
BioMed CentralBMC Microbiology

ss
Open AcceResearch article
Dxr is essential in Mycobacterium tuberculosis and fosmidomycin 
resistance is due to a lack of uptake
Amanda C Brown and Tanya Parish*

Address: Institute for Cell and Molecular Science, Barts and the London School of Medicine and Dentistry, London, UK

Email: Amanda C Brown - a.c.brown@qmul.ac.uk; Tanya Parish* - t.parish@qmul.ac.uk

* Corresponding author    

Abstract
Fosmidomycin is a phosphonic antibiotic which inhibits 1-deoxy-D-xylulose 5-phosphate
reductoisomerase (Dxr), the first committed step of the non-mevalonate pathway of isoprenoid
biosynthesis. In Mycobacterium tuberculosis Dxr is encoded by Rv2870c, and although the antibiotic
has been shown to inhibit the recombinant enzyme [1], mycobacteria are intrinsically resistant to
fosmidomycin at the whole cell level. Fosmidomycin is a hydrophilic molecule and in many bacteria
its uptake is an active process involving a cAMP dependent glycerol-3-phosphate transporter
(GlpT). The fact that there is no glpT homologue in the M. tuberculosis genome and the highly
impervious nature of the hydrophobic mycobacterial cell wall suggests that resistance may be due
to a lack of cellular penetration.

Results: We demonstrated that dxr (Rv2780c) is an essential gene in M. tuberculosis, since we could
not delete the chromosomal copy unless a second functional copy was provided on an integrating
vector. This confirmed that the intracellular target of fosmidomycin was essential as well as
sensitive. We looked at the uptake of fosmidomycin in two mycobacterial species, the slow-
growing pathogenic M. tuberculosis and the fast-growing, saprophytic Mycobacterium smegmatis; both
species were resistant to fosmidomycin to a high level. Fosmidomycin was not accumulated intra-
cellularly in M. tuberculosis or M. smegmatis but remained in the extra-cellular medium. In contrast,
fosmidomycin uptake was confirmed in the sensitive organism, Escherichia coli. We established that
the lack of intra-cellular accumulation was not due to efflux, since efflux pump inhibitors had no
effect on fosmidomycin resistance. Finally, we demonstrated that fosmidomycin was not modified
by mycobacterial cells or by extracts but remained in a fully functional state.

Conclusion: Taken together, these data demonstrate that fosmidomycin resistance in M.
tuberculosis and M. smegmatis results from a lack of penetration of the antibiotic to the site of the
sensitive target.

Background
The mycobacteria contain a number of important patho-
gens which infect both animals and humans. The World
Health Organisation (WHO) has estimated that eight mil-
lion humans per annum are newly infected with Mycobac-

terium tuberculosis, (the main causative agent of human
tuberculosis), resulting in almost two million deaths per
year [2]. Currently the only available vaccine is the live,
attenuated Mycobacterium bovis Calmette-Guerin (BCG)
strain; however, BCG does not offer complete immunity,
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and protection is highly variable due to a wide range of
social, economic and environmental factors. Opportunis-
tic mycobacterial pathogens have been identified as caus-
ing disseminated disease in HIV-infected or otherwise
immuno-compromised individuals. In addition a
number of other serious diseases, including leprosy and
Buruli ulcer, are caused by mycobacteria. Many of these
infections are on the increase and, although effective ther-
apy exists for some of these diseases, an increase in multi-
drug resistance strains jeopardises our ability to treat
them. Current research trends are focused on the produc-
tion of an improved vaccine, identification of new drug
targets, and the development of new anti-mycobacterials.
All of these activities have benefited greatly from the avail-
ability of the complete genome sequence of M. tuberculosis
[3].

