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Abstract
Background: Diplomonads are common free-living inhabitants of anoxic aquatic environments and are
also found as intestinal commensals or parasites of a wide variety of animals. Spironucleus vortens is a
putatively commensal diplomonad of angelfish that grows to high cell densities in axenic culture. Genomic
sequencing of S. vortens is in progress, yet little information is available regarding molecular and cellular
aspects of S. vortens biology beyond descriptive ultrastructural studies. To facilitate the development of S.
vortens as an additional diplomonad experimental model, we have constructed and stably transformed an
episomal plasmid containing an enhanced green fluorescent protein (GFP) tag, an AU1 epitope tag, and a
tandem affinity purification (TAP) tag. This construct also contains selectable antibiotic resistance markers
for both S. vortens and E. coli.

Results: Stable transformants of S. vortens grew relatively rapidly (within 7 days) after electroporation and
were maintained under puromycin selection for over 6 months. We expressed the enhanced GFP variant,
eGFP, under transcriptional control of the S. vortens histone H3 promoter, and visually confirmed diffuse
GFP expression in over 50% of transformants. Next, we generated a histone H3::GFP fusion using the S.
vortens conventional histone H3 gene and its native promoter. This construct was also highly expressed in
the majority of S. vortens transformants, in which the H3::GFP fusion localized to the chromatin in both
nuclei. Finally, we used fluorescence in situ hybridization (FISH) of the episomal plasmid to show that the
transformed plasmid localized to only one nucleus/cell and was present at roughly 10–20 copies per
nucleus. Because S. vortens grows to high densities in laboratory culture, it is a feasible diplomonad from
which to purify native protein complexes. Thus, we also included a TAP tag in the plasmid constructs to
permit future tagging and subsequent purification of protein complexes by affinity chromatography via a
two-step purification procedure.

Conclusion: Currently, progress in protistan functional and comparative genomics is hampered by the
lack of free-living or commensal protists in axenic culture, as well as a lack of molecular genetic tools with
which to study protein function in these organisms. This stable transformation protocol combined with
the forthcoming genome sequence allows Spironucleus vortens to serve as a new experimental model for
cell biological studies and for comparatively assessing protein functions in related diplomonads such as the
human intestinal parasite, Giardia intestinalis.
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Background
Diplomonads are common microaerophilic protists in
anoxic environments, and most known diplomonads
have been isolated as either commensals or parasites of
the metazoan intestinal tract [1]. Nearly a score of free-liv-
ing or commensal diplomonads have been described and
classified phylogenetically [1,2]. Binucleate diplomonads
are believed to be related to mono-nucleate anaerobic
protists such as retortamonads and enteromonads [1,3,4].
Spironucleus vortens is a putatively commensal diplo-
monad originally isolated from the intestinal lumen of
the freshwater angelfish Pterophyllum scalare. S. vortens is
typically described as a pear-shaped microaerophile,
measuring 12.5 – 20.5 µm in length and 5.0 – 11.2 µm in
width [5]. Like all described diplomonads, S. vortens has
two nuclei and eight flagella. One pair of axonemes is
enclosed by a flagellar pocket, termed a "cytostomal
canal", and each of the recurrent flagella lie in a separate
flagellar pocket [5,6]. As widespread human parasites,
members of the genus Giardia (e.g. Giardia intestinalis) are
perhaps the most well known of the diplomonads and are
unique among diplomonads due to the presence of the
ventral disc, which is a novel microtubule organelle that
facilitates attachment to the intestinal microvilli in verte-
brate hosts [7,8]. S. vortens lacks the ventral disc structure.

In the context of host-microbe interactions, microbes are
traditionally described as free-living, commensals, symbi-
onts, or parasites/pathogens [9]. These historical descrip-
tions, however, do not incorporate the contemporary
understanding that there exists a continuum of symbiosis
in nature ranging from truly free-living to obligately para-
sitic (reviewed recently in [9,10]). Based on currently
available data, S. vortens likely lies midway along that con-
tinuum as either a commensal or an opportunistic para-
site. For instance, S. vortens has been found in the
intestines of healthy angelfish [11], does not always cause
host damage following infection [11], and does not cause
systemic infection independent of special conditions [5].
Furthermore, bacteria have also been found in "hole-in-
the-head" disease lesions in fish [12]. Thus it is conceiva-
ble that S. vortens may be indirectly accumulating in
lesions due to this bacterial presence rather than directly
causing the lesions. Lastly, other commensal diplomon-
ads such as Spironucleus torosa attach to the intestinal
mucosa without causing detectable host damage [2]. Thus
in spite of its initial classification as a parasitic pathogen
of angelfish, a more conservative conclusion is that S.
vortens is either a commensal or, under specific condi-
tions, an opportunistic parasite [11]. Further investigation
is required to determine if S. vortens is a non-pathogenic
commensal (causing little or no damage to the host), an
opportunistic parasite (causing damage to the host under
special conditions), or an obligate parasite (always caus-
ing damage to the host) [13].

