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Abstract

Background: C. trachomatis organisms carry a cryptic plasmid that encodes 8 open reading frames
designated as pORFI to 8. It is not clear whether all 8 pORFs are expressed during C. trachomatis
infection in humans and information on the functionality of the plasmid proteins is also very limited.

Results: When antibodies from women urogenitally infected with C. trachomatis were reacted with
the plasmid proteins, all 8 pORFs were positively recognized by one or more human antibody
samples with the recognition of pORF5 protein (known as pgp3) by most antibodies and with the
highest titers. The antibody recognition of the pORFs was blocked by C. trachomatis-infected HelLa
but not normal Hela cell lysates. The pgp3 fusion protein-purified human IgG detected the
endogenous pgp3 in the cytosol of C. trachomatis-infected cells with an intracellular distribution
pattern similar to that of CPAF, a chlamydial genome-encoded protease factor. However, the
human antibodies no longer recognized pgp3 but maintained recognition of CPAF when both
antigens were linearized or heat-denatured. The pgp3 conformation is likely maintained by the C-
terminal 75% amino acid sequence since further deletion blocked the binding by the human
antibodies and two conformation-dependent mouse monoclonal antibodies.

Conclusion: The plasmid-encoded 8 proteins are both expressed and immunogenic with pgp3 as
the most immunodominant antigen during chlamydial infection in humans. More importantly, the
human anti-pgp3 antibodies are highly conformation-dependent. These observations have provided
important information for further understanding the function of the plasmid-encoded proteins and
exploring the utility of pgp3 in chlamydial diagnosis and vaccination.
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Background

C. trachomatis, consisting of many different serovars rang-
ing from A to L plus various subtypes, with serovars A to
C mainly infecting human ocular epithelial tissues, poten-
tially leading to preventable blindness [1], and D to K
infecting human urogenital tracts, which can potentially
cause severe complications such as ectopic pregnancy and
infertility [2]. The L or LGV (lymphogranuloma
venereum) organisms including serovars L1-3 are more
invasive than other urogenital tract serovars and can also
infect rectal tissues. The L2 organisms recently caused sev-
eral outbreaks in certain human populations [3,4]. MoPn
(mouse pneumonitis agent) used to be classified as a
murine biovar of C. trachomatis is now categorized as an
independent species called C. muridarum despite the high
degree of genome sequence conservation between MoPn
and C. trachomatis serovars. Nevertheless, MoPn has been
extensively used in a mouse urogenital infection model to
study C. trachomatis pathogenesis and immune responses
[5-7]. Despite the apparent differences in tissue tropism,
all C. trachomatis serovars including MoPn undergo a
common intracellular biphasic growth cycle [8]. A typical
infection starts with the entry of elementary bodies (EBs),
the infectious form, into host cells via endocytosis [9]. The
internalized EBs can rapidly differentiate into reticulate
bodies (RBs), the metabolically active but non-infectious
form of chlamydial organisms. After numerous rounds of
replication, the RBs can differentiate back into EBs prior to
spreading to adjacent cells. All Chlamydia species can
accomplish its entire biosynthesis, replication and differ-
entiation within the cytoplasmic vacuole (also termed
inclusion). The successful intracellular replication along
with the infection-induced inflammatory responses is
thought to be mainly responsible for Chlamydia-induced
diseases [10].

