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Abstract

Background: Transferrin binding protein B (tbpB), an outer membrane lipoprotein, is required for
the acquisition of iron from human transferrin. Two tbpB families have been documented in
Neisseria meningitidis: an isotype | thpB gene of 1.8 kb and an isotype Il thpB gene of 2.1 kb, the
former expressed by meningococci in the disease-associated ST-1 1 clonal complex and the latter
found among meningococci belonging to the hyper-invasive clonal complexes including ST-8, ST-
18, ST-32, ST-41/44 as well as N. gonorrhoeae isolates. The origin of the isotype | tbpB gene is
unknown, however several features in common with non-pathogenic Neisseria and the ST-1 | clonal
complex N. meningitidis isolate FAM18 have been documented leading to the hypothesis that the
isotype | tbpB gene may also be shared between non-pathogenic Neisseria and ST-1 | meningococci.
As a result, the diversity of the tbpB gene was investigated in a defined collection of Neisseria
species.

Results: Two families of isotype | tbpB were identified: family A containing conserved genes
belonging to ST-I| meningococci, N. polysaccharea and N. lactamica isolates and family B including
more diverse isotype | thpB genes from N. sicca, N. mucosa, N. flava, N. subflava as well as N. cinerea,
N. flavescens and N. polysaccharea isolates. Three isotype Il tbpB families were identified with: family
C containing diverse tbpB genes belonging to N. polysaccharea, N. lactamica, N. gonorrhoeae and N.
meningitidis isolates, family D including another subset of isotype Il tbpB genes from N. lactamica
isolates and family E solely composed of N. gonorrhoeae tbpB genes.

Conclusion: This study reveals another instance of similarity between meningococci of the ST-1 1
clonal complex and non-pathogenic Neisseria with the origin of the isotype | tbpB gene resulting
from a horizontal genetic transfer event occurring between these two populations.

Background orrhoea and Neisseria meningitidis, a major cause of men-
The genus Neisseria contains 12 species and biovars colo-  ingitis and septicaemia worldwide, regularly cause disease
nising humans most of which are non-pathogenic colo-  in humans [3,4].

nisers of the upper respiratory tract [1,2]. Only two
species, Neisseria gonorrhoeae, the etiological agent of gon-
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A major determinant in the survival of Neisseria within the
human host is the ability to acquire iron, the majority of
which is not circulating freely in the human body but is
stored in ferritin and haemoglobin or is complexed with
the glycoproteins transferrin and lactoferrin [5]. Neisseria
have devised ways to counteract this iron limitation
through the evolution of several high-affinity receptor sys-
tems including the lactoferrin binding proteins A and B,
the transferrin binding proteins A and B, and the hap-
toglobin-haemoglobin receptor HpuAB, each composed
of an accessory lipoprotein subunit and a TonB-depend-
ent gated porin [6-11]. In addition, Neisseria can obtain
iron through the expression of the surface-exposed hae-
moglobin receptor HmbR [12,13].

Based on antigenic and genomic features of TbpB and
thpB, N. meningitidis isolates can be classified into two
major families: isotype 1 (tbpB gene of 1.8 kb and TbpB
protein with a mass of approximately 68 kDa) and isotype
IT (tbpB gene of 2.1 kb and TbpB protein with a mass of
approximately 80 to 90 kDa) [14]. Isotype II tbpB genes
have been documented in several N. meningitidis clonal
complexes including ST-8, ST-32, ST-18 and ST-41/44 as
well as non-pathogenic Neisseria [14-17]. Isotype 1 tbpB
genes, on the other hand, have solely been identified
among N. meningitidis isolates belonging to the ST-11
clonal complex and have not been detected among other
Neisseria species. Four tbpB families were recently
described based on partial nucleotide sequences from
serogroup A clonal complex ST-4 N. meningitidis and N.
lactamica isolates collected in The Gambia [16,17]. Fami-
lies one and four contained diverse isotype II tbpB alleles
from N. meningitidis and N. lactamica isolates and families
two and three included isotype I tbpB alleles. Importantly,
among the 138 isolates analysed (98 serogroup A ST-4
meningococci, 12 unrelated meningococci, 22 N. lactam-
ica isolates, and 6 unidentified Neisseria spp.) only three
isotype I tbpB alleles were found, all of which belong to
meningococci [16,17].