The need for new antibiotics effective against the myco-
bacteria has never been greater. In addition to a search for
new antibiotics, there has been renewed interest in exam-
ining existing compounds for efficacy as anti-mycobacte-
rial agents. Mycobacteria are relatively antibiotic resistant
and are not susceptible to many commonly used antibi-
otic groups, such as the penicillins. This intrinsic resist-
ance has been attributed largely to the nature of the
mycobacterial cell wall, which is rich in long-chain fatty
acids including the C60 to C90 mycolic acids, which are
covalently linked to the arabinogalactan-peptidogylcan
layer. Porins, (water-rich channel proteins which allow
hydrophilic molecules to enter the cell via diffusion), are
rare in mycobacteria [4] and have been found to function
at a considerably reduced rate in comparison to porins in
Gram-negative bacteria in Mycobacterium smegmatis [5-7].
Therefore antibiotic resistance is often due to the physical
properties of the cell wall forming an impermeable barrier
[8], rather than drug inactivation and it has been assumed
that the bacteria have susceptible intracellular targets, so
that if the drugs were modified to allow cellular entry they
would become effective.

Isopentenyl disphosphate (IPP) is a common precursor in
the biosynthesis of all isoprenoid compounds. This
includes polyprenyl phosphate, which is involved in the
synthesis of the covalently linked peptidoglycan-arabi-
nogalactan-mycolic acid complex, lipomannan and
lipoarabinomannan [9]. Isoprenoids can be synthesized
by two pathways; the mevalonate pathway (which is
present in humans), and the non-mevalonate or 1-deoxy-
D-xylulose 5-phosphate (DOXP) pathway, which has
been found in many bacteria and parasites. Genome
sequencing of M. tuberculosis has shown that the non-
mevalonate pathway is the sole pathway present [3]. Since
this pathway is absent from humans it represents an
attractive target for drug development.

Fosmidomycin (sodium hydrogen 3-(N-hydroxyfoma-
mido)propylphosphonate) is a phosphonate antibiotic
which inhibits one of the enzymes of the DOXP pathway
– the DOXP reductoisomerase (Dxr) [10]. However, anti-
microbial activity has been shown to be limited to Gram-
negative species, and fosmidomycin is not effective
against Gram-positive cocci or anaerobic species [11,12].
In Escherichia coli, fosmidomycin is transported into the
cell via the glycerol-3-phosphate transporter, GlpT, and
glpT deletion mutants are fosmidomycin resistant [13]. A
fosmidomycin resistance gene (fsr) has also been identi-
fied in several bacteria including E. coli and Brucella spp.
[14,15]. Fsr is a member of a family of permeases, suggest-
ing that resistance results from rapid efflux of the drug
from the cell. Fosmidomycin is currently being considered
as a treatment for malaria [16-18].

Mycobacteria, including M. tuberculosis, are highly resist-
ant to fosmidomycin at the whole cell level, although
recombinant M. tuberculosis Dxr is sensitive to fosmid-
omycin, and the mechanism of resistance is unknown [1].
In this study, we characterized the basis of the intrinsic
resistance of M. tuberculosis and M. smegmatis to fosmid-
omycin. We demonstrated that the dxr gene is essential in
M. tuberculosis, confirming that the organism has a sensi-
tive and vulnerable target. We investigated uptake of fos-
midomycin into mycobacteria and E. coli using a bioassay
for fosmidomycin. Efflux pump inhibitors were used to
assess the role of efflux in mediating fosmidomycin resist-
ance. Inactivation of fosmidomycin by mycobacterial cells
or cell-free extracts was also tested.

Results
Essentiality of Dxr
We were interested in determining the basis of mycobac-
terial resistance to fosmidomycin. The target of fosmid-
omycin is the enzyme Dxr (DOXP reductoisomerase,
Rv2870c), the first committed step in the non-mevalonate
pathway of isoprenoid biosynthesis. M. tuberculosis Dxr
has been expressed as a recombinant protein and is read-
ily inhibited by fosmidomycin [1], indicating that resist-
ance is not due to lack of a susceptible target. One
possibility to account for the lack of whole cell sensitivity
is that Dxr is not required for mycobacterial growth. The
non-mevalonate pathway is the only known pathway of
isoprenoid biosynthesis in mycobacteria [19], so it seems
unlikely that this is the case. However, work using saturat-
ing transposon mutagenesis [20] gave rise to the predic-
tion that dxr is not an essential gene.