Besides a highly conserved genome, all C. trachomatis
serovars also contain a 7.5 kb cryptic plasmid [11]. The
plasmids from serovars A (pCTA; ref: [12], B (pCTT1; ref:
[13], D (pCHL1; ref: [14], L1 (pLGV440; ref: [15], L2
(PLGV2; ref: [16] and MoPn Nigg strain (pMoPn; ref:
[11,17] have been sequenced. The plasmid sequences are
very similar (>96% amino acid sequence identity between
different C. trachomatis human serovars and 82% between
MoPn and the C. trachomatis human serovars), all coding
for 8 putative ORFs designated as pORF1 to 8 [11]. The
wide distribution of the cryptic plasmid suggests that
there is a positive selection for maintaining the plasmids
to benefit chlamydial survival. At the same time, chlamy-
dial strains/isolates that are either deficient in the plasmid
or carry mutated plasmids have been identified [18-23],
suggesting that there might also be host immune selection
pressure against the plasmid-encoded antigens and the
plasmid-encoded function can be compensated by genes/
proteins encoded elsewhere. To understand the functions
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of the plasmid-encoded proteins, we tested whether the
plasmid proteins are expressed and immunogenic during
C. trachomatis infection in humans in the current study.
Since it is difficult to directly detect chlamydial proteins
and evaluate chlamydial protein immunogenicity in
humans, we detected the recognition of chlamydial fusion
proteins by human antibodies in ELISA as an indirect
indicator for both chlamydial protein expression and
immunogenicity in individuals with C. trachomatis infec-
tion. We found that the plasmid-encoded 8 proteins were
recognized by one or more human serum samples, sug-
gesting that they were all made during human infection.
Importantly, we found that pORF5 (pgp3) was the most
immunodominant antigen among the 8 plasmid proteins
and as dominant as CPAF, a chlamydial genome-encoded
protease factor known to be immunodominant and
secrete into host cell cytosol. Indeed, the pgp3 fusion pro-
tein-purified human IgG detected the endogenous pgp3
in the cytosol of C. trachomatis-infected cells in addition to
its intra-inclusion localization. Interestingly, the human
antibody recognition of pgp3 but not CPAF as highly con-
formation-dependent since linearizing or denaturing
either pgp3 fusion protein or the endogenous protein
blocked the human antibody recognition of pgp3 while
similar treatments to CPAF still permitted a significant
recognition of CPAF by the same human antibodies.
These observations have not only demonstrated that the
fusion protein ELISA is a relevant experimental system for
analyzing antibody responses to chlamydial infection in
humans, but also more importantly, provided useful
information for further developing pgp3 as a diagnostic
reagent and/or vaccine candidate.

Results

I. Human antibody recognition of C. trachomatis plasmid
proteins

To determine whether the plasmid-encoded proteins are
expressed and immunogenic during C. trachomatis infec-
tion in humans, the 8 pORFs were expressed as GST fusion
proteins and the fusion proteins were reacted with 15
human antisera in an ELISA (Fig. 1). Each of the 8 plasmid
fusion proteins were positively recognized by at least one
antiserum (panel b, column# 1 to 8), suggesting that the
plasmid proteins are all expressed during human infec-
tion. However, there is a great variation in both the anti-
body binding frequency and titer among the plasmid
proteins. The plasmid protein pORF5 (also called pgp3)
was recognized by all fifteen human antisera, pORF7 by
three, pORF1, 4 & 6 by two and pORF2, 3 & 8 by one only.
Five C. trachomatis genome-encoded proteins were used as
immunodominant antigen controls and each of them was
recognized by 7 or more human antiserum samples (col-
umn# 9-13), which is consistent with our previous obser-
vations [24,25]. Surprisingly, the plasmid-encoded pgp3
was as immunodominant as CPAF, a chlamydial secreted
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Figure |

Reactivity of human antibodies with chlamydial fusion proteins. The GST fusion proteins were precipitated with glu-
tathione-agarose bead from bacterial lysates and the precipitates were checked in SDS polyacrylamide gel for quality (panel a).
The same lysates were used as the source of fusion proteins in ELISA. 15 patient serum antibodies (along the Y-axis of panel b)
were each diluted at 1:500 and reacted with the bacterial lysates containing GST-chlamydial fusion proteins or GST alone
(listed both on the top and in the bottom of the figure). Each positive reaction was marked with a horizontal bar (panel b) and
the number of sera reacted with each fusion protein was plotted in panel c. The average ODs were calculated (panel d). The 15
sera were pooled and measured against the fusion proteins (panel e). A pooled serum from 8 health individuals (pooled nega-
tive serum) was used to similarly react with the fusion proteins (panel f). Note that pgp3 and CPAF fusion proteins were rec-
ognized by most antiesra and with the highest titers.
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protease factor known to be most immunodominant
when evaluated together with many other C. trachomatis
genome-encoded proteins [25] and to induce protective
immunity against chlamydial diseases when tested in a
murine urogenital infection model [5]. The immunodom-
inance was not only reflected by the high frequency of
human antiserum recognition (panel ¢, both pgp3 and
CPAF were positively recognized by all 15 human antis-
era) but also the high antibody binding titers. Both pgp3
and CPAF displayed the highest antibody binding titers
when the titers of each individual antiserum binding to
the fusion proteins were averaged (panel d) or when the
15 antiserum samples were pooled at equal ratio and
assayed against the fusion proteins (e). A pooled negative
antiserum failed to react with any of the fusion proteins
significantly (panel f). To further confirm the antibody
binding specificity, we used the lysates made from either
C. trachomatis-infected HeLa cells or HeLa cells alone to
pre-absorb the human antisera prior to reacting with the
fusion proteins in ELISA (Fig. 2). We found that the reac-
tivity of the pooled positive antiserum with the fusion
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Figure 2