Meningococci from the ST-11 clonal complex have been a

major cause of meningococcal disease worldwide
throughout the last century and despite low carriage rates

Table I: Summary of tbpB families and nomenclature used
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continue to be associated with disease [18]. In addition to
the isotype I thpB gene, ST-11 meningococci can be distin-
guished from other hyper-virulent clonal complexes by
the absence of an opcA gene and the possession of a class
2 porB gene [19-21]. Furthermore, similarities between the
ST-11 clonal complex isolate FAM18 and non-pathogenic
Neisseria spp. have been reported including the clustering
of pilE sequences [22] and the comparable genetic organ-
isation of the opcA negative locus in two N. polysaccharea
isolates [23]. Taken together, these observations indicate
the occurrence of specific horizontal genetic exchange
events between commensal Neisseria and ST-11 meningo-
cocci which may have contributed to the described genetic
isolation of this clonal complex [24]. The origin of the iso-
type I tbpB gene is unknown. Consequently, the distribu-
tion of the gene in a defined collection of Neisseria spp.
was investigated with the hypothesis that the isotype I
tbpB gene was present in other Neisseria spp.

Results

Identification of the tbpB gene

Isotype I tbpB genes were isolated from the non-patho-
genic Neisseria spp. Two families of the gene became
apparent. The first contained sequences closely related to
meningococcal ST-11 tbpB genes belonging to three N.
polysaccharea and two N. lactamica isolates. The second
included more divergent isotype 1 tbpB genes from the
non-pathogenic Neisseria spp. N. sicca, N. mucosa, N. flava,
N. subflava, N. cinerea, N. flavescens as well as from another
three N. polysaccharea isolates (Table 1). Isotype II thpB
genes were obtained from the remaining six N. lactamica
and two N. polysaccharea isolates, while in agreement with
previous studies, N. gonorrhoeae isolates contained isotype
IT tbpB genes (Table 1) [25]. A further 23 non-pathogenic
Neisseria isolates were analysed and found to be negative
for the tbpB gene. Among these were N. polysaccharea, N.
perflava, N. sicca, N. subflava, N. flava and N. mucosa iso-
lates. These isolates may contain divergent or truncated
tbpB genes unable to be amplified with the primers used,
however the remainder of this study will focus on the tbpB
genes that were sequenced.

TbpB Family size (kb) tbpB isotype Previous designation [16, 17] Neisseria species

tbpB, 1.8 | Families 2 & 3 N. meningitidis clonal complex ST-11, N. polysaccharea and N.
lactamica

tbpBg 1.8 | ND N. polysaccharea, N. sicca, N. cinerea, N. mucosa, N. flava, N.
subflava and N. flavescens

tbpB, 2.1 I Family | N. meningitidis belonging to the clonal complexes ST-32, ST-41/44,
ST-8, ST-18, N. lactamica, N. polysaccharea and N. gonorrhoeae

tbpBp, 2.1 I Family 4 N. meningitidis and N. lactamica

tbpBe 2.1 I ND N. gonorrhoeae
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Functional assessment of the protein was beyond the
scope of the present study. Nevertheless, previously docu-
mented putative transferrin binding sites were observed
based on predicted translations of the nucleotide
sequences [26,27]. In particular, the highly conserved
domains N3, N4 and C3, critical for efficient iron uptake
and located in both the N- and C- terminal segments
among isolates N. gonorrhoeae FA19, N. meningitidis
M982, Moraxella catarrhalis 4223 and Acinetobacter pleurop-
neumonide serotype 7, were also identified [27]. Domain
N3 (residues 377 to 388 in N. gonorrhoeae FA19) dis-
played 100% sequence identity in both isotype I TbpB
families, whereas six non-synonymous changes were
observed among isotype II TbpB. Domain N4 (residues
409 to 422 in N. gonorrhoeae FA19) was also highly con-
served among isotype I TbpB with the occurrence of three
non-synonymous substitutions. Five variable sites were
present among isotype II TbpB. Domain C3 (residues 703
to 713 in N. gonorrhoeae FA19) showed the most diversity
with the occurrence of four non-synonymous substitu-
tions among both TbpB isotypes.