In order to address this question, we used a two-step
homologous recombination method to attempt to gener-
ate a defined mutant of dxr in M. tuberculosis [21]. A dele-
tion delivery vector, pORTAL3- with a defined deletion of
dxr, was introduced into M. tuberculosis and single cross
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overs (SCOs) were obtained. Double cross-overs (DCOs)
were then generated from the SCOs and screened by PCR
to determine if the wild type or the deletion allele was
present. Of the 40 DCOs screened all were found to be
wild type, suggesting essentiality of dxr.

Since we were unable to isolate a deletion mutant in the
wild type background, we constructed a merodiploid
strain carrying the entire dxr operon with its native pro-
moter on a mycobacteriophage L5 based integrating vec-
tor (pOPW: dxrintgm). DCOs were generated in this
background as before and screened by PCR. Of the 24
DCOs screened 12 had the deletion allele (50%), indicat-
ing that we were able to isolate chromosomal deletion of
dxr in this background. The expected genotype of a
number of these strains, which we have termed "del-
inquents" i.e. a deleted copy on the chromosome and an
integrated, functional gene was confirmed by Southern
analysis (Figure 1B). This data confirms that the dxr
operon is essential (since we complemented with the
whole operon).

Since dxr is in an operon (Figure 1A), it is possible that the
inability to isolate mutants could be due to one of the
downstream genes being disrupted in the mutant. Analy-
sis of the mutation that would be created by the pORTAL3
delivery vector suggests that it may disrupt the promoter
region at the start of the operon and also the gene down-
stream of dxr (Rv2869c), a non-essential intramembrane-
cleaving protease (iCLIP) [22,23].

In order to confirm that dxr alone is essential, we used a
gene switching strategy. This relies on the fact that efficient
replacement of a resident integrated vector can easily be
achieved in M. tuberculosis by transformation and selec-
tion for a second integrating plasmid carrying a different
antibiotic resistance marker [24-26]. We made use of the
delinquent strain carrying the complete operon (pOPW)
(dxrΔ, dxrint gm) and tested the ability of a plasmid carry-
ing the whole operon except dxr (pOPD; Figure 1A) to
complement the chromosomal mutation. The delinquent
strain was transformed with pOPD and plated onto
hygromycin plates to select for the incoming vector. No
hygromycin resistant transformants were obtained,
although a control vector transformed the same cells at an
efficiency of 1.4 × 106per μg. In contrast replacement of
pOPW by pOPD in a wild-type background was easily
achieved at a efficiency of 1.2 × 106 per μg. These data
indicate that a vector lacking only dxr does not comple-
ment the chromosomal mutation, and therefore that dxr
itself is essential. It is still possible that other genes in the
operon are essential as well and this strategy could in the
future be extended to examining the essentiality of other
genes in this operon.

Resistance to fosmidomycin is not due to efflux
We confirmed that mycobacteria were highly resistant to
fosmidomycin resistance in our culture conditions. We
looked at the growth of M. smegmatis and M. tuberculosis
in liquid medium in the presence of fosmidomycin. No
inhibition of growth was seen at any concentration up to
1 mg/ml (Figure 2A & B), confirming that both species are
resistant to a high level. Since dxr is essential in normal
culture conditions and that Dxr is sensitive to fosmidomy-
cin inhibition [1], there must be another explanation for
the high level resistance.

Resistance to fosmidomycin has been attributed to the Fsr
efflux pump in several micro-organisms [14,15]. Myco-
bacteria are known to posses many efflux pumps which
confer intrinsic antibiotic resistance [27-32]. We investi-
gated whether efflux plays a role in fosmidomycin resist-
ance in mycobacteria, by utilising the efflux pump
inhibitors, reserpine, verapamil and carbonyl cyanide m-
chlorophenylhydrazone (CCCP). The concentrations of
efflux pump inhibitors we used were taken from a previ-
ous study in M. smegmatis [27]. As before, reserpine and
verapamil at 12 and 40 μg/ml respectively were not inhib-
itory to growth. However, CCCP at a concentration of 15
μg/ml was seen to significantly inhibit growth in both M.
smegmatis and M. tuberculosis. Therefore, we tested lower
concentrations of CCCP; 1.25 μg/ml was the highest per-
mitted concentration where growth rate was not notably
affected, although some inhibition was still seen.