The effect of preabsorption with chlamydial antigens
on human antibody reactivity with the fusion pro-
teins. The pooled positive human serum from |5 patients
was absorbed with or without Hela alone or serovar D-
infected Hela cell lysates (as indicated along the right side of
the figure) prior to reacting with the fusion proteins listed in
the bottom of the figure in ELISA. The pooled positive serum
reactivity with chlamydial fusion proteins was completely
blocked by the absorption with the C. trachomatis-infected
Hela cell lysates (panel c) but not Hela alone lysates (panel
b).
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proteins (panel a) was completely removed by the absorp-
tion with the C. trachomatis-infected cell lysates (panel c)
but not HelLa alone lysates (panel b), demonstrating that
the human antibodies reactive with the fusion proteins
were also able to recognize the chlamydial endogenous
antigens produced during infection in Hela cells. The
above observations together have suggested that all 8 plas-
mid proteins are expressed by C. trachomatis during
human infection and pgp3 is most immunogenic. Since
both pgp3 and CPAF were dominantly recognized by the
human antibodies and the antibody reactivity with both
was blocked by the C. trachomatis-infected cell lysates, we
further evaluated whether there was a cross-reactivity
between pgp3 and CPAF by human antibodies (Fig. 3).
We found that preabsorption of the pooled human posi-
tive antiserum with pgp3 fusion proteins only blocked the
antibody reactivity with pgp3 but not CPAF, MOMP or
HSP60 (panel b) while preabsorption with CPAF fusion
protein blocked the antibody binding to CPAF but not
pgp3, MOMP or HSP60 (panel c), demonstrating that the
pgp3-reactive human antibodies did not cross-react with
CPAF or vice versa. Interestingly, the human antibodies
purified with pgp3 or CPAF fusion proteins both detected
the endogenous proteins in the cytosol of the C. trachom-
atis-infected cells in addition to their intra-inclusion local-
ization (Fig. 4, panels a & c) while the MOMP or HSP6O
fusion protein-purified human antibodies detected sig-
nals only inside the inclusions (panels e & f). The locali-
zation of the corresponding endogenous chlamydial
proteins was confirmed with antigen-specific mouse anti-
bodies (panels b, d, f & h).

2. Mapping pgp3 immunodominant regions

The robust recognition of pgp3 by human antibodies
motivated us to further identify the pgp3 regions respon-
sible for the immunodominance. The pgp3 protein con-
sisting of 264 amino acids was expressed in 9 different
fragments with each varying by 66 amino acids (desig-
nated as F1 to 9, Fig. 6, left side) in the form of GST fusion
proteins (Fig. 5, panel a). When these 9 fragments along
with the full length pgp3 fusion proteins were reacted
with the pooled positive human antiserum sample, we
found that the F6 fragment lacking the N-terminal 66
amino acids was recognized by the human antibodies as
strongly as the whole pgp3 protein was. However, no
other fragments were significantly recognized although
there was a minimal reactivity of F2 & 3 with the human
antibodies (Fig. 5, panel b). The sera pooled from mice
urogenitally infected with live chlamydial organisms also
strictly recognized the full-length pgp3 and fragment 6
(panel c). However, the antiserum raised by immunizing
mice with pgp3 fusion protein recognized all fragments,
suggesting that all fragments can be immunogenic if pre-
sented to host immune cells. Nevertheless, the highest
reactivity of the pgp3 immunized mouse serum was still
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The effect of preabsorption with GST fusion proteins
on human antibody reactivity with the microplate-
immobilized fusion proteins. The pooled human serum
was 5-fold serially diluted as indicated along the X-axis and
reacted with the microplate-immobilized GST-pgp3 (filled
square), GST-CPAF (open square), GST-MOMP (open trian-
gle) and GST-HSP60 (filled triangle). The reactivity was
expressed as OD at 405 nm as indicated along the Y-axis.
The pre-absorption of the pooled antiserum with GST-pgp3
fusion protein only blocked the human antibody binding to
the pgp3 but not other fusion proteins (panel b) while the
pre-absorption with GST-CPAF fusion protein only blocked
antibody binding to CPAF but not other fusion proteins
(panel c).

with the full-length and F6 (panel d), suggesting that
many antibody species produced during pgp3 fusion pro-
tein immunization mimicked the specificities of human
or mouse antibodies produced during live infection.
Indeed, two monoclonal antibodies (mAbs) were selected
out from the pgp3 fusion protein-immunized mice and
both only recognized the full-length pgp3 and fragment 6
(panels e-f). These observations have demonstrated that
the C-terminal three quarters of pgp3 amino acid
sequence is required for maintaining a conformation that
is recognizable by human and mouse anti-pgp3 antibod-
ies.