Phylogenetic relationships inferred from novel Neisseria
tbpB sequences

All of the sequences were aligned manually with
sequences starting from and ending at the same amino
acid residue in each isolate. Published isotype I and II tbpB
sequences from isolates B16B6, M982, 8680, 8726, 2713,
2717 and FA19, used in previous analyses [14,16,17,27],
were also included in the alignment as well as those from
the sequenced genomes of N. meningitidis isolates FAM 18,
72491, MC58 and N. gonorrhoeae FA1090.

Phylogenetic analysis was undertaken using the software
package ClonalFrame version 1.1, which is a statistical
model-based method initially described for inferring bac-
terial clonal relationships using multilocus sequence data
[28]. Inference is performed in a Bayesian framework and
a neutral coalescent model is assumed based on the
hypothesis that the bacteria in the sample come from a
constant-sized population in which each bacterium is
equally likely to reproduce, irrespective of its previous his-
tory. The key assumption of ClonalFrame is that recombi-
nation events introduce a constant rate of substitutions to
a contiguous region of sequence with the end result that a
clonal frame can be inferred. In the present study, over
50,000 iterations were performed with every hundredth
tree sampled after which a 95% majority-rule consensus
tree was derived. Annotation was then undertaken by
importing the tree into the Molecular Evolutionary Genet-
ics Analysis software package (MEGA version 4.0) [29].

The two major isotype families were evident with each
family containing a distinct cluster of genes (Fig. 1). The
shortness of the branches for isotype 1 thpB genes indi-
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cated that these were a closely related group of sequences
compared with the depth of the branches seen for isotype
IT thpB genes where greater diversity is known to occur
[30]. Closer inspection of the tree revealed the two fami-
lies of isotype I thpB genes observed by sequence analysis
as well as three clusters of isotype Il tbpB genes. For ease of
interpretation, the two isotype I tbpB families have been
named tbpB, and tbpB, with the isotype II clusters named
thpB, through to thpB; (Fig. 1 and Table 1). This nomen-
clature is proposed according to published guidelines in
bacterial genetics [31] and is recommended in light of the
emergence of the new families revealed in this study.
Hitherto, studies in thpB genetic diversity have focussed
on a specific Neisseria spp. or meningococcal clonal com-
plex and have not encompassed all of the Neisseria species
included in the present work. This inclusion has provided
a more detailed analysis of tbpB diversity and will allow a
more flexible nomenclature for tbpB genes.

Family tbpB, was comprised of genes most closely related
to those of clonal complex ST-11 meningococci with four
of these belonging to N. lactamica and N. polysaccharea iso-
lates. Family tbpBg included a divergent cluster of isotype
I genes (75% identity) belonging to a variety of Neisseria
spp. as well as containing a subset of N. polysaccharea iso-
lates (Fig. 1 and Tables 1 &2).

Three distinct isotype II tbpB families were apparent (Fig 1
and Tables 1 &2). Several gonococcal genes have clustered
together and can be found in family tbpB; with families
tbpB and tbpB|, containing genes belonging to N. lactam-
ica, N. polysaccharea, N. gonorrhoeae and N. meningitidis
isolates. Throughout the tree isolates have clustered by
Neisseria species indicative of within species conservation
of tbpB genes. The Genbank accession numbers for new
thpB genes sequenced in this study are listed in Table 2 as
well as those belonging to previously submitted tbpB
sequences.

