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Abstract
Background: The ParA/Soj and ParB/Spo0J proteins, and the cis-acting parS site, participate
actively in chromosome segregation and cell cycle progression. Genes homologous to parA and
parB, and two putative parS copies, have been identified in the Mycobacterium bovis BCG and
Mycobacterium smegmatis chromosomes. As in Mycobacterium tuberculosis, the parA and parB genes
in these two non-pathogenic mycobacteria are located near the chromosomal origin of replication.
The present work focused on the determination of the transcriptional organisation of the ~6 Kb
orf60K-parB region of M. bovis BCG and M. smegmatis by primer extension, transcriptional fusions
to the green fluorescence protein (GFP) and quantitative RT-PCR.

Results: The parAB genes were arranged in an operon. However, we also found promoters
upstream of each one of these genes. Seven putative promoter sequences were identified in the
orf60K-parB region of M. bovis BCG, whilst four were identified in the homologous region of M.
smegmatis, one upstream of each open reading frame (ORF).

Real-time PCR assays showed that in M. smegmatis, mRNA-parA and mRNA-parB levels decreased
between the exponential and stationary phases. In M. bovis BCG, mRNA-parA levels also decreased
between the exponential and stationary phases. However, parB expression was higher than parA
expression and remained almost unchanged along the growth curve.

Conclusion: The majority of the proposed promoter regions had features characteristic of
Mycobacterium promoters previously denoted as Group D. The -10 hexamer of a strong E. coli σ70-
like promoter, located upstream of gidB of M. bovis BCG, overlapped with a putative parS sequence,
suggesting that the transcription from this promoter might be regulated by the binding of ParB to
parS.

Background
Partitioning systems were first characterised in low copy

number plasmids of Escherichia coli. In general, plasmid
partition modules encode two trans-acting proteins and a
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cis-acting, centromere-like DNA sequence required for
partitioning [1]. E. coli plasmid P1 and F factor partition-
ing systems encode: i) homologous ATPases (ParA/SopA),
characterised by a conserved 'deviant' Walker A motif [2];
and ii) site-specific DNA-binding proteins containing
helix-turn-helix (HTH) motifs (ParB/SopB) [3]. The cen-
tromere-like sites, parS and sopC, are located downstream
of the genes encoding the trans-acting proteins [4,5].
Chromosomal homologues of parA and parB (sometimes
denoted as soj and spo0J, because of their involvement in
sporulation), as well as parS, have been identified in a
wide range of Gram-negative and Gram-positive bacteria,
with the exception of certain γ-proteobacteria, including
E. coli and Haemophilus influenzae [3,6]. The par genes are
commonly arranged in an operon, whose expression is
autoregulated by par-encoded proteins [7-9]. In numerous
bacteria, chromosomal par genes are located upstream of
the dnaA-oriC region [10].

Two or more 16-bp parS inverted repeats, with a consen-
sus sequence 5'-TGTTNCACGTGAAACA-3, are clustered
near the origin of chromosome replication (oriC) region
[11]. In Bacillus subtilis, Spo0J binds to 8 of these 10
pseudo-palindromic 16-bp invert repeats in vivo. Further-
more, the presence of one of such site on an otherwise
unstable plasmid stabilizes it in a Soj- and Spo0J depend-
ent manner [11]. In Streptomyces coelicolor, 20 of the 24
parS sequences are packed around oriC, and ParB binds to
many of them in vitro and in vivo [12]. Although the pre-
cise function of ParA and ParB is still unclear, it has been
proposed that the recruitment of these proteins to parS
sites may lead to the positioning of replicated chromo-
somal origins at opposite poles of the cell [11]. The parAB
genes are essential for the viability of Caulobacter crescentus
[13], whereas in B. subtilis [14], Streptomyces coelicolor [15]
and Pseudomonas putida [16], deletion of soj/parA and
spo0J/parB is not lethal. spo0J mutants of B. subtilis display
defects in chromosome segregation in both vegetative and
sporulating cells [14,17]. Deletion of parAB in S. coelicolor
results in the production of significant numbers of anucle-
ate spores, although no detectable defect is visible in veg-
etatively growing cells [15]. In P. putida, whose cellular
division occurs only by binary fission, anucleated-cells are
only observed when mutants in these genes are grown in
minimal medium or as they enter into stationary phase
[16,18]. The Par proteins are involved in other processes,
such as chromosome replication, transcription, and a cell-
cycle checkpoint that links chromosome segregation to
cell division [13,19,20].