3. Human antibody recognition of pgp3 is highly
conformation-dependant

When we attempted to use Western blot to confirm the
human antibody binding to the chlamydial fusion pro-
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teins, we found that pgp3 was no longer recognizable by
the human antibodies (Fig. 7). Although the human anti-
bodies recognized both pgp3 and CPAF fusion proteins
with an equivalent titer in ELISA (Fig. 3), the same anti-
body sample only minimally recognized the pgp3 at
1:4000 (Fig. 7, panel b) while was still able to bind CPAF
even after 1:1000,000 dilution (panel f) in a Western blot
assay. Clearly, linearizing fusion proteins in SDS gel dra-
matically reduced the human antibody binding to pgp3.
However, the linearized pgp3 full length or fragment
fusion proteins were significantly recognized by the
mouse antibody raised by immunizing mice with GST-
pgp3 (Fig. 8, panel a), suggesting that pgp3 sequences
were antigenic even after linearization and the lack of rec-
ognition of the linearized pgp3 by the human antibody
was due to lack of the appropriate antibody specificities.
The observations that the linearized pgp3 and its fragment
fusion proteins were not recognized by antisera produced
during live chlamydial infection either in human (Fig. 8,
panel e) or mice (d) or the pgp3-specific mAbs (b & c)
while all these antibodies recognized pgp3 in ELISA (Fig.
5) have demonstrated that these antibodies are conforma-
tion-dependent.

We next tested whether the human antibody recognition
of the endogenous pgp3 was also conformation-depend-
ent. When the endogenous pgp3 and CPAF were precipi-
tated with specific antibodies and used as the antigens in
a Western blot (Fig. 9), we found that the human anti-
body only recognized CPAF (panel ¢, lane 3) but not pgp3
(lane 2), demonstrating that the endogenous pgp3 after
linearization was not recognizable by the human antibod-
ies, confirming the results obtained with fusion proteins.
We further compared the effects of heat treatment of anti-
gens on human antibody recognition of pgp3 and CPAF
(Fig. 10). The human antibodies successfully precipitated
down both pgp3 and CPAF from the C. trachomatis-
infected cell cytosolic samples (lane#2-4). However, heat
treatment of the cytosolic samples by boiling for 10 min
significantly blocked the human antibody precipitation of
pgp3 but not CPAF, suggesting that most pgp3-specific
antibody species in the human antisera recognized pgp3
epitopes that are heat-labile.

Discussion

Although the C. trachomatis plasmid is predicted to
encode 8 putative ORFs, it is not known whether these
proteins are expressed and immunogenic during chlamy-
dial infection in humans. Here, we have used a fusion pro-
tein ELISA approach to analyze human antibody
responses to C. trachomatis infection and demonstrated
that all the 8 pORFs are both expressed and immunogenic
during chlamydial human infection. Mre importantly, we
have presented convincing evidence that pORF5 or pgp3
is a most immunodominant antigen and antibodies pro-
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Blue=Hoechst DNA dye

Figure 4

Detection of endogenous chlamydial antigens in C. trachomatis serovar L2-infected cells by fusion protein-puri-
fied human IgG (panels a, c, e & g) or antigen-specific mouse antibodies (panels b, d, f & h). The primary antibody
staining was visualized with either a goat anti-human IgG Cy3 or goat anti-mouse IgG Cy3 conjugates (red). The chlamydial
inclusions were visualized with a rabbit anti-chlamydial organism antibody plus a goat anti-rabbit IgG Cy2 conjugate (green).
The DNA was visualized by the Hoechst DNA dye (blue). Note that both the pgp3 and CPAF-purified human IgG localized the
corresponding endogenous antigens inside the host cell cytosol of the C. trachomatis-infected cells.
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Figure 5

Mapping immunodominant regions of pgp3 by react-
ing the full-length pgp3 and nine fragment GST
fusion proteins (panel a) with the pooled human
antisera (b) and mouse sera (c) respectively. The poly-
clonal antibody (pAb, d) and mAbs (clone 2H4, e; clone 4E6,
f) raised by immunizing mice with pgp3 fusion protein. The
antibody reactivity was displayed as OD along the Y-axis. "*"
the numbers in each panel indicate the actual OD values
obtained for a particular antigen-antibody interaction as
marked.