Genetic diversity of the tbpB genes

Genes belonging to family thpB, were the least diverse
(mean p-distance ranging from 0.001 to 0.040) with 85
polymorphic sites, the majority of which occur among N.
polysaccharea and N. lactamica isolates. Overall, six fixed
differences were observed between the genes of ST-11
meningococci and those of N. lactamica and N. polysaccha-
rea with no shared polymorphisms between the two pop-
ulations. Family B tbpB genes were more diverse (mean p-
distance value 0.117) with 415 polymorphic sites. In a
comparison of both gene families, there were 210 fixed
differences and 54 shared mutations.

As expected, families thpB.,  and  were more diverse
(mean p-distances = 0.187, 0.140 and 0.112 respectively).
Genes belonging to the N. polysaccharea isolates shared
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Phylogenetic tree inferred from aligned tbpB genes. Over 500 trees were generated using Clonalframe from which a
95% majority-rule consensus tree was derived and imported into MEGA version 4.0 for further annotation. Meningococcal ref-
erence tbpB genes (accession numbers in brackets) belonging to isolates B16B6, M982, 2713, 2717, 8710, 8680, FA19, FA1090,
FAMI8, Z2491 and MC58 [Genbank: Z15129, Z15130, AJ223044, AJ279554, Y09618, Y09977, U05205, U65219, AM421808,
AL157959 and AE002098, respectively] were also included in the phylogenetic analysis. The proposed nomenclature for each
tbpB family is indicated by large encircled letters. The nodes |, 2 and 3 depicted with a diamond correspond to the recombina-
tion events presented in Figure 2. Open squares denote N. gonorrhoeae tbpB sequences, open circles N. lactamica, open trian-
gles all of the other Neisseria spp. excluding N. polysaccharea, which are depicted with black circles and N. meningitidis which are
represented by black squares.
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Table 2: N. gonorrhoeae and commensal Neisseria isolates used in this study

Isolate Site of isolation ~ Country of origin  tbpB family = Genbank Accession No Reference
N. gonorrhoeae 22584 genitourinary USA tbpBe [AM849572] This study
N. gonorrhoeae 25562 DGl unknown tbpBe [AM849573] This study
N. gonorrhoeae 26034 DGl unknown tbpB [AM849574] This study
N. gonorrhoeae 26399 DGl unknown tbpBe [AM849575] This study
N. gonorrhoeae 26593 DGI unknown tbpB [AM849576] This study
N. gonorrhoeae 27806 DGl UK tbpB. [AM849577] This study
N. gonorrhoeae 27886 genitourinary Bangladesh tbpBe [AM849578] This study
N. gonorrhoeae 27921 genitourinary Uzbekistan tbpBe [AM849579] This study
N. gonorrhoeae 28197 genitourinary Russia tbpBg [AM849580] This study
N. gonorrhoeae 28622 genitourinary UK tbpB. [AM849581] This study
N. gonorrhoeae 29528 genitourinary UK tbpBe [AM849582] This study
N. gonorrhoeae F62 genitourinary USA tbpB. [AM849571] This study
N. gonorrhoeae FA19 DGl USA tbpBe [U05205] [35]

N. gonorrhoeae FA1090 DGI USA thbpBg [U65219] [25]

N. lactamica 8064 nasopharynx France tbpB. [AM849588] [40, 41]
N. lactamica 241 nasopharynx Oman tbpB,, [AJ704747] This study
N. lactamica 2n494 nasopharynx Oman tbpB, [A]704737] This study
N. lactamica 274223 nasopharynx Oman tbpB, [AM849585] This study
N. lactamica 279290 nasopharynx Oman tbpB. [AJ704748] This study
N. lactamica 274291 nasopharynx Oman tbpB. [AM849586] This study
N. lactamica 279292 nasopharynx Oman tbpB, [AM849587] This study
N. lactamica 15170 nasopharynx Oman tbpB, [AJ704746] This study
N. flava 30008 nasopharynx USA tbpBg [AJ704732] This study
N. subflava 9992 nasopharynx USA tbpBg [A]704745] This study
N. mucosa ATCC 19696 sputum unknown tbpBg [A]704738] [42, 43]
N. sicca ATCC 9913 unknown unknown tbpBy [AJ704730] [44]

