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Abstract
Background: Bacterial genomes are mosaic structures composed of genes present in every strain
of the same species (core genome), and genes present in some but not all strains of a species
(accessory genome). The aim of this study was to compare the genetic diversity of core and
accessory genes of a Salmonella enterica subspecies enterica serovar Typhimurium (Typhimurium)
population isolated from food-animal and human sources in four regions of Mexico. Multilocus
sequence typing (MLST) and macrorestriction fingerprints by pulsed-field gel electrophoresis
(PFGE) were used to address the core genetic variation, and genes involved in pathogenesis and
antibiotic resistance were selected to evaluate the accessory genome.

Results: We found a low genetic diversity for both housekeeping and accessory genes. Sequence
type 19 (ST19) was supported as the founder genotype of STs 213, 302 and 429. We found a
temporal pattern in which the derived ST213 is replacing the founder ST19 in the four geographic
regions analyzed and a geographic trend in the number of resistance determinants. The distribution
of the accessory genes was not random among chromosomal genotypes. We detected strong
associations among the different accessory genes and the multilocus chromosomal genotypes (STs).
First, the Salmonella virulence plasmid (pSTV) was found mostly in ST19 isolates. Second, the
plasmid-borne betalactamase cmy-2 was found only in ST213 isolates. Third, the most abundant
integron, IP-1 (dfrA12, orfF and aadA2), was found only in ST213 isolates. Fourth, the Salmonella
genomic island (SGI1) was found mainly in a subgroup of ST19 isolates carrying pSTV. The mapping
of accessory genes and multilocus genotypes on the dendrogram derived from macrorestiction
fingerprints allowed the establishment of genetic subgroups within the population.

Conclusion: Despite the low levels of genetic diversity of core and accessory genes, the non-
random distribution of the accessory genes across chromosomal backgrounds allowed us to
discover genetic subgroups within the population. This study provides information about the
importance of the accessory genome in generating genetic variability within a bacterial population.
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Background
Bacterial genomes are mosaic structures composed of
genes present in every strain of the same species (core
genome), and genes present in some but not all isolates of
a species (accessory genome) [1-3]. Genomic and popula-
tion studies have shown that core and accessory genes
often display distinct evolutionary histories, mainly due
to the differential degree of mobility and selective pres-
sures to which each category is subjected. It is accepted
that the evolutionary histories of accessory genes are more
complex than those of housekeeping genes [3,4]. There-
fore, it is desirable to study core and accessory genes to
better understand the population structure of a bacterial
species [3,5].

Salmonella enterica is considered by population geneticists
as the paradigm of a clonal bacterial species, that displays
low levels of recombination and has mainly evolved by
point mutations [6-8]. Salmonella enterica is subdivided in
seven subspecies, the strains responsible for almost all the
Salmonella infections in humans and warm-blooded ani-
mals belong to subspecies enterica. Salmonella enterica sub-
species enterica has more than 1,500 described serovars
[9]. To discriminate clones within serovars, macrorestric-
tion analysis by pulsed-field electrophoresis (PFGE) and
phage-typing are frequently used as subtyping techniques.
More recently, multilocus sequence typing (MLST) has
become an important tool for the study of Salmonella
strains [10-13].

Salmonella enterica subspecies enterica serovar Typhimu-
rium (Typhimurium) is considered a broad host range
serovar, usually associated with gastroenteritis in a broad
range of phylogenetically unrelated host species [14-16].
The aim of this study was to compare the genetic diversity
of core and accessory genes of a set of Typhimurium iso-
lates sampled from food-animal and human sources in
four geographic regions of Mexico. MLST and macror-
estriction PFGE fingerprints were used to address the core
genetic variation. To evaluate the distribution and genetic
variation of the accessory genome, genes involved in
pathogenesis and antibiotic resistance were selected. Sche-
matic representations of the molecular markers assessed
in this study are presented in Figures 1 and 2, and a brief
description of them is presented below.

MLST is based on allelic differences in the nucleotide
sequences of housekeeping genes among bacterial strains
of a given species (Figure 1A) [5,17]. Macrorestriction
analysis uses endonucleases that cut DNA at rare restric-
tion sites, generating large fragments that are resolved by
PFGE (Figure 1A). This methodology exhibits mostly
chromosomal variation, but large plasmids can also be
observed within the fingerprint [18].

For the accessory genome, we determined the presence of
the Typhimurium virulence plasmid (pSTV). This plasmid
has been extensively studied in regard to its role in inva-
siveness in the murine model [19-23]; its importance in
human systemic infections is still controversial [24-27].
Three genetic markers were used to determine the pres-
ence of pSTV: spvC, rck and traT, that are genes involved in
resistance to serum and survival in macrophages (Figure
1B) [19,28].

The antibiotic resistance determinants studied were those
contained in integrons, and the presence of the plasmid-
borne cmy-2 gene (Figure 1C), conferring resistance to
extended spectrum cephalosporins. The cmy-2 gene is of
major public health relevance since it confers resistance to
ceftriaxone, the drug of choice for treatment of children
with invasive Salmonella infections. In a previous study,
we reported the rapid dissemination of this resistance in
Typhimurium from Yucatán, Mexico, and its association
with systemic infections in children [29]. Most cmy-2
genes have been located in large plasmids (> 100 kb), and
were not found as an integron-born cassette [30,31].

The integron is a recombination and expression system
that captures genes as part of a genetic element called a
gene cassette (Figure 2A). Class 1 integrons are found
extensively in clinical isolates, and most of the known
antibiotic resistance gene cassettes belong to this class [32-
35]. They are frequently located on plasmids and trans-
posons, which further enhances the spread of the gene
cassettes [32].