To date, all molecular genetic studies of protein function
in diplomonads have employed the common intestinal
parasite, Giardia intestinalis (reviewed in [14]). Conse-
quently, there is little information available regarding
molecular and cellular aspects of general diplomonad
biology beyond computational inferences of function
[15] and/or ultrastructure in diverse diplomonads
[2,5,11,16-19]. We describe here a method for the trans-
formation of recombinant constructs in S. vortens, thus
providing an essential tool to further investigate Spironu-
cleus' potential for parasitism in angelfish as well as for
comparative cell biological, functional genomic, and evo-
lutionary studies in other diplomonads. Specifically, we
designed an episomal shuttle vector to contain an
enhanced green fluorescent protein (eGFP) tag, an AU1
epitope tag, and a tandem affinity purification (TAP) tag.
Both the eGFP and AU1 epitope tags permit visualization
of protein fusions both in live and fixed cells, respectively.
Fusion of S. vortens proteins with the TAP tag would per-
mit the purification and identification of interacting pro-
teins by standard proteomic approaches [20].

Results
As a first step in developing a molecular toolkit that can
be used to study protein function, we constructed, stably
transformed, and maintained episomal shuttle vectors
(Figure 1A and 1B) in S. vortens by adapting a methodol-
ogy used in Giardia to generate stable transformants [21].
These constructs also contained selectable antibiotic
resistance markers for both S. vortens (puromycin resist-
ance) and E. coli (ampicillin resistance). We demonstrate
here a highly stable transformation of these constructs in
S. vortens, and the ability to express GFP fusion constructs
and visualize them in live and fixed cells in two stable
GFP-expressing strains: SvH3P, which expresses GFP
under the control of a S. vortens histone H3 promoter, and
SvH3G, which expresses a histone H3::GFP fusion under
the control of the native promoter.

Stable transformation confirmed by RT-PCR and FISH of 
the episomal plasmids
Using our protocol for transformation of S. vortens, we cre-
ated three stable cell lines: SvPAC (expressed puromycin
resistance (pac) gene); SvH3P (GFP expressed by the H3
histone promoter); and SvH3G (a histone H3::GFP
fusion) (see Methods). The SvH3P and SvH3G strains
were created by transfecting SvH3P.pac (Figure 1A) and
SvH3G.pac (Figure 1B), respectively, into wild type S.
vortens cell cultures. To verify that the putatively trans-
formed strains expressed GFP, we performed RT-PCR of
the GFP gene in both the SvH3P and SvH3G transformed
strains (Figure 2a). We observed strong amplification of a
band corresponding to the correct size of the GFP using
RNA from both the SvH3P and SvH3G transformed
strains as templates. No GFP expression was observed in
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untransformed cells or in negative (no RNA template
added) controls (Figure 2a).

The number of plasmids that were transformed per
nucleus per cell was estimated using fluorescence in situ
hybridization (FISH) with a DNA probe against a 5 Kb
amplified region of the episomal plasmid used in the
transformed SvH3P strain. As seen in Figure 2b, we esti-
mate that roughly 10–20 plasmids were present per trans-
formed nucleus. Importantly, for all cells transformed
with the SvH3P.pac construct, the plasmid FISH probes
localized to only one nucleus (roughly 250 total cells were
observed) (Figure 2c). We were also able to recover the
plasmids from the transformed SvH3P and SvH3G strains
and transform them back into E. coli (data not shown) at
high efficiency.

GFP expression visualized using epifluorescent microscopy
In both the SvH3P and SvH3G strains, we observed signif-
icant GFP expression in live, highly motile S. vortens cells
(see Figures 3, 4, and see Additional files 1 and 2). To
determine the subcellular localization of the GFP fusion
proteins and to qualitatively assess the efficiency of our
transformation protocol, both the SvH3P and SvH3G

strains were fixed with 1% paraformaldehyde (a proce-
dure that is compatible with the maintenance of GFP flu-
orescence after fixation) and microtubules were
immunostained with anti-α-tubulin antibody (Figure 3g–
h, Figure 4g–h) using a protocol previously described for
Giardia intestinalis [22]. Images were acquired in a three-
dimensional stack using deconvolution microscopy, and
2D projections of 3D stacks were created as described
(Methods). For each transformed strain, we imaged 250
cells and visually quantified the number of GFP-express-
ing cells. As shown in Figure 3, GFP fluorescence was
observed throughout the cytoplasm of the SvH3P strain,
which used a S. vortens histone H3 promoter (identified
from the in-progress genome project) to drive expression
of GFP. In Figure 3b–d, a high percentage of cells (~78%)
express GFP at easily detectable levels as seen by either
epifluorescent microscopy using direct cell counts (N =
250) or as seen in live videomicroscopy (Figure 3a).