New insights about the role of Par proteins in chromo-
some segregation are emerging with the recent discovery
of the bacterial cytoskeleton. A bacterial actin homolog,
MreB, has been implicated in chromosome segregation.
In the bacterial cells that have MreB, a membrane-associ-

ated coiled structure extends along the cell length [21]. In
C. crescentus, this structure may be used for transporting
oriC rapidly towards the cell poles. MreB may bind to
DNA via ParB forming a kinetocore-like complex, which
might connect the oriC region to the MreB coil at the
membrane, and thus may actively move this region
toward the cell poles [22].

Tuberculosis (TB) is a major public health problem with
one-third of the world's population infected by its etio-
logic agent, Mycobacterium tuberculosis. Over two million
people die from TB each year [23]. The tubercle bacilli can
lie dormant for years, only to rise again when the immune
system weakens due to old age, malnutrition or AIDS. M.
tuberculosis is a non-capsulate and non-spore forming bac-
terium with a relatively simple life cycle. Despite the med-
ical importance of this human pathogen, very little is
known about the molecular mechanisms controlling its
cell cycle.

An interesting problem in M. tuberculosis biology is there-
fore to understand how this intracellular pathogen regu-
lates progression of its cell cycle during the stages of TB
infection, including the dormant state. The dormant state
may be considered in some ways analogous to sporula-
tion, and some genes related to sporulation in B. subtilis
and S. coelicolor are found in the genome of M. tuberculosis
[24]. Nevertheless, the dormant state may also be consid-
ered a special physiological state during which mycobac-
teria grow slowly, but are not sporulated.

Studies based on experimentally-mapped transcriptional
start sites have provided a consensus sequence for several
mycobacterial promoters [25-27]. Group A includes the
σA and σB Mycobacterium promoters, which share homol-
ogy to the E. coli σ70 consensus sequence. The Group D or
"SigGC" Mycobacterium promoters, with -10
(C90R70C50C50M70S90) and -35 (T90G50S80C50S90T30) GC
rich-hexamers, are likely to be unique to mycobacteria
[27,28]. However, it is still unknown which of the 13
sigma factors described in Mycobacterium actually drive
transcription from these promoters [26,27].

In order to understand their possible role in mycobacte-
rial cell cycle, in this work we examined the genetic regu-
lation of the parA and parB partitioning genes, by
analysing the transcription of these genes in Mycobacte-
rium bovis BCG and Mycobacterium smegmatis, two non-
pathogenic mycobacteria, belonging respectively to the
slow and fast-growing groups of the Mycobacterium genus.
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Results
Nucleotide sequence of the jag-parB region and 
conservation of the parS sites near the chromosomal 
origin of replication
Analysis of the complete genome sequence indicates that
the ParA and ParB proteins of M. tuberculosis H37Rv have
high sequence identity (50–60%) with the chromosomal
partitioning Soj/ParA and SpoJ/ParB proteins of S. coeli-
color, P. putida and C. crescentus [29]. Genes homologous
to parA and parB were also identified in the close relatives
Mycobacterium leprae [29], Mycobacterium bovis [29] and M.
smegmatis [30] and like in M. tuberculosis they are located
near the chromosomal origin of replication (oriC).

Eight ORFs could be identified in the 6 Kb region
upstream of the dnaA gene in M. tuberculosis, M. bovis BCG
and M. smegmatis (see Additional file 1). All eight ORFs
were divergently oriented in relation to the dnaA gene and
included the parA and parB genes along with several other
conserved genes, following a similar gene order to that
found in other Gram-positive and -negative bacteria [10].