Growth of mycobacteria in the presence of efflux pump
inhibitors and fosmidomycin was assayed. All cultures
grew to an OD of above 1.0 (approx 109 cell per ml), indi-
cating that there were no significant effects on growth rate
or the final OD reached. No difference in the sensitivity of
either species to fosmidomycin was seen in the presence
of the inhibitors, indicating that efflux is not the mecha-
nism of resistance.

Transport of fosmidomycin into cells
Since we had discounted efflux as the resistance mecha-
nism, we determined whether fosmidomycin was trans-
ported into the mycobacterial cells in the first place.
Uptake of antibiotics is typically measured using a radi-
olabelled derivative. However, radio-labelled fosmidomy-
cin is not available commercially and there are additional
associated hazards connected with using radio-isotopes
under Category Three level containment in the UK. A
microbiological bioassay, based on the inhibition of E.
coli by active compounds, has previously been used to
measure fosmidomycin concentrations [11,33]. In this
assay, active fosmidomycin is measured by inhibition of
E. coli growth on disks. A standard curve using known
concentrations of fosmidomycin can be generated and
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Demonstration of the essentiality of dxrFigure 1
Demonstration of the essentiality of dxr. (A) The chromosomal location of the dxr operon, the region deleted in the 
delivery vector (pORTAL3), and the regions present in the complementing vectors pOPW (complete operon) and pOPD 
(operon without dxr) are shown. (B) The deletion delivery vector pORTAL3 was introduced into the chromosome by homol-
ogous recombination followed by site-specific recombination with the complementing vector pOPW to generate a merodip-
loid strain. DCOs were generated in this background and analysed. Southern analysis of representative DCOs isolated in the 
merodiploid background is shown. Genomic DNA was digested with NotI and hybridised to the indicated probe. The sizes for 
the wild-type and deletion alleles are shown diagrammatically – replacement of the wild-type gene results in an additional NotI 
site in the chromosome. Lane 1 – wild-type DCO (dxrwt, dxrint), Lane 2 – Deletion DCO (dxrΔ, dxrint), Lane 3 – markers. The 
bands for the wild-type, deletion and integrated copies of dxr are indicated.
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used to quantify fosmidomycin [see Additional file 1]
[34].

M. smegmatis, M. tuberculosis and E. coli cells were incu-
bated with 1 mg/ml of fosmidomycin for 30 min (Figure
3A). Active fosmidomycin in the supernatant (extra-cellu-
lar) and cell-free extracts (intra-cellular) was measured.
No active fosmidomycin was present in the cell-free
extracts generated from M. tuberculosis or M. smegmatis; all
of the fosmidomycin remained in the supernatant. In con-
trast, E. coli extracts contained more than 150 μg/ml and
a reduction in the amount of fosmidomycin in the super-
natant was seen. These data confirmed fosmidomycin
uptake in E. coli, and conversely that there is a lack of
uptake by mycobacteria.

The limit of detection for uptake in this assay was 0.1 μg/
ml, which is 10,000-fold less than the level of antibiotic in
the medium. One of the limitations of using a high con-
centration of fosmidomycin with E. coli is that some of the
antibiotic in the supernatant could have been released
from the cells after antibiotic-induced lysis. However, this
would lead us to underestimate uptake, rather than over-
estimate it.