Class 1 integrons have been detected in different Salmo-
nella serovars in many countries [36-41]. Among the most
studied cases are the chromosomally located integrons
present in the so-called Salmonella genomic island 1
(SGI1) (Figure 2B). SGI1 is a 43 kb integrative-mobiliza-
ble chromosomal element on which antibiotic resistance
genes are clustered, flanked by two class 1 integrons
[42,43]. The first cassette carries the aadA2 gene, which
confers resistance to streptomycin and spectinomycin,
and the second cassette contains pse-1, which confers
resistance to ampicillin. In between them are floR, tetR and
tetG genes, conferring resistance to chloramphenicol-flor-
fenicol and tetracycline. A cryptic retronphage element is
found as the last element of SGI1 in Typhimurium strains
[43,44].

In the present work, analysis of the whole set of genetic
markers targeting both housekeeping and accessory genes
allowed us to determine genetic subgroups within the
Mexican Typhimurium population.
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Results
Distribution, genetic relatedness and antimicrobial 
resistance of MLST genotypes
The multilocus genotype for 114 Typhimurium isolates
sampled from food-animal and human sources in four
regions of Mexico, was determined. The seven-locus
scheme recommended in the Salmonella MLST database
[45] was applied to 66 isolates, in order to compare the
diversity of our isolates with those reported in the data-
base. The partial sequences of seven housekeeping genes
revealed a low level of genetic variation; among the 3,336
nt only four substitutions were detected, yielding four
multilocus genotypes or sequence types (ST) (Table 1).
Thus, three novel alleles were identified: purE70, which
consisted of a synonymous substitution, purE110, which
contained one synonymous and one non-synonymous
substitution, as compared with the purE5 allele present in
most of the Typhimurium strains reported; and sucA144
which consisted of a synonymous substitution, as com-
pared with the predominant sucA9 allele. ST19 is the pre-
dominant Typhimurium genotype in the MLST database
(227 out of 391 Typhimurium entries) and has a world-
wide distribution (24 countries, representing all conti-
nents). STs 213 and 429 have been reported only in
Mexico, while ST302 has been reported in Mexico and
Zimbabwe [45]. Despite the limitations of an analysis

based on only four substitutions, an eBURST analysis of
clonal relatedness among the different STs was consistent
with the notion of ST19 as the founder genotype of the
clonal complex, with the other three STs linked to ST19 as
single-locus variants [see Additional file 1]. For the
remaining 48 isolates we applied a three-gene scheme (see
Methods) that allowed us to discriminate among STs
(Table 1). The most abundant genotypes, ST213 and
ST19, were found in the four geographic regions and in
almost all the sampled years (Table 1). These genotypes
presented a differential distribution among the sources of
isolation (Table 2). Interestingly, ST213 was more preva-
lent in food-animals than in humans, where ST19 was
predominant (59% vs 27%; p = 0.001, OR = 3.9).

We found a temporal pattern in which the derived ST213
is replacing the founder ST19 in the four geographic
regions (Figure 3). ST19 was predominant in Yucatán and
San Luis Potosí in the first period (2000–2001). During
the second period (2002–2003), ST213 was the most
abundant genotype in Yucatán, Michoacán and San Luis
Potosí; only in Sonora ST19 was the most abundant gen-
otype. However, by the end of the time period studied
(2004–2005), ST213 was the predominant genotype in all
four states (Figure 3).

Schematic representation of the molecular markers used to study core and plasmid accessory genes of Typhimurium from MexicoFigure 1
Schematic representation of the molecular markers used to study core and plasmid accessory genes of Typh-
imurium from Mexico. A) The chromosomal variation was addressed by multilocus sequence typing using partial sequences 
of the seven housekeeping genes [53], denoted by boxes on the chromosome of strain LT2 [GenBank:AE006468] [46], and by 
macrorestriction analysis using the rarely cutting enzyme XbaI resolved by pulsed-field electrophoresis, represented by lines 
crossing the chromosome at several points. B) The presence of the Typhimurium virulence plasmid (pSTV) [Gen-
Bank:AE006471] was determined by PCR amplification of three genes involved in virulence spvC, rck and traT [19,28], and by 
Southern hybridisation on plasmid profiles using spvC as probe. C) The presence of the plasmid-borne cmy-2 gene, conferring 
resistance to extended spectrum cephalosporins [GenBank:NC_011079] [30,31], was determined by PCR and by Southern 
hybridisation on plasmid profiles. The chloramphenicol determinant floR was also assessed, since it has been reported that both 
resistances are often encoded by the same plasmid [48].
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We found a strong association between STs and antimi-
crobial resistance. ST213 isolates presented higher per-
centages of resistance (> 50%) than ST19 isolates, the only
exception was ciprofloxacin for which all the isolates were
susceptible (Table 3). All the isolates resistant to ceftriax-
one belonged to ST213, while all the isolates from STs 19,
302 and 429 were ceftriaxone susceptible. The group of
isolates resistant to ceftriaxone (n = 36) was associated

with very high percentages (> 95%) of resistance to ampi-
cillin, chloramphenicol, sulfisoxazole, streptomycin and
tetracycline, here after referred to as the pentaresistant
phenotype.

The resistance patterns varied across geographic locations.
Yucatán was the state with the higher level of multidrug
resistance, with an average of seven resistances per isolate;