We also localized GFP expression in the SvH3G strain (S.
vortens histone H3 gene fused in frame to a C-terminal
eGFP tag) and imaged the GFP localization in anti-α-
tubulin immunostained cells (as above). As seen in Figure
4 and Figure S2, the GFP fluorescence in the SvH3G strain

Schematic vector maps of SvH3P.pac and SvH3G.pacFigure 1
Schematic vector maps of SvH3P.pac and SvH3G.pac. A) Schematic plasmid map of the SvH3P.pac shuttle vector that 
includes an S. vortens H3 promoter for transcription of eGFP (enhanced GFP), an AU1 epitope tag, and a tandem affinity purifi-
cation (TAP) tag for affinity purification (GAT = GFP+AU1+TAP). This plasmid also includes a puromycin resistance gene (pac) 
for selection in S. vortens flanked by the α-tubulin 5'UTR and 3'UTR regions (SvATB5p and SvATB3p), and an ampicillin resist-
ance gene (amp) for antibiotic selection in E. coli. B) Schematic plasmid map of the SvH3G.pac shuttle vector. In this plasmid, 
the S. vortens histone H3 gene (including ~100 bp of the H3 histone native promoter (SvH3p) was fused to and includes a 12 
amino acid hydrophobic linker, as well as other selectable markers (see Figure 1A). Relevant restriction sites are also high-
lighted in the vector maps, as well as M13R and T7 sequencing primer regions.
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Expression of GFP in the SvH3P and SvH3G transformed strainsFigure 2
Expression of GFP in the SvH3P and SvH3G transformed strains. Shown in panel A): expression of GFP mRNA as 
measured by RT-PCR. Lane 1) untransformed wild-type S. vortens; Lane 2) transformed SvH3P strain (full-length GFP with the 
SvH3 promoter); Lane 3) transformed SvH3G strain (H3::GFP fusion with the native H3 promoter); Lane 4) negative control 
(no template RNA added). The expected size of the eGFP amplicon (721 bp) is indicated by the arrow. To determine the copy 
and locations of the transformed plasmids, we used fluorescence in situ hybridization of a Cy3-labelled probe to the SvH3P.pac 
episomal plasmid in the transformed SvH3P strain. Panel B) shows a single S. vortens cell exhibiting multiple fluorescent foci 
(10–15) in the right nucleus. Panel C) shows a microscopic field of several S. vortens cells indicating the range of foci/nucleus 
(~10–20). Note that plasmids only localize to one nucleus (either left or right). Cy3-labelled FISH probe = red, DAPI = blue. 
Scale bars = 2 µm.
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was exclusively localized to both nuclei, as expected for
the histone localization to euchromatin. Based on the
imaging of 250 cells, we visualized detectable levels of
GFP expression in about 66% of the transformed cells
(Figure 4b–d).

Additionally, anti-α-tubulin immunostaining of the
microtubule cytoskeleton of S. vortens (Figure 3g–h, Fig-
ure 4g–h) shows in detail the microtubules of the lateral
ridges, the microtubules surrounding the flagellar pock-
ets, and the microtubules of the counter-crossing ridges
[8,23].

Discussion
The majority of proposed eukaryotic lineages are repre-
sented by microbial eukaryotes [24-30]. Most of our
knowledge of eukaryotic biological processes derives,
however, from studies of more recently evolved (and phy-

logenetically restricted) macroscopic eukaryotic model
organisms such as fungi and metazoans. Furthermore,
progress in protistan functional and comparative genom-
ics is generally complicated by the fact that most free-liv-
ing protists have not been maintained in pure culture, and
only a handful have been developed as molecular experi-
mental systems. In the absence of genetic manipulation,
classical studies in protistan biology have generally had to
rely solely upon descriptive ultrastructural or comparative
genomic studies.

In spite of this, current in-progress and completed
genome projects of diverse microbial eukaryotes are trans-
forming our understanding of eukaryotic biology [31].
Emerging genomic and EST data from axenically culti-
vated diplomonads such as S. vortens [32], S. salmonicida
[15], and G. intestinalis [33] highlights the importance of
developing functional genomic methodologies to com-