M. tuberculosis ParA and ParB proteins had sequences that
were 99% and 100% identical to the homologous pro-
teins in M. bovis BCG, and 77% and 71% identical to the
homologous proteins in M. smegmatis, respectively. In M.
tuberculosis and M. bovis BCG, the stop and start codons of
gidB, parA and parB genes overlapped, suggesting that
these genes could be part of a single operon. In M. smeg-
matis, the stop and start codons of gidB and parA genes
overlapped, while the parA and parB genes were separated
by 59 nucleotides, suggesting that promoters localized in
the parA-parB intergenic region could initiate the tran-
scription of the M. smegmatis parB gene. Lin and Gross-
man [8] identified a 16 bp perfect palindrome (5'-
TGTTTCACGTGAAACA-3') identical to the parS sequence
of B. subtilis, at two sites in the M. tuberculosis chromo-
some, located at ~1.1 Kb and ~2 Kb upstream of the parB
gene. A Blast search of this sequence revealed that two
putative parS sites seemed to be conserved in M. bovis BCG
and M. smegmatis genomes at similar positions, 1.761 Kb
and 0.9 Kb upstream of the start codon of parB for M. bovis
BCG, and 1.749 Kb and 0.984 Kb upstream of the start
codon of parB for M. smegmatis. No additional parS
sequences were found in these mycobacterial chromo-
somes.

ParA and ParB proteins alignments were performed using
the translated par sequences proposed for M. bovis BCG
strain Pasteur 1173P2 [29], M. smegmatis mc2155 [30], M.
tuberculosis H37Rv [29] and M. leprae [29]. Multiple
amino acid sequence alignments showed that all the
motifs identified in the chromosomal-coding Par proteins
were conserved in the mycobacterial ParA and ParB pro-
teins (Figure 1). The high aa sequence homology at the N-

terminal region of the mycobacterial ParAs – and the fact
that possible RBS sequences were not identified further
downstream of the proposed parA start codons – suggest
that in contrast to other chromosome-encoded ParA pro-
teins, mycobacterial ParAs begin far upstream of the
Walker A-box motif. Therefore, the mycobacterial ParA
proteins may have an unusually long N-terminal domain.
However, the helix-turn-helix (HTH) DNA-binding motif
present in this region of some plasmid ParA proteins
homologues was not present [31].

Promoter activity in the parA and parB regulatory regions
In order to locate the promoters responsible for the tran-
scription of the parA and parB genes, we cloned fragments
of the orf60K-parB region of M. bovis BCG and M. smegma-
tis in the promoterless vector pFPV27, upstream of the gfp
reporter gene (Table 1). GFP stability produced the accu-
mulation of the fluorescent protein inside the cell and
therefore the fluorescence at stationary phase always was
higher than at exponential phase. In addition, the absence
of a transcriptional terminator upstream of the cloning
site in pFPV27 resulted in a relatively high and almost
constant fluorescence background during the different
growth phases studied, ranging from 175 to 178 RFU.
Hence, the GFP fusions performed were not to evaluate
cell growth-related expression, but to identify the pro-
moter of each gene under study. Fluorescence > 18–20 %
of the background was considered to be indicative of
activity of the cloned promoter(s).

All the constructs were tested for fluorescence emission in
M. smegmatis mc2155. The Figures 2B and 3B show the flu-
orescence obtained during the stationary phase of growth
for each transcriptional fusion corrected by subtracting
the fluorescence emission of M. smegmatis bearing the
plasmid pFPV27. We found that M. bovis BCG promoter
activities were well expressed in the heterologous host M.
smegmatis.

M. smegmatis cells emitted fluorescence when they bore
plasmids containing the orf60K-jag (pD19B) and jag-gidB
(pB5B) intergenic regions, as well as plasmids containing
the 3'-end coding region of the gidB (pA2B) and parA
(pE1B) genes of M. bovis BCG (Figure 2B), suggesting that
jag, gidB, parA and parB genes of M. bovis BCG may be
transcribed from promoters localised immediately
upstream of each one of these genes. The parA and parB
genes of M. smegmatis could also be transcribed from their
own promoters, because substantial fluorescence was
detected when the cells had the GFP transcriptional fusion
to the orf60K-jag (pJ3M), jag-gidB (pG2M plasmid) and
parA-parB (pB16Ms plasmid) intergenic regions as well as
to the 3'-end of the gidB gene (pB1M plasmid) (Figure
3B). Unexpectedly, we found that a 217 bp fragment con-
taining the parS motif localised in the 5'-end of the gidB
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gene of M. smegmatis (pC18Ms and pC11Ms plasmids)
showed fluorescence emission independently of the clone
direction, suggesting divergent promoter activity in this
region.