Schematic representation of the molecular markers used to study the integrons of Typhimurium from MexicoFigure 2
Schematic representation of the molecular markers used to study the integrons of Typhimurium from Mexico. 
A) Diagrammatic representation of the basic features of a class 1 integron [68]. The positions of the primers [see Additional 
file 3] used to amplify the different regions are shown by arrows. A class 1 integron consist of two conserved segments (5'-CS 
and 3'-CS) separated by a variable region that may contain an array of one or more gene cassettes. The 5'-CS includes the gene 
for the integrase (intI1), the promoters for the expression of the integrase (Pint) and the gene cassettes (Pc), and an adjacent attI 
recombination site, where the cassettes are integrated. Gene cassettes consist of a single promoter-less gene and a recombina-
tion site known as a 59-base element (59-be or attC), which is recognized by the site-specific recombinase (intI1). The 3'-CS 
includes qacE1 and sul1 genes, determining resistance to quaternary ammonium compounds and to sulphonamide, respec-
tively. The structure of the integron profiles found here, IP-1, IP-2, IP-3 and IP-4, are shown with their corresponding gene cas-
settes. B) Diagram of the regions of the Salmonella genome island 1 (SGI1) [43,44] that were studied. The positions of the 
primers [see Additional file 3] used to amplify the different regions are shown by arrows. The insertion of the island in the 
chromosome was detected by amplification of the right and left junctions; from the antibiotic resistance cluster the two inte-
gron-born gene cassettes (aadA2 and pse-1), floR and tetG were amplified.
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while Sonora presented the lowest levels of resistance with
an average of four. Michoacán and San Luis presented
intermediate values, both with an average of six. Further-
more, the ST213 ceftriaxone resistant isolates displayed a
differential geographic pattern, ranging from 97% of the
ST213 isolates in Yucatán to 0% in Sonora, with interme-
diate levels in Michoacán and San Luis Potosí (Figure 3).

Distribution and associations of pCMY-2
Isolates resistant to ceftriaxone were subjected to PCR
analysis to detect the presence of the blaCMY-2 gene (Figure
1C). All 36 isolates resistant to ceftriaxone were positive,
whereas the 12 sensitive isolates tested were negative [see
Additional file 2]. Sequencing (564 bp) of cmy-2 for 16
isolates revealed that all carried an identical allele, sug-
gesting a common origin. The BLAST searches showed
that this allele was identical to most of the 100 hits target-
ing the Enterobacteriaceae (Escherichia, Salmonella, Kleb-
siella, Proteus and Citrobacter).

To determine the location of the cmy-2 gene, plasmid pro-
files for 25 isolates were hybridized with the correspond-
ing radioactive probe. In all the isolates positive for cmy-2
the probe hybridized with a plasmid of about 200 kb,
hereafter referred to as pCMY-2; while the negative iso-
lates did not yield a signal. The strength of the association
between pCMY-2 and chromosomal genotype was con-
firmed (p = 0.001, OR = 93), since all the isolates harbour-
ing pCMY-2 were ST213 (Table 3 and Additional file 2).

Distribution, genetic diversity and associations of pSTV
The presence of pSTV was first assessed by PCR amplifica-
tion of spvC. Only 30% of the isolates were positive for
spvC [see Additional file 2]. To confirm the presence or
absence of the pSTV we amplified rck and traT for all 33
spvC positive isolates, and for 19 spvC negative isolates. All
spvC positive isolates amplified traT and rck, with the
exception of two isolates that did not amplify rck (slhs02–
20 and slres03–40; see Additional file 2); while the spvC
negative isolates did not produce amplifications with
either rck or traT.

To evaluate the genetic diversity of pSTV we determined
the nucleotide sequences of spvC for 16 representative iso-
lates [see Additional file 2]. All spvC sequences (513 bp)
were identical to each other, displaying only one nucle-
otide substitution with respect to the sequence of strain
LT2 [GenBank:AE006471] [46]. We further determined
the sequences of traT and rck for 11 and 9 isolates, respec-
tively. The traT (450 bp) and rck (429 bp) sequences were
also identical to each other and to the sequence of strain
LT2. These results show pSTV with a low level of genetic
diversity distributed in the four geographic regions and
recovered during the five sampled years.

We confirmed the presence of pSTV and determined its
approximate size by Southern blot hybridization of plas-
mid profiles for 10 isolates. All the isolates that where pos-
itive for the amplification of spvC, rck and traT hybridized
with a plasmid of the same size of that of the pSTV of
strain LT2 (about 94 kb) [46], and all the negative con-
trols produced no signal with the spvC probe. However,
one of the isolates that did not amplify rck hybridized
with a larger plasmid of about 120 kb, indicating that this
pSTV is different, probably due to the insertion of mobile
elements, such as transposons, as previously reported
[19,47].

pSTV was present in 29 ST19 isolates (68%), the four
ST302 isolates (100%) and only one ST213 isolate (1%;
yuhs03–80; Figure 4 and Additional file 2). This finding

Table 1: Allelic profiles and sequence types (STs) assigned in the Salmonella MLST database for the Mexican Typhimurium strains.

Multilocus allelic profilea No of isolatesb

ST aroC dnaN hemD hisD purE sucA thrA Sevenb Threeb Total Statesc Years

19 10 7 12 9 5 9 2 24 17 41 YU, MI, SL, SO 2000–2005
213d 10 7 12 9 70d 9 2 37 31 68 YU, MI, SL, SO 2001–2005
302d 10 7 12 9 110d 9 2 4 0 4 SO 2002–2004
429d 10 7 12 9 5 144d 2 1 0 1 MI 2003

a Allele and ST numbers were those assigned in the Salmonella MLST database [45].
b Number of strains analyzed using the seven-locus or the three-locus scheme (see methods for details).
c YU, Yucatán; MI, Michoacán; SL, San Luis Potosí; SO, Sonora.
d Novel alleles and sequence types (ST) obtained in this work study.

Table 2: Distribution of human and animal strains of STs 19 and 
213 harbouring pSTV or pCMY-2.

Number of strains (%)

Source ST19 ST213 pSTV pCMY-2

Human 30 (73) 28 (41) 25 (76) 23 (64)
Animal 11 (27) 40 (59) 8 (24) 13 (36)

Total 41 68 33 36
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indicates that pSTV was not randomly distributed among
isolates, since 60% of the isolates were ST213, and
showed a significant association between ST19, and pSTV
(p = 0.001, OR = 144). Human isolates harboured pSTV
significantly more than food-animal isolates (43% vs.
16%, p = 0.002, OR = 4.1), demonstrating a significant
association with the human host. Many of these isolates
were isolated from humans with diarrhea or asympto-
matic infection; only one of the six isolates from systemic
infections had pSTV [see Additional file 2], indicating that
its presence does not necessarily cause extra-intestinal
infections.