N. flavescens ATCC 13120 CSF meningitis USA tbpBg [A]704733] [45, 46]
N. flavescens 414 unknown France tbpBg [A]704736] [47]

N. flavescens ATCC 13119 CSF meningitis USA tbpBg [AJ704734] [48]

N. flavescens 3536 CSF meningitis USA tbpBg [A]704735] [48]

N. cinerea ATCC 14685 nasopharynx Germany tbpBg [A]704731] [47, 49]
N. polysaccharea ATCC 43768 nasopharynx France tbpBg [AJ704740] [47, 49, 50]
N. polysaccharea 90400 nasopharynx Canada tbpBy [AJ704743] [23, 51]
N. polysaccharea 89356 nasopharynx Canada tbpB. [A]704762] [52]

N. polysaccharea 85322 nasopharynx Germany tbpB, [A]704761] [23, 53]
N. polysaccharea 87043 nasopharynx Canada tbpB, [AJ704742] [23, 44, 51, 52]
N. polysaccharea P4-A nasopharynx UK tbpBg [AJ704739] [48]

N. polysaccharea P7-A nasopharynx UK tbpB, [A]704741] [48]

N. polysaccharea P8-A nasopharynx UK tbpB, [A]704744] [48]

99% identity with 16 segregating sites, seven of which
encoded non-synonymous changes. N. lactamica tbpB
genes were more diverse with 696 polymorphic sites while
829 polymorphisms were observed among N. gonorrhoeae
tbpB genes. A total of 445 shared mutations were observed
between N. lactamica and N. meningitidis tbpB. genes
indicative of recombination, while only six were apparent
between N. polysaccharea and N. meningitidis.

Very little recombination was noticeable among tbpB,
genes or between these and family tbpB;, however a
mosaic gene structure was present among the latter indi-
cating that recombination occurred frequently among
tbpBj genes from N. sicca, N. flava, N. subflava, N. mucosa,
N. flavescens, N. cinerea and N. polysaccharea (Fig. 2a). As

expected, tbpB genes from families tbpB |, and ; recom-
bined often (Fig. 2b &2c) with most of this occurring from
bases 200 to 800.

Discussion

The aim of this study was to identify the origin of the iso-
type I tbpB gene. Previous observations have determined
that these were confined to meningococci belonging to
the ST-11 clonal complex [14,32]. In contrast, isotype II
genes were widely distributed among N. meningitidis
clonal complexes and N. lactamica isolates [14,16,17]. The
results presented here reveal the existence of isotype I thpB
genes among diverse Neisseria spp. Based on phylogenetic
analysis these could be divided into two families: tbpB,
containing genes homologous to ST-11 meningococci
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and tbpBg including more distantly related isotype I genes
belonging to diverse non-pathogenic Neisseria spp. (Table
1 and Fig. 1). N. lactamica and N. polysaccharea isolates
were found with both tbpB isotypes while, in agreement
with previous studies, N. gonorrhoeae isolates solely con-
tained isotype II tbpB genes [25]. Phylogenetic analysis
demonstrated the presence of three isotype II families,
named tbpB. through to thpBg. Family C contained genes
belonging to N. lactamica, N. polysaccharea, N. meningitidis
and N. gonorrhoeae isolates, family D included another
subset of isotype II thpB genes belonging to N. lactamica
and N. meningitidis isolates and finally, family E com-
prised N. gonorrhoeae genes (Table 1 and Fig. 1). In light
of the thpB families now present a new nomenclature is
proposed according to published guidelines in bacterial
genetics [31]. Previously, studies in tbpB genetic diversity
focussed on a specific Neisseria spp. or meningococcal
clonal complex and did not encompass all of the Neisseria
spp. included in the present work [14-17,25]. This inclu-
sion has provided a more detailed analysis of tbpB diver-
sity with the proposed nomenclature allowing more
flexibility for future tbpB genes. Using this scheme genes
can be grouped according to the family they belong to fol-
lowed by an allele number.