When we deleted 89 bp of the 3'-end (pA15B) or 92 bp of
the 5'-end (pB3B) from pB5B, the fluorescence emission
was practically abolished, showing that the entire 205 bp
region of pB5B was necessary in order to have the activity
observed with this transcriptional fusion (Figure 2B).
Finally, the fluorescence of M. smegmatis bearing some
constructs (pA3B, pA15B, pB3B, pC5B, pJ3M and pG2M)
was not detectable during the exponential phase of
growth (data not shown), suggesting that the promoters
contained in these fragments were weak and their expres-
sion could be detected only after enough GFP have accu-
mulated during growth.

Mapping the transcription start sites in the jag-parB 
region
In an attempt to precisely localise the transcriptional start
sites (TSSs) in the jag-parB region of M. bovis BCG and M.
smegmatis, primer extension experiments were carried out
using several specific primers and total RNA isolated from
exponentially growing mycobacteria (Figure 2C and 3C).
Analysis of the nucleotide sequence upstream of the iden-
tified TSSs was performed in order to identify potential
promoters. Published consensus promoter sequences as
well as the distance between the -10 hexamer and the TSS
and the length of the spacer between the -10 and -35
regions were considered. Promoter sequences proposed
according to our results are shown in Table 2. All but one
of the TSSs of all genes corresponded to a purine (A or G) 
and each one was very well associated to a recognised pro-
moter sequence. All the identified promoters in both M.
smegmatis and M. bovis BCG belonged to the Group D of
Mycobacterium promoter recognition sequences, with the
exception of two possible E. coli σ70- like promoters
located upstream of gidB (P1gidB) and parB (P1parB) in

Alignment of the ParA and ParB proteinsFigure 1
Alignment of the ParA and ParB proteins. Comparison of the ParA (left) and ParB (right) aminoacid sequences of M. bovis 
BCG (MbBCG), M. smegmatis (Msm), M. tuberculosis (Mtb), M. leprae (Mlep) and S. coelicolor (Sc). The alignment was carried out 
using CLUSTAL W (1.83) http://www.ebi.ac.uk/clustalw/. Conserved amino acids are indicated with asterisk below the align-
ment; "-" represents gaps, ":" indicate conserved substitutions and "." semi-conserved substitutions. The A (VL/FTIANQKG-
GVGKT), A' (GLKTLVIDLDP) and B (FDYVFV/ID) boxes typical of the Walker-ATPases and the C motif 
(LGLLTINALVAAPEVM/L) of ParA proteins are highlighted on grey. The Helix-turn-Helix motif (HDELAARIGRSRPLITNMIR) 
involved in DNA-protein interactions of ParB is also highlighted on grey [3]. As noted, mycobacterial ParA have a longer N-ter-
minal domain (between 67 to 91 aa) than other bacterial-ParA proteins.
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M. bovis BCG. We found two TSSs upstream of the jag, gid
and parB genes in M. bovis BCG (Figure 2C). They were
close to each other, suggesting that two promoters may
drive the expression of each one of these genes. Fragments
containing only one of the proposed promoters for jag
(pJ1B and pA3B), gid (pJA15 and pB3B) and parB (pC5B
and pE1B) genes of M. bovis BCG showed fluorescence
activity (Figure 2B) corroborating the presence of two pro-
moters upstream of each one of these genes.

In contrast, we found just a single TSS upstream of the jag,
gid, parA and parB genes in M. smegmatis (Figures 3A and
3C) and upstream of the parA gene in M. bovis BCG (Fig-
ure 2A and 2C). This implied the presence of only one
promoter for each one of these genes.

The -10 (AAACAT) hexamer associated to the T1gidB of M.
bovis BCG overlapped with a putative parS sequence (Fig-
ure 2C), suggesting that ParB could be regulating the tran-
scription from P1gidB by competing for the same region
with the RNA polymerase.