Detection and associations of integrons
All 114 isolates were assessed for the presence of integrons
using primers targeting the CS regions (Figure 2 and Addi-
tional file 3), which amplify the cassettes inserted in inte-

grons. A high proportion (66%) of the isolates produced
an amplification product [see Additional file 2]. The most
abundant one (42% of the isolates) was of about 2,000
bp, and was designated as integron profile 1 (IP-1). The
nucleotide sequence of this integron for 12 isolates
showed that it was composed of an array of three cassettes
containing the genes dfrA12, orfF and aadA2 (Figure 2A).
The sequences (1,816 bp) were almost identical to each
other (only one substitution) and to most of the
sequences retrieved after BLAST searches from GenBank
(see details in the Discussion section). An integron of
about 1,650 bp was present in six isolates and designated
as integron profile 2 (IP-2) (Figure 2A). Nucleotide
sequencing showed that it was composed of two cassettes
containing the genes dfrA17 and aadA5. The sequences
(1,573 bp) of the six isolates were identical to each other
and to most of the GenBank sequences (see details in the

Distribution of the percentage of Typhimurium STs according to the time period and geographic locationFigure 3
Distribution of the percentage of Typhimurium STs according to the time period and geographic location.

ST19 ST213 ST213(cmy-2+) ST302 ST429

Yucatán

0

20

40

60

80

100

2000-2001 2002-2003 2004-2005

Sonora

0

20

40

60

80

100

2000-2001 2002-2003 2004-2005

Not
available

Michoacán

0

20

40

60

80

100

2000-2001 2002-2003 2004-2005

Not
available

San Luis Potosí

0

20

40

60

80

100

2000-2001 2002-2003 2004-2005

P
e
r
c
e
n
t
a
g
e

o
f

i
s
o
l
a
t
e
s

Time period

Table 3: Percentage of antimicrobial resistant strains for the two main Typhimurium STs.

Antimicrobial resistance

AMPa CHL SSS STR TET GM KM NAL SXT CIPb CRO

ST19 61 51 75 80 75 7 10 10 22 0 0
ST213(cmy-2)c 68 (97) 90 (94) 98 (97) 97 (97) 97 (100) 59 (55) 37 (33) 72 (61) 82 (92) 0 53 (100)

a AMP:ampicillin, CHL: chloramphenicol, SSS: sulfisoxazole, STR: streptomycin, TET: tetracycline, GM: gentamicin, KM: kanamycin, NAL: nalidixic 
acid, SXT: timethoprim-sulfametoxazole, CIP: ciprofloxacin, CRO: ceftriaxone.
b All the strain were sensitive to CIP according with CLSI [78], including twelve strains with low-level resistance [see Additional file 2].
c The number in parenthesis is the percentage corresponding to ST213 strains positive for cmy-2.
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Discussion section). Two isolates produced amplification
bands of about 1,300 and 1,000 bp; sequence determina-
tion showed that they harboured oxa-2 and orfD, and
aadA12 cassettes, and were designated as IP-3 and IP-4,
respectively (Figure 2A and Additional file 2). BLAST
searches showed that the sequence of IP-3 (oxa-2 and
orfD) was identical to an integron of Aeromonas hydrophila
from Taiwan [GenBank:DQ519078], and the sequence of
IP-4 (aadA12) was identical to an integron of Yersinia ente-
rocolitica from Spain [GenBank:AY940491] (Figure 2A).

The second most abundant integron profile (16% of the
isolates) was conformed by two amplification bands of
about 1,000 and 1,200 bp. This is typically the profile
recovered from the SGI1, and therefore was designated as
IP-SGI1 (Figure 2B and Additional file 2). Sequence deter-
mination for three isolates showed that the 1,000 bp cas-
sette contained aadA2 and that the 1,200 bp cassette
coded for pse-1, which are the most commonly found inte-
grons in the SGI1. All the isolates were positive for the
amplification of pse-1and aadA2 using primers specific for
these genes (Figure 2B and Additional file 3). To confirm
the insertion of the complete SGI1 in the chromosome,
we performed PCR assays to amplify the left and right
junctions. All the isolates (n = 19) harbouring the IP-SGI
amplified the left junction, the right junction, and were
positive for the amplification of the cryptic retronphage
on the right junction [see Additional file 2]. Isolates har-
bouring other integrons did not amplify any of the junc-
tions of the SGI1. To further characterize the SGI1, we
amplified the tetG and floR genes that are in between the
two integrons. Only the isolates harbouring the IP-SGI1
produced strong amplification products with tetG, and all
were positive for floR; however, other chloramfenicol
resistant isolates also amplified floR. All the cmy-2 positive
isolates (n = 36) were positive for floR, which is in agree-
ment with the report by Doublet et al. (2004) that both
resistances are often found in the same plasmid [11,48].
Thus, most of the floR positive isolates harboured SGI1 or
pCMY-2, however, other chloramfenicol resistant isolates
were positive for floR. Some of the isolates harbouring IP-
2 showed weak amplification bands with tetG or floR
primers, probably due to the presence of related but diver-
gent genes conferring resistance to tetracycline and chlo-
ramfenicol [see Additional file 2]. Two significant
associations among integrons and the other molecular
markers are worthy of mention. First, all IP-1 were carried
by ST213 isolates (p = 0.001, OR = 211), either cmy-2 pos-
itive or negative. Second, all the isolates with SGI1 were
ST19 and carried pSTV (p = 0.001, OR = 119), the only
exception was one isolate that did not carry pSTV
(yuhs00–141; Figure 4 and Additional file 2).

To determine the location of the integrons, we performed
Southern hybridization experiments using fragments of

the intI1 and aadA2 genes as probes on the plasmid pro-
files of eight representative isolates. Three of the five iso-
lates harboring IP-1 hybridized with a plasmid of about
100 kb, the remaining two IP-1 isolates hybridized with a
plasmid of about 150 kb. The isolate harboring IP-2
hybridized with a plasmid of about 150 kb, IP-3 with a
plasmid of about 35 kb, and IP-4 with a plasmid of about
100 kb.

