be investigated.

In conclusion, we showed that aEPEC strains expressing
distinct intimin sub-types are able to invade both HeLa
and differentiated T84 cells. At least for the invasive
aEPEC 1551-2 strain, HeLa cell invasion requires actin fil-
aments but does not involve microtubules. In differenti-
ated T84 cells, disruption of tight junctions increases the
invasion capacity of aEPEC 1551-2. This observation
could be significant in infantile diarrhea since in new-
borns and children the gastrointestinal epithelial barrier
might not be fully developed [45]. As observed in
uropathogenic E. coli [50], besides representing a mecha-
nism of escape from the host immune response, invasion
could also be a strategy for the establishment of persistent
disease. It is possible, that the previously reported associ-
ation of aEPEC with prolonged diarrhea [8] is the result of
limited invasion processes. However, the in vivo relevance
of our in vitro observations remains to be established.
Moreover, further analyses of the fate of the intracellular
bacteria such as persistence, multiplication and spreading
to neighboring cells are necessary.

Conclusion
In this study we verified that aEPEC strains, carrying dis-
tinct intimin sub-types, including three new ones, may

Invasion of differentiated T84 cells by aEPEC 1551-2 after tight junction disruption by EGTA treatmentFigure 4
Invasion of differentiated T84 cells by aEPEC 1551-2 
after tight junction disruption by EGTA treatment. 
Monolayers were infected for 6 h (aEPEC) and 3 h (tEPEC). 
S. enterica sv Typhimurium and S. flexneri were used as con-
trols and monolayers were infected for 4 h and 6 h, respec-
tively. Results of percent invasion are the means ± standard 
error from at least three independent experiments per-
formed in duplicate. * P < 0.05 by an unpaired, two-tailed t 
test.
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invade eukaryotic cells in vitro. HeLa cells seem to be more
susceptible to aEPEC invasion than differentiated and
polarized T84 cells, probably due to the absence of tight
junctions in the former cell type. We also showed that
actin microfilaments are required for efficient invasion of
aEPEC strain 1551-2 thus suggesting that A/E lesion for-
mation is an initial step for the invasion process of HeLa
cells, while microtubules are not involved in such phe-
nomenon. Our results also showed that tight junctions'
disruption increased significantly the invasion of T84 cells
by aEPEC strain 1551-2. Altogether, our findings suggest
that aEPEC strains may invade intestinal cells in vitro with
varying efficiencies and that the invasion process proceeds
apparently independently of the intimin sub-type.

Methods
Bacterial strains and cell culture conditions
Six aEPEC strains (two carrying intimin subtype omicron
and four carrying unknown intimin sub-types randomi-
cally chosen from our collection) isolated from children
with diarrhea and potentially enteropathogenic due to a
positive FAS assay (Table 1), and the prototype tEPEC
strain E2348/69 were studied. Strains were cultured stati-
cally in Luria Bertani broth for 18 h at 37°C. Under this

condition cultures reached an OD600 of 0.5–0.6. Salmo-
nella enterica serovar Typhimurium (a gift from J.R.C.
Andrade, Universidade do Estado do Rio de Janeiro) and
Shigella flexneri M90T [51] were used as controls in some
experiments in infection assays of 4 and 6 h, respectively.
All strains were shown to be susceptible to 100 g/mL of
gentamicin prior to the invasion experiments. HeLa cells
(105 cells) were cultured in Dulbecco Modified Eagle
Medium (DMEM) supplemented with 10% bovine fetal
serum (Gibco Invitrogen) and 1% antibiotics (Gibco Inv-
itrogen), and kept for 48 h at 37°C and 5% CO2. T84 cells
(105 cells) were cultured in DMEM-F12 medium (Gibco
Invitrogen) supplemented with 10% bovine fetal serum
(Gibco Invitrogen), 1% non-essential amino acids (Gibco
Invitrogen) and 1% antibiotics (Gibco Invitrogen), and
kept for 14 days at 37°C and 5% CO2 for differentiation.
For some transmission electron microscopy analysis, T84
cells (105 cells) were cultivated on the lower surface of
Corning Transwell polycarbonate membrane inserts pore
size 3.0 m, membrane diameter 12 mm. In addition to
apical adhesion this procedure allowed bacterial inocula-
tion directly at the basolateral surface of the cells avoiding
the use of chemical treatment to expose such surface.

Transmission electron microscopy of polarized and differentiated T84 cells infected via the basolateral sideFigure 5
Transmission electron microscopy of polarized and differentiated T84 cells infected via the basolateral side. A) 
aEPEC 1551-2. B) aEPEC 0621-6. C) prototype tEPEC E2348/69. Monolayers were infected for 6 h (aEPEC) and 3 h (tEPEC). 
Arrows indicate tight junction and (*) indicates a Transwell membrane pore.
Page 7 of 10
(page number not for citation purposes)



BMC Microbiology 2009, 9:146 http://www.biomedcentral.com/1471-2180/9/146
Serotyping
The determination of O and H antigens was carried out by
the method described by Guinée et al. [52] employing all
available O (O1-O185) and H (H1-H56) antisera. All
antisera were obtained and absorbed with the correspond-
ing cross-reacting antigens to remove the nonspecific
agglutinins. The O antisera were produced in the Labora-
torio de Referencia de E. coli (LREC) (Lugo, Spain) and the
H antisera were obtained from the Statens Serum Institut
(Copenhagen, Denmark).