Dicistronic transcripts in the jag-parB region
The primer extension, transcriptional fusions to gfp, and
nucleotide sequence analysis together indicated that the
gid, parA and parB genes of both M. bovis BCG and M.
smegmatis, seem to be transcribed independently from
their own promoters. However, the short or missing inter-
genic regions found in this study do not eliminate the pos-
sibility that gid and the two par genes can be part of a
single transcript. To ascertain whether the par genes had a

dicistronic arrangement, RT-qPCR was performed using
M. bovis BCG and M. smegmatis RNAs. Specific primers
were designed in order to obtain products encompassing
from the 3'-end to the 5'-start of the orf60K-jag, jag-gidB,
gidB-parA and parA-parB pair genes (Table 3), which
always excluded the contribution of the promoters
located immediately upstream of each evaluated gene.
Although the possible presence of transcriptional termi-
nation signals into the downstream gene cannot be dis-
carded, our results suggested that all the transcripts, except
the one for jag gene of M. smegmatis, were at least dicis-
tronic (Table 4, Figures 2A and 3A).

Quantification of parA and parB mRNA levels during 
mycobacterial growth
The levels of parA and parB genes mRNAs in M. bovis BCG
and M. smegmatis were quantified by real-time RT-PCR
(RT-qPCR) in exponential as well as in the stationary
growth phase. Quantitative PCRs for parA, parB and 16S-
rRNA were performed using the cDNAs obtained from the
same RT reaction. The amount of mRNA for each par gene
was calculated and expressed in relation to the total RNA
and normalized by the 16S-rRNA levels. We detected
mRNA-parA that was double of mRNA-parB levels in M.
smegmatis, although the mRNAs of both genes decreased
between the exponential and stationary phases. In con-
trast, the mRNA-parB levels in M. bovis BCG were very sim-
ilar between the exponential and stationary phases, but
mRNA-parA levels showed an important reduction in the
stationary growth phase. Additionally, unlike the tran-
scriptional pattern observed in M. smegmatis, the mRNA-

Table 1: Plasmids used in this work

Plasmid Relevant features Reference or source

pFPV27 Kmr, shuttle vector for operon and gene fusion to gfp gene [46]
pD19B 261 bp PCR fragment from M. bovis BCG containing the upstream region of the gene jag This work
pJ1B 148 bp PCR fragment from M. bovis BCG containing part of the coding region of the orf60K This work
pA3B 114 bp PCR fragment from M. bovis BCG containing the upstream region of the gene jag This work
pB5B 205 bp PCR fragment from M. bovis BCG containing the upstream region of the gene gidB This work
pA15B 116 bp PCR fragment from M. bovis BCG containing the coding region of the gene jag This work
pB3B 113 bp PCR fragment from M. bovis BCG containing the upstream region of the gene gidB This work
pA2B 214 bp PCR fragment from M. bovis BCG containing the upstream region of the gene parA This work
pC5B 113 bp PCR fragment from M. bovis BCG containing part of the coding region of the gene parA This work
pE1B 229 bp PCR fragment from M. bovis BCG containing the upstream region of the gene parB This work
pJ3M 320 bp PCR fragment from M. smegmatis containing the upstream region of the gene jag This work
pD1M 159 bp PCR fragment from M. smegmatis containing the upstream region of the gene jag This work
pG2M 256 bp PCR fragment from M. smegmatis containing part of the coding region of the gene jag This work
pC18M 217 bp PCR fragment from M. smegmatis containing part of the coding region of the gene parA cloned in the 

direction of parA gene
This work

pC11M 217 bp PCR fragment from M. smegmatis containing part of the coding region of the gene parA cloned in the 
reverse direction of parA gene