Detection of intI1 and qacE1
To further characterize the 5' and 3' CSs of integrons we
amplified intI1 and qacE1 (Figure 2A). All isolates dis-
playing IP-2, IP-SGI1, IP-3 and IP-4 showed strong ampli-
fication bands for intI1 and qacE1, which indicates that
they have 5' and 3' CSs typical of class1 integrons. All the
isolates with IP-1 amplified a strong band with intI1, but
only four isolates amplified strong bands for qacE1. Most
of the isolates with IP-1 (76%) did not amplify qacE1 or
produced very weak bands (16%) [see Additional file 2].
This result suggests that most of these integrons contain
an unusual 3' CS, as recently reported for this integron in
Salmonella and Staphylococcus [40,49-51]. Twenty isolates
that did not amplify the cassette region using the CS-F and
CS-R primers were selected to test the amplification of
intI1 and qacE1. Most of these isolates did not produce
amplifications, or produced very weak bands; only four
isolates presented an intense intI1 band.

Macro-restriction PFGE dendrogram and association 
among molecular markers
The PFGE fingerprints were clustered using the UPGMA
algorithm. The dendrogram was divided in five clusters
using a cut-off value of 78% similarity (Figure 4). Cluster
I grouped all the ST213 isolates and four ST19 isolates.
Using the information provided by the accessory genes,
this cluster can be further subdivided in four main groups.
Group Ia contained only ST213 isolates from three differ-
ent states, many of which carried cmy-2 and IP-1. Groups
Ib and Ic contained ST213 isolates mostly without cmy-2
and ST19 isolates without pSTV, and comprising five of
the six IP-2. Group Id was similar to group Ia; it contained
ST213 isolates, most of which harboured cmy-2 and IP-1.
It is distinguished from groups Ia and Ib by the lack of a
large restriction fragment of about 665 kb. Cluster II was
formed by ST19 isolates carrying both pSTV and SGI1.
Clusters III and IV grouped ST19 isolates and the four
ST302 strains, most of them carrying pSTV. Cluster IV con-
tained the two ST19 isolates for which rck could not be
amplified, and one of them carried the IP-4 integron.
Finally, cluster V was composed by ST19 strains lacking
pSTV. A few exceptions to these general patterns were
detected, such as a cluster I ST213 isolate harbouring pSTV
(yuhs03–80) or a ST19 isolate harbouring pSTV and SGI1
in cluster I (sorapus02–4). The whole set of genetic mark-
ers targeting both housekeeping and accessory genes
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allowed us to discover genetic subgroups within the iso-
late set.

Discussion
Low genetic diversity of core and accessory genes
Both housekeeping and accessory genes displayed
extremely low levels of genetic diversity; even the third
codon positions were invariable. The low genetic diversity
and the clonal pattern of descent of accessory elements
could be explained by several evolutionary processes,
such as rapid clonal expansion of the population, genetic
drift, the existence of barriers to genetic exchange among
subgroups within the population, or a combination of
these possibilities [4,5,8,52,53]. Most of the genetic diver-
sity was provided by the presence/absence of accessory
genes, including plasmids (pSTV and pCMY-2), integrons
(IP-1 to 4 and IP-SGI), and a chromosomally inserted
island (SGI1), rather than by nucleotide polymorphisms.
This result is in agreement with the conclusions derived
from Salmonella whole genome comparisons and microar-
ray data [53-56].

Geographic distribution of multilocus genotypes and 
antimicrobial resistance
Both MLST and PFGE analysis revealed the presence of
widely distributed Typhimurium clones that were isolated
from human and food-animal sources, during different
years and from diverse geographic locations in Mexico.
Taken together, our results indicate that: 1) there are effec-
tive mechanisms for the dissemination of Salmonella
throughout the country and, thus, the entire sample can
be considered a single population; 2) the isolates found in
food-animals and humans are related; and 3) the clones
causing disease in humans do not differ from those circu-
lating in healthy humans or animals. The observation that
isolates from human and food-animal sources come from
the same genetic pool is in agreement with our previous
reports [29,57], and with studies from other parts of the
world [10,13], supporting the hypothesis of Salmonella
transmission through the food chain. The fact that the iso-
lates causing disease (enteric or invasive) in humans are
not distinct clones from those carried by healthy humans

and animals, suggest differences in the bacterial inocu-
lum, immune status of the host and modes of transmis-
sion. Furthermore, there may be differences in virulence
determinants affecting the pathogenic capabilities, that
cannot be distinguished by the methodologies applied in
this study.

We found that the derived ST213 is replacing the founder
ST19. Genotype replacement has been previously
reported for Salmonella, as well as other bacterial species
and virus. For example, the replacement of Typhimurium
DT204 by the globally disseminated DT104 has been
reviewed elsewhere [58,59]. The comparison of historic
(1988–1995) and contemporary (1999–2001) serovar
Newport isolates showed that they belonged to clearly
separated PFGE clusters [60]. Shifts in the clonal preva-
lence of methicillin-resistant Staphylococcus aureus have
been documented in hospitals from Spain and Portugal
[61,62]. These results show that shorts periods of time are
enough to observe drastic changes in genotype circula-
tion, as reported in the present study. The geographic dif-
ferences in the number of resistance determinants in
ST213, in particular, the extended-spectrum cepha-
losporin resistance in isolates from Yucatán (97%) as
compared with isolates from Sonora (0%), could be
reflecting regional differences in the use of antibiotics in
animal production. In this study we found strong associa-
tions among antimicrobial determinants. For example, all
the cmy-2 positive isolates carried IP-1, were positive for
floR and presented the pentaresistant phenotype. This
finding is in line with several studies that report the spread
of large transferable plasmids carrying multiple resistance
determinants [18,28-30,34,36,48,63,64]. The pentaresist-
ant phenotype was also displayed by isolates harbouring
the chromosomally inserted SGI1, which demonstrates
that the same resistance phenotype can have a completely
different genetic background, as reported by others
[18,65].