GFP localization in the transformed SvH3P strainFigure 3
GFP localization in the transformed SvH3P strain. Interphase cytoplasmic GFP localization in live and fixed cells, with 
immunolocalization of the microtubule cytoskeleton in S. vortens trophozoites (DAPI, blue; GFP, green; anti-α-tubulin, red). 
UPPER PANELS: Panel (a) shows the GFP fluorescence of a field of live S. vortens cells. Panels (b-d) show a different field of 
fixed S. vortens cells, with (b) marking the DAPI-stained nuclei of the cells, (c) marking the cytoplasmic GFP localization of the 
cells, and (d) showing the merged image of panels (b) and (c). The upper panels show that the GFP expressed from the S. 
vortens H3 promoter had a cytoplasmic localization (with some foci) in both live cells (a) and fixed cells (c-d). Cytoplasmic 
localization is particularly obvious in fixed cells with respect to the two nuclei (see DAPI-stained nuclei in (b)). The upper pan-
els also illustrate a high number of cells (>75%) expressing GFP, as is shown in the field of fixed cells (b-d). LOWER PANELS: 
Panels (e-h) show the same fixed S. vortens cell, with (e) marking the DAPI-stained nuclei, (f) marking the GFP localization, (g) 
marking the microtubule cytoskeleton, and (h) showing a merged image of panels (e-g). In the lower panels, cytoplasmic GFP 
staining is shown (f, h) in striking contrast with DAPI-labeled chromatin (e) and anti-α-tubulin immunostaining (g), which 
defines the eight flagella and the lateral ridges of the microtubule cytoskeleton (red). Images are representative of GFP localiza-
tions observed in over 250 individual cells. Scale bar = 2 µm.
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plement prior descriptive ultrastructural or comparative
genomic studies. Stable transformation of recombinant
genes, such as that which is presented here for Spironucleus
vortens, is critical toward the development of modern
reverse genetic and proteomic strategies that permit a
functional understanding of diplomonad biology on par
with other experimental systems.

Stable transformation and maintenance of an episomal 
shuttle vector
Electroporation takes advantage of the fact that mem-
branes in cells essentially act as electrical capacitors [34].
Transformation of eukaryotic microbes via electropora-
tion is generally applicable and reproducible [35-41]. We
have modeled our Spironucleus vortens transformation pro-
tocol after the Giardia intestinalis transformation protocol
developed by Singer et al. [21]. Based on both micro-
scopic and biochemical analyses of transformants (Fig-

ures 2, 3, 4, and see Additional files 1 and 2), the use of
this protocol results in stable transformants of S. vortens
with a minimal efficiency of 50%. Additionally, we have
demonstrated that the S. vortens H3 histone promoter is
sufficient to drive transcription of GFP (Figure 2a, Figure
3 and see Additional file 1), and that a histone H3::GFP
fusion protein is expressed (Figure 2a) and localizes to
chromatin in both nuclei (Figure 4 and see Additional file
2). We were able to successfully passage all transformed S.
vortens strains (SvPAC, SvH3P, and SvH3G) under puro-
mycin selection for a period of over six months, indicative
of stable rather than transient transformation.

Finally, we confirmed that the transformed episomal plas-
mid localized to only one nucleus per cell (Figure 2b–c),
as is the case in binucleate Giardia [22,42,43]. For neither
organism do we understand why only one nucleus is
transformed, but this result is consistent with the idea that

H3::GFP localized to both nuclei in the transformed SvH3G strainFigure 4
H3::GFP localized to both nuclei in the transformed SvH3G strain. Nuclear localization of H3::GFP and comparative 
immunolocalization of the microtubule cytoskeleton in S. vortens trophozoites (DAPI, blue; H3::GFP, green; anti-α-tubulin, red). 
UPPER PANELS: Panel (a) shows the GFP fluorescence of a field of live S. vortens cells. Panels (b-d) show a different field of 
fixed S. vortens cells, with (b) marking the DAPI-stained nuclei of the cells, (c) marking the nuclear GFP localization of the cells, 
and (d) showing the merged image of panels (b) and (c). The upper panels further illustrate that the H3::GFP transgene is 
expressed in a high proportion of cells (b-d). LOWER PANELS: Panels (e-h) show the same fixed S. vortens cell, with (e) mark-
ing the DAPI-stained nuclei, (f) marking the GFP localization, (g) marking the microtubule cytoskeleton, and (h) showing a 
merged image of panels (e-g). In the lower panels, staining of a single cell with anti-α-tubulin immunostaining (g, h in red) labels 
the eight axonemes and the lateral ridges of the microtubule cytoskeleton. The H3::GFP expressed from the native promoter 
localizes to both nuclei in both live cells (a) and fixed cells (b-h), and the H3::GFP transgene co-localizes to the DAPI-stained 
nuclei (b-f), but not to the microtubule cytoskeleton as visualized by anti-α-tubulin immunostaining (g, h). Though H3::GFP co-
localizes with DAPI, H3::GFP has a more punctate staining pattern. Images are representative of GFP localizations observed in 
over 250 cells per strain. Scale bar = 2 µm.
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transformation is a rare stochastic event that only affects
one of the two nuclei. However, the presence of multiple
episomal plasmids (~10–15) in only one nucleus/cell
(Figure 2b) suggests that S. vortens undergoes mitosis in a
manner similar to that of Giardia intestinalis [22]. In Gia-
rdia, the two nuclei do not fuse during mitosis but instead
behave autonomously so that only one copy of each
parental nucleus is inherited by each daughter [22]. In
Giardia, both nuclei migrate to the line of bilateral sym-
metry and are stacked one above the other (one ventral
and one dorsal). During anaphase, the nuclei divide and
separate such that each daughter cell obtains a nucleus
from each plane (one ventral nucleus and one dorsal
nucleus) [22]. This inferred mitotic mechanism explains
the segregation of episomal plasmids to one nucleus in S.
vortens and supports the theory that the two nuclei of S.
vortens do not fuse during mitosis. This state of singly
transformed nuclei would be perpetuated throughout the
population, although there is no information regarding
whether both nuclei in S. vortens are transcriptionally
active or whether they contain the same genetic material.