A number of features are shared between clonal complex
ST-11 N. meningitidis isolates and non-pathogenic Neisse-
ria. Sequences upstream of the pilE gene from the class II
pilin-producing N. meningitidis strain FAM18 were identi-
cal to the short region characterised upstream from N.
polysaccharea pilE [22]. The N. polysaccharea isolate ana-
lysed (ATCC 43768) was included in the present study
and harboured a thpB gene similar to that of N. meningi-
tidis isolate FAM18. Furthermore, opcA genes are absent
among meningococci belonging the ST-11 clonal com-
plex and were also undetectable among N. polysaccharea
isolates 87043 and 90400 [19,20], which were found in
this study with isotype I tbpB genes. The identification of
isotype I family A and B genes among Neisseria spp. is
another characteristic shared with N. meningitidis isolates
belonging to clonal complex ST-11 and is indicative of the
occurrence of several horizontal genetic transfer events
between non-pathogenic Neisseria, in particular N.
polysaccharea and meningococci belonging to this clonal
complex.

The evolutionary reasons leading to the existence of two
tbpB isotypes among Neisseria are unknown. However,
seclusion of isotype I thpB to ST-11 clonal complex menin-
gococci may be due to clonal expansion or selection for
this isotype. Indeed, the isotype I TbpB protein has been
shown to play an essential role in iron acquisition from
human transferrin with isogenic mutants deficient in
TbpB failing to grow on hTf as a sole iron source [33,34].
Thus, both the TbpA and TbpB parts of the transferrin
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complex are critical. This was reflected in the lower diver-
sity observed among tbpB genes belonging to families A
(mean p-distance ranging from 0.001 to 0.040) and B
(mean p-distance 0.117), highlighting the importance of
this gene in contributing to the fitness of the organism.
There has been selection for isotype I thpB among menin-
gococci belonging to the ST-11 clonal complex such that
it has become restricted to this clonal complex. In con-
trast, isotype II thpB genes have been found to provide a
purely facilitating role such that TbpB-deficient mutants
were only incapacitated with slower growth [34]. This has
been confirmed in isogenic mutagenesis studies of both
TbpA and TbpB in N. gonorrhoeae, H. influenzae and M.
catarrhalis (which all contain isotype II-like tbpB genes)
[35-37]. The non-essential role the isotype II tbpB gene has
in iron acquisition may contribute to its hyper-variability.
Indeed, Zhu et al found that the high rate of import
among isotype II tbpB genes, although providing a tempo-
rary advantage because of antigenic composition, resulted
in reduced fitness of the isolates [16,17]. The higher
recombination patterns observed in the present study
among isotype II tbpB genes (Fig. 2b &2C) combined with
the deeper phylogeny seen (Fig. 1) support this.

Conclusion

This work investigated the distribution of the two tbpB
variants among Neisseria spp. and aimed to discover the
origin of the isotype I tbpB gene. Results revealed this gene
was found among diverse Neisseria spp. indicating the
occurrence of a horizontal genetic transfer event between
N. meningitidis and non-pathogenic Neisseria. Three fea-
tures shared between ST-11 meningococci and non-path-
ogenic Neisseria have now been described: (i) the presence
of isotype I tbpB genes (ii) the identical sequences
upstream of the pilE gene and (iii) the analogous genetic
organisation of the opcA negative locus.