Because of the recent dissemination of cmy-2 positive
Typhimurium isolates in Mexico [29], the genotypic char-
acterization of our isolates is of public health relevance

Dendrogram depicting the relationships of Mexican Typhimurium strains based on XbaI restriction patterns resolved by PFGEFigure 4 (see previous page)
Dendrogram depicting the relationships of Mexican Typhimurium strains based on XbaI restriction patterns 
resolved by PFGE. The fingerprints were clustered by the UPGMA algorithm using Dice coefficients with 1.5% band position 
tolerance. Detailed information about strains can be found in Additional file 2. The strain column depicts the nomenclature 
used in the MLST database for the MEXSALM collection. Abbreviations for the state column: YU, Yucatán; MI, Michoacán; SL, 
San Luis Potosí; SO, Sonora. Abbreviations for the source column: HE, human enteric; HS, human systemic; HA: human asymp-
tomatic; PM, pork meat; SI, swine intestine; BM, beef meat; CM, chicken meat; BI, beef intestine. The strains positive for the 
presence of pCMY-2 or pSTV are indicated by a plus symbol (+), the two strains marked with a +' in the pSTV column are the 
strains for which rck could not be amplified. The nomenclature of integron profiles (IP1–IP4) is explained in the text. The five 
main clusters (I-V) are highlighted by dotted rectangles, and the four subgroups (a, b, c and d) in cluster I are indicated by oval 
boxes. Cophenetic values are shown for the clusters formed above 90% similarity.
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and provides useful information that can be used to
improve the integrated food chain surveillance system
that is being established in this developing country [57].

Distribution of pSTV among hosts and chromosomal 
genotypes
Whether the pSTV is necessary to produce systemic infec-
tions in humans has been subject of intense debate. Some
authors claim that there is lack of evidence of an associa-
tion between the carriage of pSTV and human bacteremia
[24]. Other authors suggest that spv genes promote the dis-
semination of Typhimurium from the intestine [26]. In a
recent report, Heithoff et al. (2008) found that all the
Typhimurium strains isolated from humans with bactere-
mia or animals possessed pSTV, while 34% of the strains
isolated from human gastroenteritis lacked pSTV [66].
These results are in contrast with the data obtained in the
present study. Unexpectedly, we found that less than half
of all human strains harboured pSTV, and only one of the
six isolates recovered from patients with systemic infec-
tion had pSTV, supporting the view that pSTV is not essen-
tial for human systemic infections. On the other hand,
pSTV was significantly associated with human isolates
(Table 2), indicating that the ST19-pSTV genotypes are
adapted to the human host, while ST213 genotypes are
adapted to both animal and human hosts. In conclusion,
our data supports the notion that pSTV has a role in host
adaptation [14], however, are not consistent with the view
that pSTV is associated with systemic infection in humans.

There are some reports describing the differential distribu-
tion of pSTV within Typhimurium genotypes. Olsen et al.
(2004) performed plasmid transfer experiments with the
aim of demonstrating that different Typhimurium geno-
types differed in their ability to obtain and express pSTV
[21]. Ou and Baron (1991) observed that the introduction
of a plasmid from a highly virulent strain did not increase
virulence in all strains, particularly in those that were
moderately virulent with their own plasmids, or did not
contain a pSTV [22]. These reports highlight the impor-
tance of the genomic background in the interaction with
the pSTV. In the present study we found a statistical asso-
ciation between genomic background and the presence of
pSTV. This finding is also consistent with the PFGE den-
drogram, in which subgroups are strongly associated with
the presence or absence of pSTV.

We found that almost all the isolates harbouring the pSTV
were ST19 (85%), while all the isolates harbouring pCMY-
2 were ST213. Since ST213 is a recently derived genotype
from ST19, and ST213 isolates did not harbour pSTV, it is
appealing to speculate that ST213 arose as a derived clone
lacking pSTV (which is a idiosyncratic plasmid of Salmo-
nella), and that this condition allowed the acquisition of

pCMY-2 (which is a broad host range plasmid of Entero-
bacteriaceae).

Distribution of pCMY-2 among chromosomal genotypes
Since the presence of pCMY-2 in Salmonella is very recent
compared to other Enterobacteriaceae, its differential dis-
tribution within genotypes of a single Salmonella serovar is
scarcely documented. The association of the AmpC phe-
notype with a subgroup of genotypes has been docu-
mented mainly for Newport. Gupta et al. (2003) found
that the isolates with this phenotype presented highly
related PFGE restriction patterns that differed from those
of the susceptible isolates [63]. Harbottle et al. (2006)
found that all the Newport isolates with the multidrug
resistant AmpC phenotype were grouped in a single PFGE
cluster, and belonged to only two of the 12 STs present in
the sample [13]. Zhao et al. (2007) found that the cepha-
losporin resistant Newport isolates presented related
PFGE fingerprints and differed from those of susceptible
isolates. Similar findings were reported for serovar Dublin
[41]. On the other hand, Alcaine et al. (2005) studied
Typhimurium, Agona and Schwarzengrund isolates from
dairy farms, and did not find particular STs associated
with the presence of cmy-2, concluding that cmy-2 positive
isolates evolved independently by horizontal gene trans-
fer [11]. Our data strongly suggest that in the Mexican
Typhimurium population pCMY-2 is associated with
multidrug resistance and is harboured only by ST213 gen-
otypes.