Potential for proteomic analyses in S. vortens
The Spironucleus genome project was begun under the
Community Sequence Program (CSP) through a collabo-
ration with the DOE-Joint Genome Institute (JGI) in
2004. Currently, over 15,000 ESTs have been sequenced,
in conjunction with roughly 4× genome coverage of the
16 Mb genome (unpublished data). We have engineered
the SvGAT.pac shuttle vector so that a GFP fusion con-
struct can easily be converted into one with an AU1 fusion
tag by a double restriction digest with AgeI/NheI; alterna-
tively, a tandem affinity purification (TAP)-tagged fusion
protein can be created using an AgeI/AvrII restriction
digest. When religated, the initial GFP gene fusion will
remain in frame with either the AU1 epitope tag or TAP
tag.

S. vortens grows robustly in axenic culture in the labora-
tory to densities of roughly 1 × 107 cells/ml, and tolerates
temperatures ranging from 5–34°C [6]. For the experi-
ments detailed in this paper, we have observed rapid
growth of S. vortens at room temperature (25°C). Hence,
due to its rapid growth in laboratory culture and its nearly
completed genome sequence, Spironucleus seems a feasi-
ble diplomonad from which to purify proteins and pro-
tein complexes. For this reason, we included a TAP tag in
the plasmid constructs to permit the tagging of proteins
and subsequent purification of protein complexes by
affinity chromatography via a two-step purification proce-
dure. This proteomic strategy for identifying interacting
proteins has been widely used in other organisms [20,44].
The affinity-purified complexes can then be eluted with
EGTA and analyzed by SDS-PAGE and MALDI-TOF, and/
or directly subjected to proteolysis and analysis by liquid

chromatography-coupled mass spectrometric analysis
(LC-MS-MS) [20,44]. Future proteomic-based work with
S. vortens could include the purification of protein com-
plexes followed by mass spectrometry to analyze protein
components.

Using protein-tagging approaches to determine the 
putative parasitism of S. vortens
The use of this stable transformation protocol to generate
fluorescently tagged S. vortens strains could help confirm
whether or not S. vortens is actually an obligate parasite in
angelfish. Briefly, fluorescently tagged S. vortens could be
used to confirm that: 1) S. vortens is present in all cases of
"hole-in-the-head"-diseased angelfish; 2) inoculation of
healthy angelfish with tagged S. vortens results in disease;
and, 3) isolated, tagged S. vortens strains from newly dis-
eased angelfish are also infectious. Following inoculation
of these transformed S. vortens cells back into healthy
angelfish, resultant "hole-in-the-head" lesions (if any)
could be imaged and/or quantified using GFP fluores-
cence, which (if found) would indicate that S. vortens
plays and obligately pathogenic role in angelfish. At this
time, no such experimental verifications of the obligate
parasitism of S. vortens have been performed.

Conclusion
With a nearly completed genome sequence and a protocol
for stable transformation, Spironucleus vortens represents a
new experimental system with which one can study com-
parative cell biology in diplomonads. Because it is puta-
tively commensal and lacks the ventral disc present in
Giardia [8,11], the study of the cytoskeleton in S. vortens
could provide insight into Giardia's adaptations to parasit-
ism – including the evolution of the ventral disc. Func-
tional genomics in S. vortens also offers a strategy to test
the hypothesis of its obligately parasitic role in angelfish.
Finally, ongoing comparative and functional genomic
analyses of putative commensal diplomonads (i.e. Spiro-
nucleus vortens [32]) as well as obligately parasitic diplo-
monads (i.e., Giardia intestinalis [33]) are critical toward
validating hypotheses regarding the basal phylogenetic
position and genomic minimalism of the diplomonads
[45].