Detoxification/modification
The results from the transport assay strongly suggested
that fosmidomycin resistance in mycobacteria results
from a lack of active transport. However, it was not possi-
ble to tell if the antibiotic was being modified in the pre-
vious assay. This was because a high concentration of
antibiotic was used; if only a small proportion of the fos-
midomycin were modified, it would not have been
detected as a loss of fosmidomycin activity in the superna-
tant. Thus, the possibility that the cells might be modify-
ing the antibiotic into a non-toxic form still existed. To
address this question we repeated the exposure assay
using a lower concentration of fosmidomycin which
allowed more precise quantification of the active antibi-
otic in the supernatant. M. smegmatis or E. coli cells were
incubated with 20 μg/ml of fosmidomycin for 60 min and
active fosmidomycin assayed in the supernatant (Figure
3B). In the supernatant exposed to M. smegmatis, a 2-fold
reduction in activity (from 20 to 10 μg/ml) was seen.
Given the limitation of the assay, where such a difference
would result in a change in the zone of inhibition of less
than 1 mm, this is likely to be due to lack of sensitivity in
the assay. In addition, if detoxification were occurring we
would expect to see a complete reduction of fosmidomy-
cin activity. In contrast a 100-fold reduction in fosmid-
omycin activity was seen in the E. coli supernatants (due
to uptake from the extra-cellular environment into the
cell). Thus, no modification of the antibiotic by M. smeg-
matis was seen.

Although fosmidomycin is not taken up into the myco-
bacterial cells, there could still be intra-cellular enzymes
capable of detoxification. In order to address this, we
determined whether extracts of M. smegmatis were capable
of inactivating fosmidomycin. M. smegmatis cell-free
extracts were incubated with fosmidomycin (20 μg/ml
and 200 μg/ml) for 10 to 60 minutes. No decrease in fos-
midomycin activity was seen during this time, indicating
that no detoxifying enzymes are present (Figure 4). These
data confirmed that resistance is not due to modification
of fosmidomycin.

Discussion
Using a two-step recombination process, we have demon-
strated that Rv2870c (dxr) is essential for growth in M.
tuberculosis in vitro. This is contradictory to previous

Efflux pump inhibitors have no effect on mycobacterial resist-ance to fosmidomycinFigure 2
Efflux pump inhibitors have no effect on mycobacte-
rial resistance to fosmidomycin. Mycobacteria were 
grown in the presence of 100 μg/ml fosmidomycin (Fos), 12 
μg/ml reserpine (RES), 40 μg/ml verapamil (VER) and 1.25 μg/
ml carbonyl cyanide m-chlorophenylhydrazone (CCCP) 
where indicated. (A) M. tuberculosis was grown for 28 d and 
(B) M. smegmatis for 16 h. Error bars represent standard 
deviation of triplicate samples.
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reports from TraSH analysis, which predicted dxr to be a
non-essential gene in M. tuberculosis [20]. In the TraSH
system predictions of gene essentiality are based on a ratio
generated from microarray analysis of a transposon
library, with an arbitrary cut-off point used to distinguish
essential and non-essential genes. A closer inspection of

the data for dxr suggests that its prediction as non-essen-
tial may be incorrect, since the ratio obtained is very close
to the cut-off point. Our data demonstrate that this is
indeed the case, since we were only able to construct a
chromosomal deletion of dxr in a merodiploid back-
ground. However, although we were able to demonstrate

Assay of fosmidomycin uptakeFigure 3
Assay of fosmidomycin uptake. Uptake of fosmidomycin was measured in mycobacteria and E. coli. Cells were subjected to 
(A) 1 mg/ml of fosmidomycin for 30 min; (B) 20 μg/ml of fosmidomycin for 60 min. Cell-free extracts (CFE) or culture superna-
tants (SN) were prepared and serial dilutions were applied to paper disks as described in the methods. For each assay, a stand-
ard curve was generated using known concentrations of fosmidomycin. For test samples, zones of inhibition against E. coli were 
measured and the antibiotic concentration calculated from the standard curve.
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that dxr is essential for growth in vitro, before it can be
truly validated as a drug target it needs to be proved essen-
tial in vivo. Whilst this is extremely challenging [35], the
use of inducible systems for generating conditional
strains, as recently described, may now allow this to be
carried out [36-38].