Integrons as source of strain diversity
In this work we found four types of integrons encompass-
ing nine different genes (aadA2, aadA5, aadA12, dfrA12,
dfrA17, oxa-2, pse-1, orfD, and orfF). Seven of them were
genes encoding antimicrobial resistance determinants
well known to be associated with integrons in the Entero-
bactariaceae [32,67], and two were open reading frames
with unknown function but also previously reported as
gene cassettes [32]. To a large extent, the presence of inte-
grons and plasmids defined the distinctive features of the
main genetic subgroups, and provided strain diversity to
an otherwise almost uniform population. These elements
are known to be an integral part of the mobile or floating
genome, and represent a fundamental resource for bacte-
rial evolution [68-70].

The two integrons designated in this study as IP-1 and IP-
2 have been found in several Salmonella serovars (e. g.
Anatum, Branderup, Brikama, Enteritidis, Mbandaka, Ris-
sen, Saintpaul and Typhimurium), and in other Entero-
bacteriaceae, such as E. coli [37-41]. In a recent study these
integrons were detected in three Staphylococcus species iso-
lated in China [51], providing evidence of the successful
spread of this integrons around the world and across bac-
terial phyla. BLAST searches showed the presence of the
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dfrA12, orfF and aadA2 integron in 47 isolates proceeding
from Proteobacteria (Enterobacteriales, Pseudomonad-
ales, Aeromonadales and Vibrionales) and Firmicutes
(Bacillales and Lactobacillales). The majority of the nucle-
otide sequences from these isolates were identical, sug-
gesting that this integron has been recently acquired by a
broad range of bacterial species. In many of these cases the
location of the integron in plasmids has been docu-
mented, in agreement with the results found in the
present study, which may account for its widespread dis-
tribution.

In contrast to prior evidence of horizontal transfer of
dfrA12, orfF and aadA2 across bacterial lineages, in the
present study we found that the distribution of this inte-
gron was not random across chromosomal backgrounds,
since these were found only in ST213 isolates. A similar
situation was observed for SGI1, for which a rather narrow
distribution was observed (mainly cluster II isolates),
despite the proved mobility of SGI1 [42]. Our results pro-
vide evidence for the clonal dissemination of the island
rather than lateral transfer among diverse genotypes. The
association of pSTV with isolates harbouring SGI1 has
been previously described [71,72]. Taken together, these
results point out that although this Mexican Typhimu-
rium population is exposed to a broad genetic pool of
accessory genes, there are associations and restrictions
among genomic backgrounds and the environmental
floating genome.

Conclusion
The analysis of core and accessory genes in Mexican Typh-
imurium isolates allowed us to identify genetic subgroups
within the population. We found strong statistical associ-
ations among chromosomal genotypes and accessory
genes. The general patterns of association can be summa-
rized as follows: 1) the isolates harbouring pSTV were
ST19 or ST302, 2) all the isolates with SGI1 were ST19 and
most carried pSTV, 3) all the isolates harbouring pCMY-2
were ST213, and 4) all IP-1 were carried by ST213 isolates.
The low genetic diversity and the clonal pattern of descent
of accessory elements could be explained by a combina-
tion of evolutionary processes. This study provides infor-
mation about the importance of the accessory genome in
generating genetic variability within a bacterial popula-
tion.

Methods
Salmonella isolates and antimicrobial susceptibility 
testing
This study used 114 Typhimurium isolates collected for a
Mexican surveillance network comprised by four states.
The geographic locations of these states range from the
southeastern to the northwestern part of Mexico. The
more distant states (Yucatán and Sonora) are about 2,000

km apart and the closest states (Michoacán and San Luis
Potosí), about 450 km apart.

In all states, food-animal production is a major economic
activity, and most of the circulating retail meat is locally
produced. The sampling scheme was designed to follow
the food chain in a temporal fashion; details about the
epidemiologic design can be found in Zaidi et al. (2008).
Briefly, isolates from ill humans were obtained from
patients at state referral hospitals; isolates from asympto-
matic humans were collected from the feces of kindergar-
ten children; raw retail pork, beef and chicken were
purchased at supermarkets, butcher shops and open mar-
kets; and intestines were obtained from food-animals at
slaughter from municipal abattoirs [57,73]. The internal
review boards and ethics committees of all collaborating
hospitals in the surveillance network approved the proto-
col, and written informed consent was collected from the
guardians of all participants to obtain fecal and/or blood
samples, and use the clinical and microbiologic informa-
tion for scientific studies [57].

We did not use a systematic randomization method for
selecting strains for this study. Using a chart with a list of
each isolate by city of origin, strains were manually
selected by including at least one strain from animals,
meat or humans from a total of 61 cities. The sample
included 38 isolates from Yucatán, 22 from Michoacán,
32 from San Luis Potosí and 22 from Sonora. Sixty-two
isolates were from human samples (45 with diarrhea, 11
asymptomatic and 6 with systemic infection), and 52
from food-animals (18 from pork, 14 from beef, 6 from
chicken meat, 10 from swine intestine, and 4 from cattle
intestine). Isolates collected during 2000 and 2001 were
only available from Yucatán and San Luis Potosí. Isolates
collected from 2002 to 2005 were available for all four
states (Table 1 and Figure 3).

Isolates biochemically confirmed to be Salmonella were
serotyped according to the Kauffmann-White scheme
with commercial antisera, as described elsewhere [73]. All
isolates were tested with the disk diffusion method [74]
for susceptibility to ampicillin, chloramphenicol,
sulfisoxazole, streptomycin, tetracycline, gentamicin, kan-
amycin, nalidixic acid, trimethoprim-sulfamethoxazole,
ciprofloxacin and ceftriaxone. The minimum inhibitory
concentrations (MICs) for ciprofloxacin and ceftriaxone
were determined by agar dilution according to Clinical
and Laboratory Standards Institute guidelines [75]. For
the interpretation of MIC results for ciprofloxacin, high-
level resistance was defined as a MIC value  2 g/mL;
low-level resistance was defined as a MIC value  0.25 g/
mL and  1 g/mL.
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MLST analysis
Genomic DNA was extracted using the AquaPure
Genomic DNA Kits (Bio-Rad Laboratories, Hercules, Cal-
ifornia, USA). PCR amplifications were performed with
Taq DNA Polymerase (Invitrogen, Brazil), products were
purified with a PCR purification kit from Qiagen (Valen-
cia, California, USA) according to the manufacturer's rec-
ommendation, and submitted for sequencing at
Macrogen (Seoul, South Korea).