A revised nomenclature was proposed according to the
published guidelines [31]. The scheme now distinguishes
isotype I thpB genes into two new families: thpB, and tbpB,
the former contained tbpB genes closely related to ST-11
clonal complex meningococci, the latter included the
more distantly related tbpB genes belonging to many non-
pathogenic Neisseria species. The scheme also separates
isotype II thpB genes into three new families: thpB com-
prising tbpB genes from N. meningitidis, N. lactamica, N.
polysaccharea and N. gonorrhoeae isolates, tbpB, consisting
of thpB genes from N. lactamica and N. meningitidis iso-
lates and finally, tbpBj containing N. gonorrhoeae tbpB
genes.

Methods

Growth of isolates and DNA preparation

The non-pathogenic Neisseria and N. gonorrhoeae isolates
used in this study are listed in Table 2. Isolates were cul-
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Table 3: Primers used in this study
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Primer Primer base sequence (5' - 3') Application Location from 5' end
OTG6687 CAATCCATTGGTAAATCAG tbpB forward primer 6

OTG6689 [54] GCCGTCTGAAGCCTTATTC tbpB reverse primer Intergenic space
seqtbpBl-forl CTAYAAAGGSARHRAWCCTTCC Isotype | tbpB sequencing 603
seqtbpBI-for2 CCGATTTYGGKMTGACYAG Isotype | tbpB sequencing 817
seqtbpBl-revl CCRCCTTCCTGATTGGAGG Isotype | tbpB sequencing 1931
seqtbpBl-rev2 CTGAAATGCCGCCTTATTGCC Isotype | tbpB sequencing 1486
seqtbpBll-for| GACGGYTATATYTTYTATMAMGG Isotype Il tbpB sequencing 585
seqtbpBlI-for2 GAAACCAARSAACATCCCTTTG Isotype Il tbpB sequencing 1032
seqtbpBll-revl| GAAGCATTGCCGCTCCAGC Isotype Il thpB sequencing 1901
seqtbpBll-rev2 CTGTTCCGCCGTTTKTACC Isotype Il tbpB sequencing 1460

tured overnight on GC agar (Difco) supplemented with
1% isovitalex (Oxoid) and grown at 37°C in the presence
of 10% CO,. Boiled cell suspensions were prepared for
each isolate. Briefly, a PBS solution of overnight GC
grown bacteria was boiled for 5 minutes, centrifuged and
the supernatant stored at +4 °C before being directly used
for PCR.

Nucleotide sequence determination

Amplification and sequencing of tbpB genes were com-
pleted using primers listed in Table 3. Degenerate primers
were used for some of the sequencing steps. PCR products
were PEG purified and either sequenced directly or cloned
using the TOPO PCR TA cloning kit for sequencing (Invit-
rogen). Nucleotide sequence determination was carried
out using the Li-Cor Global IR? system along with the
Sequitherm Excel II DNA sequencing kit (ScienceTec,
France). Additional sequencing was carried out by cycle
sequencing with BigDye Ready Reaction Mix (Applied
Biosystems) according to manufacturer's instructions and
using an ABI 377 automated DNA sequencer.

Data manipulation and analysis

The thpB nucleotide sequences were assembled using the
Staden sequence analysis package [38] and all sequences
aligned manually in the Seqlab alignment program
(Genetics Computer Group, Madison, Wis.). Phylogenetic
analysis was undertaken using the software package Clon-
alFrame version 1.1, which is a statistical model-based
method initially described for inferring bacterial clonal
relationships using multilocus sequence data [28]. In the
present study, over 50,000 iterations were performed with
every hundredth tree sampled after which a 95% majority-
rule consensus tree was derived. Annotation was then
undertaken by importing the tree into the Molecular Evo-
lutionary Genetics Analysis software package (MEGA ver-
sion 4.0) [29].

The level of sequence diversity between tbpB genes was
assessed by calculating p-distances within each tbpB family
revealing the proportion (p) of nucleotide sites at which

sequences differed. These analyses were conducted using
MEGA. The number of fixed differences and shared poly-
morphisms were obtained using the software DnaSP [39].
Old and new accession numbers for tbpB genes are listed
in table 2.
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