Methods
Culture conditions
Spironucleus vortens (ATCC 50386) was cultivated in 13 ml
polypropylene screw cap tubes (Falcon) in 12 ml of
medium at 25°C using previously described culture meth-
odologies [5]. Cultures were diluted ten-fold every 3–5
days for over six months. Before selection in medium with
50 µg/ml puromycin, transformed S. vortens strains were
grown in 24-well plates sealed in BioBags (Fisher) to
maintain a low-oxygen tension.
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Construction of GFP/AU1/TAP vector
To create a stable episomal plasmid vector for transforma-
tion of S. vortens, we modified the previously constructed
pMCS-GFP vector from Giardia intestinalis [46] to include
S. vortens promoter regions for the puromycin resistance
(pac) gene and for the GFP-AU1-TAP tag (Figure 1). Spe-
cifically, we modified the puromycin resistance (pac)
selectable marker to include the S. vortens α-tubulin (atb)
promoter region (roughly 100 nucleotides upstream of
the S. vortens α-tubulin (atb1) gene) and the α-tubulin
3'UTR (roughly 50 nucleotides downstream).

We added the S. vortens α-tubulin promoter by PCR-
amplifying the pac gene from the pMCS-GFP vector using
the following oligonucleotide primers that included the S.
vortens atb1 promoter region and 3'UTR: atbpacF: 5'GAA
TTC TTA CGG TAA AAA TAA GAC CAG CGT CCG AAA
TTT TGG CCA AAA ATT TTC CGG AAT TTT CGT ACC ATC
TAT TCA TCC ATG GGC ACC GAG TAC AAG-3' and
3atbpacR: 5'GAA TTC GCT ACT TAA AAT ATA TTG AAA
CTT ACT TAA AAT ATT GAA AAT AAT AAA CAG AAA GAT
CAC TCG AGG GCA CCG GGC TTG CGG G3' (bold=
EcoR1 site, italics = promoter regions). This PCR product
was first subcloned into the pCR2.1 TOPO-TA vector (Inv-
itrogen), digested with EcoRI, and ligated into the pMCS-
GFP vector to create the SV.pac construct. Next, we
replaced the GFP of the SV.pac vector with a triple protein
tag (GFP-AU1-TAP tag, or "GAT") driven by the S. vortens
H3 histone promoter as identified from the in-progress S.
vortens Genome Project (see Availability and requirements
section for URL). These three protein tags each have a stop
codon and short putative polyA signal region (TTTCTTT).
The TAP tag and AU1 tagged portions of the GAT tag were
amplified using PCR with the following oligonucleotide
primers SVGATF: 5' TGT ACA AGT GAT TTC TTT GTT TAT
TAT GCT AGC GAC ACG TAC CGA TAC ATATGA TTT CTT
TGT TTA TTA TCC TAG GAT GGA AAA GAG AAG ATG G-
3' and SVGATR: 5'-GCG GCC GCA TAA TAA ACA AAG
AAA TCA GGT TGA CTT CCC CGC GGA ATT CG 3' using
the pKG1810 plasmid as a template [47]. The oligonucle-
otide PCR primers included an AU1 epitope tag (DTYRYI,
codons underlined) and a putative polyA signal sequence
(italics) and BsrGI/EcoRI restriction sites (bold). The GAT
insert was initially cloned into the TOPO-TA vector (Inv-
itrogen) and recombinant plasmids were digested with
BsrGI and EcoRI. The GAT insert was gel-purified and
ligated into the BsrGI/EcoRI sites downstream of the GFP
sequence in the SV.pac vector to create S. vortens shuttle
vector SvGAT.pac.

To drive transcription of GFP fusion proteins, we PCR-
amplified an S. vortens H3 histone promoter (H3P) from
S. vortens genomic DNA using the oligonucleotide PCR
primers: svh3PF: 5'GGC GCG CCG GAA ACG AAC TTT
CGG AGT ATG CCG CTC GG-3' and svh3PR: 5'-ACC GGT

AGC ATC TGC TTG ATT TCT GAA AGG GGA AGG G3'.
This PCR product was initially cloned into the TOPO-TA
vector (Invitrogen), and the insert was recovered by diges-
tion with AscI/AgeI, then ligated into an AscI/AgeI digest
of the SvGAT.pac vector. This created the SvH3P.pac vec-
tor that was subsequently used to transform S. vortens (see
Figure 3).

Finally, the full-length histone H3 gene including its
native promoter was ligated into the SvGAT.pac vector to
create a H3::GFP C-terminal fusion in the construct
SvH3G.pac. The S. vortens H3 histone gene and ~80 bp of
its native promoter were amplified from S. vortens
genomic DNA using the oligonucleotide primers svh3GF
5' GGC GCG CCT AAT CAG TAT AGG CGT CCC GGA
TGT CCC GC-3' and svh3GR 5'-ACC GGT AGC TGG GCG
GGG TTC ATC GCG TGG ACC CAG AC3' that included
AscI and AgeI restriction sites (bold). This PCR amplicon
was initially cloned into the TOPO-TA vector (Invitro-
gen), and the insert was recovered through an AscI/AgeI
digest. The H3 histone was then ligated into the AscI/AgeI
sites of the SvGAT.pac vector. This yielded the SvH3G.pac
vector that was subsequently used to transform S. vortens
(see Figure 4). The full-length sequences of the S. vortens
α-tubulin and histone H3 genes are deposited in GenBank
with accession numbers: EV099373 and DQ677672.