This work

pA1M 120 bp PCR fragment from M. smegmatis containing part of the coding region of the gene gidB This work
pB1M 200 bp PCR fragment from M. smegmatis containing part of the coding region of the gene gidB This work
pB16M 475 bp PCR fragment from M. smegmatis containing the upstream region of the gene parB This work
pC1M 122 bp PCR fragment from M. smegmatis containing the upstream region of the gene parB This work
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Transcriptional pattern of the M. bovis BCG orf60K-parB regionFigure 2
Transcriptional pattern of the M. bovis BCG orf60K-parB region. (A): Schematic representation of the M. bovis BCG orf60K-parB region showing the position of the tran-
scriptional start sites (TSSs). The parS sequences are represented by solid grey rectangles. Cotranscripts identified by RT-qPCR are shown as horizontal bold arrows. TSSs are 
showed as bent arrows. The position of the TSSs mapped are in parenthesis and it localization is related to the start of the gene immediately downstream. (B): Transcriptional 
fusions to gfp and measurement of the fluorescence emission. Recombinant plasmids were obtained by cloning of PCR fragments (white rectangles) upstream of the gfp. The 
coordinates (5' and 3' ends with respect to the start codon of the gene being evaluated), of the cloned fragments are shown in parenthesis together with the plasmid name. The 
length (in bp) of the cloned fragments is indicated within the white rectangles and the grey arrows represent the cloning direction and the gfp gene. Promoter activity was meas-
ured by fluorimetry as Relative Fluorescent Units (RFU) in M. smegmatis corrected by subtracting pFPV27 mediated background fluorescence.The bars on the graphic represent 
RFU (means ± SE of at least three independently experiments) during stationary phase of growth. (C): Mapping of the mRNA 5' termini on the jag-gidB-parA-parB region of M. 
bovis BCG by primer extension. The mRNA 5'-ends or TSSs using specific oligos are indicated (T1jag, transcription start site for the promoter 1 of gene jag, etc.). Sequencing 
reaction with the same primers is shown alongside. The ParA1B primer was annealed to total RNA at 48°C. The highlighted boxed region defines the -35 and -10 promoter 
sequences identified upstream of each TSS; the numbers in parenthesis indicate the position to the TSS according to the start codon of the gene locate immediately downstream. 
Start codon for jag, gidB, parA and parB is shown in bold and the putative parS sequence located upstream gidB is highlighted with grey.
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Transcriptional pattern of the M. smegmatis orf60K-parB regionFigure 3
Transcriptional pattern of the M. smegmatis orf60K-parB region. (A): Schematic representation of the M. smegmatis orf60K-parB region showing the position of the tran-
scriptional start sites (TSSs). The parS sequences are represented by solid grey rectangles. Cotranscripts identified by RT-qPCR are shown as horizontal bold arrows. TSSs are 
showed as bent arrows. The position of the TSSs mapped are in parenthesis and it localisation is related to the start of the gene immediately downstream. (B): Transcriptional 
fusions to gfp and measurement of the fluorescence emission. Recombinant plasmids were obtained by cloning of PCR fragments (white rectangles) upstream of the gfp. The 
coordinates (5' and 3' ends with respect to the start codon of the gene being evaluated), of the cloned fragments are shown in parenthesis together with the plasmid name. The 
length (in bp) of the cloned fragments is indicated within the white rectangles and the grey arrows represent the cloning direction and the gfp gene. Promoter activity was meas-
ured by fluorimetry as Relative Fluorescent Units (RFU) in M. smegmatis corrected by subtracting pFPV27 mediated background fluorescence. The bars on the graphic represent 
RFU (means ± SE of at least three independently experiments) during stationary phase of growth. (C): Mapping of the mRNA 5' termini on the jag-gidB-parA-parB region of M. 
smegmatis by primer extension. The mRNA 5'-ends or TSSs using specific oligos are indicated (T1jag, transcription start site for the promoter 1 of gene jag, etc.). Sequencing 
reactions with the same primers is shown alongside. The highlighted boxed region defines the -35 and -10 promoter sequences identified upstream of each TSS; the numbers in 
parenthesis indicate the position to the TSS according to the start codon of the gene locate immediately downstream. Start codon for jag, gidB, parA and parB is shown in bold 
and the putative parS sequence located upstream gidB is highlighted with grey.
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parB levels were higher that mRNA-parA in M. bovis BCG
(Figure 4).

Discussion
We found evidence that the chromosomal parA and parB
genes of M. bovis BCG and M. smegmatis are expressed
from multiple promoters. To identify the promoter
sequences that regulate the expression of the par genes, we
mapped the transcription start sites of the par-mRNAs by
primer extension and confirmed the activity of the identi-
fied promoters by transcriptional fusions to a fluorescent 
reporter. We also demonstrated that in M. bovis BCG the
parA and parB genes are differentially expressed during the
exponential and stationary growth phases.