duced against this protein during live chlamydial infec-
tion are highly conformation-dependent. First, the 15
antisera from women urogenitally infected with C. tracho-
matis all recognized pgp3 with high titers while the rest 7
pORF fusion proteins were recognized by the human
antisera at much lower frequencies and titers. Second, by
comparing to other known immunodominant antigens
encoded in the C. trachomatis genome, including the tradi-
tionally known strong antigens HSP60 and MOMP
[26,27] and the recently discovered immundominant
antigens IncA, CT813 (Inc; ref: [24] and CPAF [25,28],
pgp3 was recognized by the human antibodies as domi-
nantly as CPAF, a most immunodominant antigen among
all chlamydial proteins analyzed so far [25]. Finally,
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Figure 6

A summary of the reactivity between the GST fusion
proteins and various antibodies measured in Fig. 5.
"+" stands for minimal, "++" reasonable recognition and
"+++" strong reactivity. Note that the two mAbs and the
pooled mouse or human sera only dominantly recognized the
full length pgp3 and the fragment 6 (missing the N-terminal
66 amino acids) while the pgp3-immunized mouse antibody
recognized pgp3 and its many fragments.

although both pgp3 and CPAF are immunodominant in
women with C. trachomatis urogenital infection, pgp3 but
not CPAF recognition by human antibodies was blocked
by either linearization or boiling of the antigens, demon-
strating the conformation-dependence of the human anti-
pgp3 antibodies. The finding on the restricted conforma-
tional dependence of human antibody recognition of
pgp3 was a surprise to us. It is generally thought that
epitopes of membrane proteins such as MOMP are highly
conformation-dependent. However, significant amounts
of human antibodies still recognized MOMP on Western
blot while only a minimal recognition of pgp3 was
detected in the same assay, suggesting that pgp3 can stably
maintain its conformation to elicit conformation-depend-
ent antibodies during infection in humans.

Although both human and animal antibodies have previ-
ously been shown to react with the plasmid-encoded 28
kDa pgp3, the results varied a lot. While some reported
more than 80% patients who were positive for C. trachom-
atis-specific antibodies on MIF (micro-immunofluores-
cence assay) reacted with pgp3 [29], other reports
indicated a much lower detection rate of the anti-pgp3
antibodies in C. trachomatis-infected individuals with a
detection frequency as low as 57-59% [30,31]. It
appeared that a higher detection rate was achieved when
the pgp3 antigen was used in soluble form [32] while anti-
bodies from Chlamydia-infected animals or humans
(even at a dilution as low as 1:100) could only detect a
week signal of pgp3 on Western blot [33]. These varied
detection results led to the hypothesis that the human
anti-pgp3 antibodies may be conformation-dependent
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Figure 7

Reactivity of human antibodies with pgp3 and control
fusion proteins on Western blot. (A) GST fusion pro-
teins as listed on top of the figure were analyzed in SDS gel
(panel a) and parallel gels were blotted onto nitrocellulose
membrane for reacting with the pooled positive human
antiserum at various dilutions as listed along the left of the
figure. The primary antibody reactivity was visualized with a
goat anti-human IgG conjugated with HRP in ECL as
described in the method section. The corresponding protein
bands were indicated on the right of the figure. Note that the
pooled human antiserum only minimally reacted with the
pgp3 band at 1:4,000 (panel b) while remaining reactive with
CPAF even after 1:1,000,000 dilution (panel f), suggesting
that the human anti-pgp3 antibodies are highly conformation-
dependent.
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[32,34]. However, no serious effort was made to test the
hypothesis. The current study has comprehensively com-
pared the antibody recognition of pgp3 and CPAF under
various native and denaturing conditions and presented
the first compelling experimental evidence demonstrating
that anti-pgp3 antibodies produced during chlamydial
live infection are indeed highly conformation-dependant.

Interestingly, pgp3 immunization via a DNA vaccination
induced a protective immunity that significantly reduced
the shedding of live organisms after an intra-vaginal chal-
lenge infection with C. trachomatis serovar D [35]. Coinci-
dentally, immunization with CPAF, another secreted
chlamydial protein that was dominantly recognized by
human antibodies, also induced protective immunity
against chlamydial infection [5]. Furthermore, the CPAF-
induced immunity even reduced pathologies in mouse
oviducts induced by chlamydial urogenital challenge
infection. It will be interesting to evaluate whether the
pgp3 immunization can also decrease the Chlamydia-
induced pathologies in the mouse oviducts. Given the
new knowledge that pgp3 is a highly conformation-
dependent antigen, whether immunization with native-
like pgp3 protein can induce more relevant immunity
against chlamydial infection deserves further evaluation.
This hypothesis is worth testing since pgp3 also localizes
inside the inclusion and may even be a component of the
outer membrane complex [34].