Stable transformation of an episomal plasmid using 
electroporation
To determine the optimal concentration for puromycin
selection, puromycin was added at varying concentrations
(1 µg/ml, 5 µg/ml, 25 µg/ml, 50 µg/ml, and 100 µg/ml) to
S. vortens cultures, and cell viability was assessed at 24–
120 hour time points by trypan blue exclusion and man-
ual counting of cells by hemacytometer [48]. At 50 µg/ml,
puromycin selection was observed to have a maximal
effect on S. vortens viability after 3 to 4 days.

For the electroporation of S. vortens, approximately 1 ×
107 cells (one confluent 13 ml culture tube) was first cen-
trifuged at 1500 × g for five minutes at 4°C. The pellet was
then washed once in fresh medium, centrifuged again,
and resuspended in 1 ml medium (approximately 107

cells/ml). Roughly 50 µg of the SvH3P.pac or the
SvH3G.pac episomal plasmids were mixed gently with
300 µl of S. vortens cells in a 4 mm electroporation cuvette
(BioRad) and incubated at 4°C for ten minutes. Various
electroporation voltages (ranging from 325V to 425V)
were used for initial studies, but the optimal transforma-
tion was achieved with GenePulserXL (BioRad) using the
following conditions: 400V, 1000 µF, and 700 ohms.

Following electroporation, cuvettes were incubated on ice
for 10 minutes, and then electroporated S. vortens were
transferred into 13 ml polypropylene tubes with 12 ml of
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medium. The electroporated S. vortens cells were grown
for 24 hours at room temperature without antibiotic selec-
tion. Electroporated cells were then diluted 1:10, 1:100, or
1:1000 in 1.5 ml of S. vortens medium with a final concen-
tration of 10 µg/ml puromycin (CalBioChem) in a 24-
well plate (ThermoFisher). The plates were incubated at
room temperature in BioBags (ThermoFisher) to maintain
a low oxygen tension required for optimal growth. After
4–9 days, putative transformants were transferred to 13
ml polypropylene tubes with fresh medium, and antibi-
otic selection was increased to a final concentration of 50
µg/ml puromycin. Strains were maintained for greater
than six months under selection with 50 µg/ml puromy-
cin, and were aliquoted to medium containing 9% DMSO
for storage in liquid nitrogen.

RT-PCR of GFP expression in stably transformed strains
In vivo expression of GFP fusions in the transformed S.
vortens strains (SvH3P and SvH3G) was confirmed by RT-
PCR. Following total RNA extraction of a 13 ml culture
(~1.0 × 107 cells) using RNA-STAT (Tel-Test), RT-PCR was
performed with ~300 ng of S. vortens RNA from the trans-
formed strains using the Superscript™ One-Step RT-PCR
with Platinum Taq Kit (Invitrogen) according the manu-
facturer's instructions, using two GFP-specific PCR prim-
ers: GFPF: 5' TGAGCAAGGGCGAGGACGTGTTCACGG 3'
and GFPR 5' ATCACTTGTACAGCTCGTCCATGCCG 3'.
The expected size of the GFP fragment amplified using
these primers is 721 bp.

Localization of the episomal plasmid SvH3P.pac to a single 
nucleus by fluorescence in situ hybridization
Based on prior work in G. intestinalis that showed localiza-
tion of episomal plasmids to one nucleus (even during
mitosis) [22,42,43], we were interested in determining
the nuclear localization of episomal plasmids in S. vortens.
Toward this end, we constructed a fluorescence in situ
hybridization (FISH) probe to an AscI/AgeI fragment of
the SvH3G.pac plasmid that lacked the histone H3 gene,
using the incorporation of Cy3-labelled dUTPs by nick
translation (Roche). The Cy3-labelled hybridization
probe was precipitated in LiCl and used in hybridization
experiments in the S. vortens SvH3P.pac strain as previ-
ously described (Yu. et al, 2001).