Conclusion
Our data demonstrate that fosmidomycin is not taken up
by mycobacteria, and resistance results from the intra-cel-
lular target being inaccessible to the drug. Since, we have
validated dxr as an essential gene, it is still possible that it
could prove to be a useful drug target if inhibitors which
enter the cell are developed. Alternatively fosmidomycin
could be used in conjunction with a compound which
increases permeability. Other approaches could involve
nano-particulation of fosmidomycin or the conversion of
fosmidomycin into a pro-drug, which would be readily
taken up by the cell and then hydrolysed into an active
form once inside the cell structure.

Methods
Culture of mycobacteria
M. tuberculosis H37Rv was cultured in Middlebrook 7H9
liquid medium supplemented with 10% v/v OADC (oleic
acid, bovine serum albumin, D-glucose, catalase; Becton
Dickinson) and 0.05 % w/v Tween 80 (7H9/Tw/OADC)
or on solid Middlebrook 7H10 agar supplemented with

10% v/v OADC (7H10/OADC). M. smegmatis mc2155 was
grown on Lemco media [39]. X-Gal (5-bromo-4-chloro-3-
indolyl-β-D-galactopyranoside) was used at 50 μg/ml;
IPTG (isopropyl-beta-D-thiogalactopyranoside) at 0.5
mM; kanamycin at 20 μg/ml; hygromycin B at 100 μg/ml;
and sucrose at 2% w/v. Fosmidomycin (sodium salt) was
purchased from Invitrogen. Efflux pump inhibitors: reser-
pine was used at 12 μg/ml; verapamil at 40 μg/ml; and
carbonyl cyanide m-chlorophenylhydrazone (CCCP) at
1.25 μg/ml. M. tuberculosis growth curves were conducted
in 4 ml of 7H9/Tw/OADC media in 16 mm glass tubes
containing an 8 mm magnetic stirrer bar, stirring at 150
rpm.

Attempt to construct deletion mutants of dxr
A deletion delivery vector for dxr (pORTAL3) was con-
structed as follows (Figure 1): the upstream flanking
region was amplified from M. tuberculosis genomic DNA
using the primer pair DXR US F (PstI) 5'-TGGGCTGCAG-
CAACCCGCTAAGAAC-3, and DXR US Rev (NotI) 5'-
CCCGCGGCCGCTTGATGCTAAGATGCCATGC-3' and
the downstream flanking region was amplified using the
primer pair DXR DS F (NotI) 5'-CCCGCGGCCGCTGTTT-
GTTACCGGCATTGTG-3' and DXR DS Rev (HindIII) 5'-
CCCAAGCTTGGGCCAAGAAGAACCAGAAC-3'. Frag-
ments were cloned into p2NIL (PstI-HindIII) using the
underlined restriction sites. The 6.3 kb PacI cassette from
pGOAL19 (hyg, sacB, lacZ) was then cloned into the sole
PacI site. The vector was verified by restriction digest and
sequencing. 5 μg of UV pre-treated plasmid DNA [40] was
electroporated into competent M. tuberculosis and SCO
transformants were selected on 7H10/OADC medium
containing kanamycin and hygromycin. DCOs were iso-
lated by streaking cells onto plates lacking antibiotics and
selected/screened for on media containing sucrose and X-
gal as previously described [21]. PCR screening on DCOs
was carried out using primers DXR OL F (5'-TTGGACGA-
TAGATCGACACC-3') and DXR OL Rev (5'-GATGGCATA-
GATCAGCACCA-3').

A complementing vector carrying the entire dxr operon
with its native promoter was constructed by amplifying a
4.7 kb region from genomic H37Rv DNA with primers
DXR OP C' F 5'-TTAATTAACACCTCGCGGTA-
CAGCTCGTC-3' and DXR OP C' Rev 5'-TTAAT-
TAAGTCGTCAGCGCTGATATGCCC-3'. The product was
cloned into pSC-A (Stratagene); to give dxr_op/pSCA, and
the Gm-int cassette from pUC-Gm-Int [41] was intro-
duced as a HindIII fragment to give pOPW (Figure 1).