Methods

I. Chlamydial infection

The C. trachoamtis serovars D, L2 and MoPn (C. muri-
darum Nigg strain) organisms were propagated in HeLa
cells (human cervical carcinoma epithelial cells, ATCC
cat# CCL2), purified, aliquoted and stored as described
previously [24]. To infect HeLa cells, cells grown in either
24 well plates with coverslips or tissue flasks containing
DMEM (GIBCO BRL, Rockville, MD) with 10% fetal calf
serum (FCS; GIBCO BRL) at 37°C in an incubator sup-
plied with 5% CO, were inoculated with chlamydial
organisms (servers D or L2) at an MOI of 0.5 (or as indi-
cated in individual experiments) as described previously
[24]. The infected cultures were processed at different time
points after infection for either inmmunofluorescence
assays or Western blot analyses as described below. To
infect mice (Balb/c, female, 6-8 week old, JAX® Mice and
Services, Bar Harbor, Maine 04609), the MoPn organisms
were intra-vaginally inoculated into mice at a dose of 5 x
104 IFUs (inclusion forming units) per mouse as
described previously [5]. The infection was monitored by
quantitating the IFUs recovered from the mouse vaginal
swabs. Eighty days post infection, mouse blood was col-
lected for preparing the mouse antisera. The serum sam-
ples from 5 mice were pooled together at an equal ratio,
designated as the pooled mouse antiserum.
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Figure 8

Reactivity of human antibodies with pgp3 fragment fusion proteins. The pgp3 and its fragment fusion proteins were
reacted with the pooled human at 1:4,000 dilution (panel €) and mouse antisera at 1:4,000 (d), both produced during live
chlamydial infection, and polyclonal antibody (pAb, a) and mAbs (clone 2H4, b; clone 4E6, c) raised by immunizing mice with
pgp3 fusion protein as listed along the left of the figure. The corresponding protein bands were indicated on the right of the fig-
ure. Note that only the anti-pgp3 fusion protein-raised antibody recognized pgp3 and its many fragments and no other antibod-
ies picked any significant signals.
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Figure 9

Reactivity of human antibodies with endogenous
pgp3 on Western blot. The C. trachomatis L2-infected cell
cytosolic preps (L2S100) were precipitated with protein G
agarose beads (Pr.G-Beads) bound with anti-pgp3 (mAb
clone 2H4) or anti-CPAF (clone 54b) antibodies as indicated
on top of the figure. The precipitates were resolved in SDS
gels and blotted for reacting with the anti-GSP-pgp3 (pAb;
panel a), anti-CPAF (100a; b) or the pooled positive human
antiserum (c) in a Western blot as listed along the left of the
figure. Lane#t| was loaded with the L2S100 without precipita-
tion as positive antigen control. The corresponding protein
bands were indicated on the right of the figure. Note that
human antibodies detected both the precipitated endog-
enous CPAF C- & N-terminal fragments but not pgp3.

2. Fusion protein production and fusion protein ELISA

The eight pORFs encoded by the pCHL1 plasmid [14]
from C. trachomatis serovar D organisms were cloned into
pGEX vectors (Amersham Pharmacia Biotech, Inc., Piscat-
away, NJ). The cloned pORFs were expressed as fusion
proteins with glutathione-s-transferase (GST) fused to the
N-terminus of the chlamydial proteins as previously
described [25]. The fusion proteins were purified using
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Figure 10

Reactivity of human antibodies with endogenous
pgp3 in immunoprecipitation. Various amounts of the
pooled positive human antiserum was used to precipitate
chlamydial endogenous antigens from L2S100 with or with-
out prior heat treatments either at 56°C for 30 min or boil-
ing for 10 min. The human antibody precipitates were
detected with either the anti-pgp3 polyclonal (pAb; panel a)
or anti-CPAF monoclonal (clone 100a, panel b) antibodies as
shown on the left of the figure. The corresponding protein
bands were indicated on the right of the figure. Note that
although the human antibodies precipitated both the endog-
enous pgp3 and CPAF from the native L2S100, these human
antibodies no longer reacted with pgp3 in boiled L2S100
sample but maintaining the ability to pull down CPAF.