In brief, transformed cells were centrifuged at 1500 × g for
5 minutes, and the cell pellet was resuspended in one ml
HBS, and fixed in a final concentration of 4% paraformal-
dehyde. S. vortens cell suspensions were then placed on
poly-L-lysine-treated coverslips (0.1%) and allowed to
attach for 30 minutes. Following fixation, coverslips were
dehydrated in 70% ethanol, and rehydrated before use in
2× SSC. Coverslips were then treated with DNAse-free
RNAse for 3 hours at 37°C, followed by permeabilization
with 0.5% Triton X-100 at room temperature for fifteen

minutes, and finally redehydrated in 70% ethanol for five
minutes and 100% ethanol for five minutes. Prior to
hybridization, slides were denatured for two minutes in
70% formamide/2× SSC at 70°C and dehydrated for five
minutes each in cold 70% ethanol (-20°C) and cold
100% ethanol. Probes resuspended in 100% formamide
were denatured at 95°C for 10 minutes and then kept on
ice. Denatured probe (20 µl) was mixed with 10 µg each
of salmon sperm DNA, and Saccharomyces cerevisiae tRNA,
air dried, and finally resuspended in 10 µl of 100% forma-
mide. For hybridizations, an equal volume of hybridiza-
tion buffer (4× SSC, 20% dextran sulfate, and 4 mg/ml
BSA) was to the denatured probe. Coverslips were placed
face down on the hybridization/probe solution and cov-
ered with Parafilm. After overnight incubation at 37°C,
the coverslips were washed in 2× SSC with 50% forma-
mide at 37°C for 30 minutes, followed by 2× SSC at 37°C
and 1× SSC at room temperature for 30 minutes each and
then placed on slides with ProLong anti-fade mounting
medium. Three-dimensional images of in situ hybridiza-
tions were collected using epifluorescence deconvolution
microscopy and processed as described below.

Immunolocalization of the microtubule cytoskeleton with 
GFP fusion proteins
Transformed S. vortens strains in 12 ml culture tubes were
fixed with 1% paraformaldehyde to maintain native GFP
fluorescence, then centrifuged at 900 × g at 4°C. Pellets
were washed twice in PEM buffer (100 mM PIPES, 1 mM
EGTA, 0.1 mM MgSO4) and attached to poly-L-lysine-
coated coverslips. S. vortens cells were permeabilized with
1 ml of 0.1% Triton X-100 for 10 minutes, and then
washed three times in PEM. Coverslips were then incu-
bated in PEMBALG (100 mM PIPES, 1 mM EGTA, 0.1 mM
MgSO4,100 mM lysine, and 0.5% cold water fish skin gel-
atin (Sigma)) to block non-specific binding. Microtubules
were counterstained by incubating coverslips with the
monoclonal α-tubulin antibody TAT1 [49] diluted 1:75 in
PEMBALG, and incubated at room temperature overnight.
The TAT1 antibody was directly labeled (1:1) with a
Zenon fragment conjugated to an Alexa 555 fluorophore
(Molecular Probes, Inc.) at room temperature for 5 min-
utes. Following incubation, coverslips were washed three
times in PEMBALG, then three times in PEM before
mounting on slides with ProLong AntiFade with DAPI
(Molecular Probes, Eugene, OR).

Fluorescence Deconvolution Microscopy of live and fixed 
S. vortens
Three dimensional images were collected using SoftWorX
image acquisition software (Applied Precision Inc,
Issaquah, WA) on an Olympus IX70 wide-field inverted
fluorescence microscope with an Olympus UPlanApo
100× (NA 1.35) or an Olympus UPlanApo 60× (NA 1.4)
oil immersion objective and a Photometrics CCD CH350
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camera cooled to -35°C (Roper Scientific, Inc, Tuscon,
AZ). To visualize the cells in three dimensions, serial sec-
tions were acquired at 0.2 µm intervals, and data stacks
were deconvolved using the SoftWorX deconvolution
software. 2D projections were created from the 3D data
sets using the DeltaVision image analysis software
(Applied Precision Inc, Issaquah WA) for presentation
purposes.

List of Abbreviations Used
amp gene (ampicillin resistance gene); atb1 gene (α-tubu-
lin gene); CBP (calmodulin binding protein); CSP (Com-
munity Sequence Program); DAPI (4',6-diamidino-2-
phenylindole); eGFP (enhanced green fluorescent pro-
tein); FISH (fluorescence in situ hybridization); H3P (H3
histone promoter); LC-MS-MS (Liquid Chromatography/
Mass Spectrometry/Mass Spectrometry); MALDI-TOF
(Matrix Assisted Laser Desorption/Ionization – Time Of
Flight); pac gene (puromycin resistance gene); RT-PCR
(reverse transcription polymerase chain reaction); SV.pac
(S. vortens vector containing pac gene driven by atb1 pro-
moter); SvGAT.pac (S. vortens vector containing func-
tional pac gene and GFP-AU1 TAP tag insert); SvH3G (S.
vortens strain containing H3::GFP fusion driven by H3
promoter); SvH3G.pac (S. vortens vector containing func-
tional pac gene and H3::GFP fusion driven by H3 pro-
moter); SvH3P (S. vortens strain containing GFP
expression driven by H3 promoter); SvH3P.pac (S. vortens
vector containing functional pac gene and functional GFP
gene driven by H3 promoter); SvPAC (S. vortens strain
containing pac gene driven by atb1 promoter); TAP tag
(tandem affinity purification tag); TEV (tobacco etch
virus).
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