Construction of merodiploid strain and confirmation of 
essentiality
We constructed a merodiploid strain by electroporating
the dxr SCO with pOPW and isolating kanamycin/hygro-
mycin/gentamicin resistant transformants. DCOs were

Assay of fosmidomycin detoxification by cell free extractsFigure 4
Assay of fosmidomycin detoxification by cell free 
extracts. Cell free extracts (CFE) were tested for inactiva-
tion of fosmidomycin. Fosmidomycin, at a final assay concen-
tration of 20 or 200 μg/ml, was incubated with sterile 10 mM 
Tris pH8 (control), or M. smegmatis cell-free extract for 10 
or 60 min. A 100 μl aliquot from each test sample was 
applied to a sterile paper disc and aseptically placed on media 
containing E. coli. The diameter of the zone of growth inhibi-
tion was measured. Error bars are the standard deviation of 
triplicate samples.
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isolated and PCR-screened as before. Strains were con-
firmed by Southern analysis using the AlkPhos Direct sys-
tem (GE Healthcare) to label and detect DNA. A deletion
derivative of dxr_op/pSCA was constructed in which the
1.2 kb dxr gene was removed by site directed mutagenesis
with primers DXR KO SDM F 5'-GTGACCAACTCGAC-
CGACGTATCTGGTATGGCTTCG-3' and DXR KO SDM
Rev 5'-CGAAGCCATACCAGATACGTCGGTCGAGTT-
GGTCAC-3'. The Hyg-Int cassette from pUC-Hyg-Int [41]
was cloned in via a HindIII digest. The resulting plasmid,
pOPD (Figure 1), was used in a gene switching experi-
ment [25]. Strains were electroporated with integrating
vectors and transformants isolated on the appropriate
antibiotic selection (for the incoming vector). Transform-
ants were patch tested for antibiotic resistance as required.

Fosmidomycin uptake assays
Bacteria were grown to late log phase (OD600 = 1.0,
approximately 109 cells per ml), pelleted by centrifugation
at 3 000 × g for 5 minutes and re-suspended in 50 mM Tris
buffer pH 7.0 at approximately 1011 cells per ml. One ml
of suspension was added to 0.5 ml fosmidomycin solu-
tion and 3.5 ml LB media for E. coli and M. smegmatis or
Middlebrook 7H9/Tw/OADC medium for M. tuberculosis
and incubated at 37°C for 30 or 60 min with shaking at
100 rpm (E. coli, M. smegmatis) or standing (M. tuberculo-
sis). Cells were pelleted by centrifugation at 3 000 × g for
5 minutes, the supernatant was collected, filter sterilized
through a 0.2 μm syringe filter and stored on ice. Cells
were washed twice with 5 ml of 50 mM Tris pH 7.0, re-sus-
pended in 1 ml of 10 mM Tris pH 7.0, transferred to a Fast
Prep Lysing Matrix B tube (QBiogene) and incubated on
ice for 5 min. Cell-free extracts were prepared using the
Fast Prep at speed 4 for 30 seconds (QBiogene). Samples
were incubated on ice for 5 min, cell debris pelleted, the
cleared lysate recovered, filter sterilized and stored on ice.

Fosmidomycin quantitation
Fosmidomycin was measured using a microbiological
assay [34]. 100 ml of cell-free extracts or supernatants
(and serial dilutions) were applied to a sterile 14 mm filter
paper disc (Whatman). The discs were allowed to dry at
room temperature for 15 minutes before transferral onto
individual 90 mm agar plates containing 0.5% v/v of an E.
coli overnight culture. Plates were incubated for 20 hours
at 37°C and the diameter of the zone of bacterial growth
inhibition was measured. Discs with known concentra-
tions of fosmidomycin were used to make a standard
curve, to calculate the concentration of fosmidomycin in
the test solutions. The concentration of fosmidomycin in
the samples was then calculated from the standard curve.
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