glutathione-conjugated agarose beads (Pharmacia) and
the purified proteins were used to immunize mice for pro-
ducing both polyclonal antibodies (pAb; ref: [36] and
monoclonal antibodies (mAb; ref: [26,37]. Two mAbs
were successfully produced against pORF5 (pgp3), desig-
nated as clones 2H4 (IgG2a) and 4E6 (IgG1). In addition,
pgp3 was also expressed in 9 different fragments desig-
nated as F1 to F9 for the purpose of mapping immunodo-
minant regions recognized by human or mouse
antibodies. The primers for cloning the nine pgp3 frag-
ments are as follows: F1 forward primer 5'CGC-GGATCC
(restriction site)-ATG GGA AAT TCT GGT TTT TAT TTG
(overlapping region)-3', reverse 5'TTTTCCTTITT-GCG-
GCCGC-TTA AGA AGC ATT GGT TGA TGA ATT-3'; F2 for-
ward primer is the same as F1 forward, reverse
5'TTTTCCTTTT-GCGGCCGC-TTA GTT GCATTG AAT TIT
ATT AGT G-3'; F3 forward primer is the same as F1 for-
ward, reverse 5'TTTTCCTTTT-GCGGCCGC-TTA TGA GTA
TCC ATA ACT AAT CG-3'; F4 forward primer 5'-CGC-
GGATCC-ATT ACA ATT GGT TTG GTA GCG G-3', reverse
5'-TTTTCCTTIT-GCGGCCGC-TTA GTT GCA TIG AAT
TIT ATT AGT G-3';F5 forward primer is the same as F4 for-
ward, reverse 5'-TTTTCCTITT-GCGGCCGC-TTA TGA
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GTA TCC ATA ACT AAT CG-3'; F6 forward primer is the
same as F4 forward, reverse 5'-TTTTCCTTTT-GCG-
GCCGC-TTA AGC GIT TGT TTG AGG TAT TA-3'; F7 for-
ward primer 5'-CGC-GGATCC-GGG TTA TTC ACT CCC
AGT AAC-3', reverse 5'-TTTTCCTTTT-GCGGCCGC-TTA
TGA GTA TCC ATA ACT AAT CG-3'; F8 forward primer is
the same as F7 forward, reverse 5'-TTTTCCTTTT-GCG-
GCCGC-TTA AGC GTT TGT TTG AGG TAT TA-3'; F9 for-
ward primer 5'-CGC-GGATCC-TCA GGC ATT CCT AAT
TTA TGT AG-3'. The F9 reverse primer is the same as F8
reverse primer. The GST fusion proteins or GST alone were
immobilized onto glutathione-coated microplates
(Pierce, Rockford, IL) as antigens in the fusion protein
ELISA as described previously [25]. Briefly, after the
appropriate protein induction, the bacteria were har-
vested to make lysates and the lysates were aliquoted and
stored at -80°C. The quality of the expressed fusion pro-
teins was assessed by purifying the fusion proteins from a
portion of the lysates using the glutathione-conjugated
agarose beads (Amersham Biosciences Corp). The fusion
proteins were checked on SDS-polyacrylamide gels
stained with a Coomassie blue dye (Sigma). The bacterial
lysates that showed a prominent band at the expected
molecular weight position were used for the microplate
ELISA.

Human serum samples were collected from women seen
in the Project SAFE research clinic in San Antonio and
diagnosed with C. trachomatis cervical infections. The
diagnosis was based on the detection of C. trachomatis-
specific nucleic acids in endocervical secretions using a
ligase chain reaction method without distinguishing the
serotypes of the organisms (Abbott LCX, Abbot Laborato-
ries, Chicargo, IL). The sera were collected at the time of
clinic visits and stored in aliquots at -20°C. An IRB
exempt permit is in place for the current study. The results
from 15 human antisera were presented in the current
study. In some experiments, the 15 human antisera from
C. trachomatis-infected individuals were also pooled at
equal ratio for analyses and the pooled serum was desig-
nated as pooled positive human antiserum. A total of 8
sera from healthy female individuals without C. trachom-
atis infection were similarly pooled (pooled negative
antiserum) and used as negative controls. To minimize
the detection of cross-reactive antibodies (human sera
may contain antibodies reactive with bacterial antigens
that potentially contaminate the microplate wells during
fusion protein array), all serum samples were pre-
absorbed with bacterial lysates. The bacterial lysates were
made in the same way as the fusion protein-containing
lysates were made except that the XL1-blue bacteria trans-
formed with the pGEX-6p-2 vector plasmid were used.
Both the patient and health individual serum samples
after the pre-absorption were titrated for their ability to
recognize chlamydial antigens on an immunofluores-
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cence assay. Although the patient sera displayed high anti-
body titers (>1:1,000) in recognizing chlamydial
antigens, the normal sera did not show any significant
binding to the chlamydial antigens (<1:20). For the
microplate array assay, the pre-absorbed serum samples
were diluted in PBS containing 10% FCS and applied to
the fusion protein-bound microplates for 2 hrs at RT. After
washing, HRP (Horse Radish Peroxidase)-conjugated goat
anti-human IgG (Jackson ImmunoResearch Laboratories,
Inc., West Grove, PA) in combination with substrate ABTS
(Sigma) was used to visualize the primary antibody bind-
ing. The human antibody binding to chlamydial fusion
proteins was quantitated by reading the absorbance (OD)
at 405 nm in a microplate reader (Molecular device, Ram-
sey, MN). In some assays, the human antibody samples
were further absorbed with lysates made from either HeLa
cells alone or C. trachomatis serovar D-infected HeLa cells
at4°C overnight in addition to the bacterial lysate absorp-
tion.