MLST was based on the partial sequences (~450 bp) of the
following seven housekeeping genes: aroC, dnaN, hemD,
hisD, purE, sucA and thrA, according to the Salmonella
MLST database [45]. The primers for PCR and sequencing
were previously described by Kidgell et al. (2002) [53].
Sequences were edited and aligned using Clustal W as
implemented in BioEdit [76], and submitted to the MLST
website for allele number assignment. The different
sequences at each locus were assigned to an existing or
novel allele, and each unique allelic profile (or multilocus
genotype) was assigned to a sequence type (ST).

The clonal relatedness of the STs was determined using
eBURSTv3 [77]. This program discerns the most parsimo-
nious patterns of descent of isolates within a clonal com-
plex from the predicted founder. The primary founder is
predicted on the basis of parsimony, as the ST that has the
largest number of single-locus variants in the group or
clonal complex. Clonal complexes are thought to emerge
from the rise in frequency and subsequent radial diversifi-
cation of clonal founders [77].

The MLST analysis for the first 66 isolates analyzed
showed that mostly purE presented polymorphisms
among the seven genes assessed. Since this gene had the
ability to discriminate the three main STs present in the
isolate set, we decided to implement an economical three-
gene MLST for the remaining 48 isolates of the sample, as
suggested elsewhere [10-12]. The genes selected were
purE, thrA and sucA; the latter two on the basis of their var-
iability among the Salmonella [45]. Only the seven-gene
MLST data were submitted to the Salmonella MLST data-
base.

PFGE macro-restriction analysis
PFGE fingerprints for the isolates collected from 2002 to
2005 were previously generated for the surveillance net-
work reported by Zaidi et al. (2008) [57]. For isolates col-
lected during 2000 and 2001, the macro-restriction
analysis was performed using the same conditions, fol-
lowing the methodology developed by the Centers for
Disease Control and Prevention (USA) [78]. The XbaI
restriction patterns were clustered using the unweighted
pair-group method with arithmetic averages. The analyses
were done with GelComparII using band matching and

Dice coefficients with a 1.5% band position tolerance. The
consistency of the PFGE clusters was obtained by calculat-
ing cophenetic values as implemented in GelComparII.
This method calculates the correlation between the den-
drogram-derived similarities and the matrix similarities.

Detection of pSTV and pCMY-2
Additional file 3, lists the primers and conditions for
detection of pSTV by PCR amplification of spvC, rck and
traT, and the presence of cmy-2. To determine the size of
pSTV and pCMY-2, plasmid profiles were generated by a
modification of the alkaline lysis procedure [79]. The
plasmid profile gels were transferred to positively charged
membranes (Amersham Hybond™-N+) and hybridised
with spvC and cmy-2 probes. Probes were derived from the
PCR products and labelled radioactively with 32P. Hybrid-
izations were performed under high stringency conditions
at 65–68°C.

Detection of integrons and SGI1
The primers and conditions used to detect integrons and
SGI1 are listed in Additional file 3. Integrons were
detected using primers CS-F and CS-R, targeting the 5' and
3' CS, which amplify the inserted cassettes (Figure 2).
These primers were also used for integron sequence deter-
mination. For sequencing of IP-1, which contains three
gene cassettes (dfrA12, orfF and aadA2), a third internal
primer (STR-R1) targeting the region aadA2 was used. The
isolates displaying the two integrons typical of SGI1 were
subject to amplification of the left, right and retronphage
junctions, as well as for the antimicrobial resistance genes
tetG, floR, pse-1 and aadA2. To further characterize the 5'
and 3' CS regions of integrons, as well as to search for iso-
lates containing integrons without gene cassettes, the class
1 integrase (intI1) and qacE1 genes were amplified.

To determine the location of integrons for some repre-
sentative isolates, plasmid profiles were generated and
transferred to positively charged membranes. Probes were
derived from the PCR products of intI1 and aadA2 genes,
and labelled radioactively with 32P. Hybridizations were
performed under high stringency conditions at 68°C.

Statistical Analysis
Statistical testing of differences in proportions was con-
ducted using the chi-square test with Yates' correction; p
values < 0.05 were considered significant. Strength of
association between nominal variables was assessed by
calculating the odds ratio (OR).

Nucleotide accession numbers and database searches
Only one representative sequence for each of the alleles
found was submitted to the GenBank database. The spvC,
rck, traT, aadA2 and pse-1 partial sequences for strain
sopus02–4 were submitted under accession numbers
Page 12 of 15
(page number not for citation purposes)



BMC Microbiology 2009, 9:131 http://www.biomedcentral.com/1471-2180/9/131
[GenBank:FJ460230], [GenBank:FJ460231], [GenBank:
FJ460232], [GenBank:FJ460233] and [Gen-
Bank:FJ460234], respectively. The cmy-2 and IP-1 (dfrA12,
orfF and aadA2) partial sequences of strain yuhs04–31
were submitted under accession numbers [Gen-
Bank:FJ460235] and [GenBank:FJ460236], respectively.
IP-1 from strain sores04–45 was submitted under acces-
sion number [GenBank:FJ460237]. IP-2 (dfrA17 and
aadA5) partial sequence from strain mirapus04-3-1 was
submitted under accession number [GenBank:FJ460238].
IP-3 (oxa-2 and orfD) from strain sohs04–31 was submit-
ted under accession number [GenBank:FJ460239]. IP-4
(aadA12) from strain slhs02–20 was submitted under
accession number [GenBank:FJ460240]. The nucleotide
sequences generated in this work were compared to public
databases using the BLAST algorithm at NCBI [80].
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