Typing of intimin (eae) genes
Intimin typing was performed by sequencing a fragment
of the 1,125 bp from 3' variable region of the eae genes
from four aEPEC strains included in this study. The com-
plete nucleotide sequences of the new 2 (FM872418), 
(FM872416) and  (FM872417) variant genes were deter-
mined. The nucleotide sequence of the amplification
products purified with a QIAquick DNA purification kit
(Qiagen) was determined by the dideoxynucleotide tri-
phosphate chain-termination method of Sanger, with the
BigDye Terminator v3.1 Cycle Sequencing Kit and an ABI
3100 Genetic Analyzer (Applied Bio-Systems). The new
eae sequences of strains analyzed were deposited in the
European Bioinformatics Institute (EMBL Nucleotide
Sequence Database).

Quantitative invasion assay
Quantitative assessment of bacterial invasion was per-
formed as described previously [53] with modifications.
Briefly, washed HeLa and polarized and differentiated T84
cells were infected with 107 colony-forming units (c.f.u.)
of each aEPEC strain for 6 h or 3 h for tEPEC E2348/69.
The different incubation-periods used were due to the
more efficient colonization of tEPEC in comparison with
the aEPEC strains; moreover, tEPEC E2348/69 induced
cell-detachment in 6 h. Thereafter, cell monolayers were
washed five times with PBS, and lysed in 1% Triton X-100
for 30 min at 37°C. Following cell lysis, bacteria were re-
suspended in PBS and quantified by plating serial dilu-
tions onto MacConkey agar plates to obtain the total
number of cell-associated bacteria (TB). To obtain the
number of intracellular bacteria (IB), a second set of
infected wells was washed five times and further incu-
bated in fresh media with 100 g/mL of gentamicin for
one hour. Following this incubation period, cells were
washed five times, lysed with 1% Triton X-100 and re-sus-
pended in PBS for quantification by plating serial dilu-
tions. The invasion indexes were calculated as the
percentage of the total number of cell-associated bacteria
(TB) that was located in the intracellular compartment
(IB) after 6 h (or 3 h for tEPEC E2348/69) (IBx100/TB) of
infection. Assays were carried out in duplicate, and the
results from at least three independent experiments were

expressed as the percentage of invasion (mean ± standard
error).

Cytoskeleton polymerization inhibitor
In order to evaluate the participation of cytoskeleton com-
ponents in the invasion of aEPEC 1551-2, HeLa cell mon-
olayers were incubated with 1 and 5 g/mL of
Cytochalasin-D or Colchicine (Sigma-Aldrich, St. Louis,
MO) 60 min prior to bacterial inoculation [33]. After that,
cells were washed three times with PBS and the invasion
assay was performed as described above. S. enterica sv
Typhimurium and S. flexneri were used as controls.

EGTA treatment for tight junction disruption
In order to evaluate the interaction of aEPEC 1551-2 with
the basolateral surfaces of T84 cells, differentiated cell
monolayers (14 days) were incubated with 1 or 5 mM of
EGTA (Sigma-Aldrich, St. Louis, MO) 60 min prior to bac-
terial inoculation [35]. After that, cells were washed three
times with PBS and the invasion assay was performed as
describe above. S. enterica sv Typhimurium and S. flexneri
were used as controls.

Detection of actin aggregation
To detect actin aggregation the Fluorescence Actin Stain-
ing (FAS) assay was performed as described previously
[12]. Briefly, cell monolayers were infected for 3 h,
washed three times with PBS and incubated for further 3
h with fresh medium. Subsequently, monolayers were
washed five times with PBS, fixed with 3.5% paraformal-
dehyde, and lysed in 1% Triton X-100 for 5 min at room
temperature. Monolayers were then washed three times,
incubated in a dark chamber with 5 g/mL phalloidin (20
min), and washed. Coverslips were mounted in glycerol
with 0.1% para-phenylenediamine to reduce bleaching.

Transmission Electron Microscopy
T84 cells were cultured in Transwell membranes (Costar)
for 14 days and infected as described above. Then they
were washed 3 times (10 min each) with D-PBS (Sigma)
and fixed with 2% glutaraldehyde (Serva) for 24 h at 4°C.
After fixation, cells were washed 3 times with D-PBS (10
min) and post-fixed with 1% osmium tetroxide (Plano).
Cells were dehydrated through a graded ethanol series
(30%, 50% and 70%), then filters were cut out from the
cell culture system holder and preparations were treated
with ethanol (90%, 96% and 99.8%), followed by propyl-
enoxid (100%), Epon:Propylenoxid (1:1, Serva), and
Epon 100%. Afterward, filters were embedded in flat
plates and kept for 2 days for polymerization. Ultrathin
sections were prepared, stained with 4% uranyl acetate
(Merck) and Reynold's lead citrate (Merck), and were
examined with a Tecnai G2 Spirit Twin, Fei Company at
80 kV.
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Alternatively, T84 cells were cultured on 35 mm diameter
plates for 14 days. Infection, fixation and dehydration
were performed as described above. Subsequently, the
cells were examined with a LEO 906E transmission elec-
tron microscope (Zeiss, Germany) at 80 kV.

Statistical analyses
Differences in the percentages of invasion were assessed
for significance by using an unpaired, two-tailed t test
(GraphPad Prism 4.0).
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