3. Immunofluorescence assay

HelLa cells grown on coverslips were fixed with 2% para-
formaldehyde (Sigma, St. Luis, MO) dissolved in PBS for
30 min at room temperature, followed by permeabiliza-
tion with 1% saponin (Sigma) for an additional 30 min.
After washing and blocking, the cell samples were sub-
jected to antibody and chemical staining. Hoechst (blue,
Sigma) was used to visualize nuclear DNA. A rabbit anti-
chlamydial organism antibody (R1L2, raised with C. tra-
chomatis 12 organisms, unpublished data) plus a goat
anti-rabbit IgG secondary antibody conjugated with Cy2
(green; Jackson ImmunoResearch Laboratories, Inc., West
Grove, PA) was used to visualize chlamydial inclusions.
The various mouse antibodies plus a goat anti-mouse IgG
conjugated with Cy3 (red; Jackson ImmunoResearch)
were used to visualize the corresponding antigens. The
mouse antibodies include: pAbs made against the
PORF5(pgp3)-GST fusion proteins (current study) and
mAbs 100a against CPAFct C-terminus [36], MC22
against the major outer membrane protein (MOMP) and
BC7.1 against chlamydial HSP60. In some cases, the pri-
mary antibodies were human IgG molecules purified with
the corresponding GST fusion proteins-conjugated to glu-
tathione-agarose beads. To visualize the binding of the
purified human IgG antibodies to chlamydial antigens, a
goat anti-human IgG conjugated with Cy3 (red; Jackson
ImmunoResearch Laboratories, Inc.) was used.

The cell samples after the appropriate immuno-labeling
were used for image analysis and acquisition with an
Olympus AX-70 fluorescence microscope equipped with
multiple filter sets (Olympus, Melville, NY) as described
previously [36,38]. Briefly, the multi-color-labeled sam-
ples were exposed under a given filter set at a time and the
single color images were acquired using a Hamamatsu
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digital camera. The single color images were then super-
imposed with the software SimplePCI to display multi-
colors. An Olympus FluoView™ Laser Confocal Micro-
scope (Olympus) was used to further analyze the co-
stained samples at the UTHSCSA institutional core facility
as described previously [39,40]. All microscopic images
were processed using the Adobe Photoshop program
(Adobe Systems, San Jose, CA).

4. Western blot assay

The Western blot assay was carried out as described else-
where [36,41,42]. Briefly, the purified fusion protein,
Chlamydia-infected cell cytosolic fraction or antibody-
precipitated endogenous chlamydial protein samples
were solublized in 2% SDS sample buffer and loaded into
SDS polyacrylamide gel wells. The cytosolic fraction also
called S100 was prepared as previously described [36,43].
In some cases, cytosolic preps from Chlamydia-infected
cells (L2S100) were precipitated with protein G agarose
beads (Pharmacia) bound with human antibodies, anti-
pgp3 (mAb clone 2H4) or anti-CPAF (clone 54b) anti-
bodies and the precipitates were resolved in SDS gels for
Western blot. After electrophoresis, the resolved protein
bands were transferred to nitrocellulose membranes and
the membrane blots were detected with primary antibod-
ies, including the pooled positive or negative human
antisera, mouse pAbs produced during chlamydial live
infection in mice or raised with GST-pgp3 fusion protein
via immunization of mice or mouse mAbs clone 100a
against CPAF C-terminus [36], clones 2H4 & 4E6 against
pgp3. The primary antibody binding was probed with an
HRP (horse radish peroxidase)-conjugated goat anti-
human or mouse IgG secondary antibody (Jackson
Immunologicals, Westgrove, PA) and visualized using the
enhanced chemiluminescence (ECL) kit (Santa Cruz Bio-
tech).
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