In all microorganisms studied thus far, plasmid and chro-
mosome-encoded partitioning genes are arranged in an
operon. Transcription of the par genes is driven by one (in
F and R1 plasmids, P1 prophage and C. crescentus) or two
(in S. coelicolor) promoters located upstream of the gene
encoding the ATPase (parA or sopA) [5,7,13,15,32]. The
jag, gidB, parA and parB genes of M. bovis BCG and M.
smegmatis shared orientation and close spacing, suggest-
ing that they may be co-transcribed. However, we identi-
fied at least one promoter sequence for each of these genes
(Figures 2 and 3 and Table 2). RT-qPCR (Table 4) and
Northern blot hybridisation (data not shown) demon-
strated that the parA-parB, gidB-parA and orf60-jag gene
pairs were also transcribed as dicistronic operons; how-

Table 3: Sequences of PCR primers used for RT-qPCR¶

parAB expression

Gene Forward (5'→3') Reverse (5'→3') Amplicon (bp) Coordinates (5', 3')

parA (Mb) aagtgttgcggacggtgattc ggtcacgctcggcaagttc 140 +874, +1014
parB (Mb) gcgtaagccgattcagatgcc ccgagccgaactccaccac 122 +833, +954
parA (Ms) acgacggccgcaccaagct gtcgagatagctcagtgctcc 177 +754, +930
parB (Ms) cgtaagccgatccagatgcca tcgttctgggcgctcatcag 171 +882, +1052

Co-transcription

Region Forward (5'→3') Reverse (5'→3') Amplicon (bp) Coordinates (5', 3')

orf60K-jag (Mb) aatgcggcagccccaacag tcggtggtgtcagcgtcg 256 -233, +23
jag-gidB (Mb) ccagaacgccgagtcgttgtgc gtccgaagatcgcagacgc 204 -164, +40
gidB-parA (Mb) gcggttgatgtcagggtggtg cgtcggtgtcggtggtgtc 236 -124, +112
parA-parB (Mb) gcgttggagggtgtgtcg ccctttctgcgtgacggc 352 -326, +26
orf60K-jag (Ms) gctccgccaccgaactgac gcgtccgcagcgagagtg 187 -184, +3
jag-gidB (Ms) ttccgccgcctcaagcc cacgccctgtcctttgttctg 199 -124, +75
gidB-parA (Ms) atgctcccgatcaaaggc cgaacccatgctcatctcc 230 -215, +15
parA-parB (Ms) cctcgcagtgtgaaggtctcg cggctgattcatgctcgtctcc 212 -200, +12

¶Normalization was performed using primers for 16S rRNA amplification previously published [50]

Table 2: Promoter sequences for jag, gidB, parA and parB genes of M. bovis BCG (Mb) and M. smegmatis (Ms)

Promoter -35 Spacer† -10 Spacer‡ TSS§ Group

P1jag (Mb) aaaCGT 16 CAgCCG 03 A D
P2jag (Mb) aGCgGc 18 CGGCCC 11 G D
P1gidB (Mb) TcGAgA 19 aAacAT 04 C A
P2gidB (Mb) cGCaGT 18 CGgCtG 13 A D
PparA (Mb) TGtgaT 21 tGtCAG 04 G D
P1parB (Mb) gctACA 17 TAcgAT 12 G A
P2parB (Mb) TGCgCa 20 CACCtC 12 G D
Pjag (Ms) cGCCGa 18 CGGGAG 10 G D
PgidB (Ms) TGCgGc 14 CGggAG 07 G D
PparA (Ms) TtCCtT 18 CtCCCG 10 A D
PparB (Ms) TcGaCg 16 CGagCG 04 G D

(†) Length of the spacer between the -35 and -10 hexamers. (‡) Length of the spacer between the -10 hexamer and TSS. (§) Transcription start site 
(TSS) determined by primer extension. Consensus nucleotides are shown with capital letters.
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ever, co-transcription between the jag-gidB region was
only detected in M. bovis BCG (Table 3).

Most of the putative promoter sequences identified (Table
2) had features of the Mycobacterium promoters denoted
as Group D. Only two of the promoter sequences found
belonged to Group A Mycobacterium promoters. We were
unable to identify promoter sequences for σ factors differ-
ent from σA (or σB) and "SigGC" in the jag-parB region of
both mycobacterial species, probably due to the exiguous
data accumulated regarding DNA sequences recognized
by RNA polymerases containing other σ factors. Neverthe-
less, no variation in the parA and parB gene expression has
been observed in M. tuberculosis knockout mutants of σE

[33], σH [34], σF [35], σC [36], σD [37], σL [38] or σM[39],
suggesting that none of these σ factors were involved in
the parAB expression.

Based on our results, we propose that in both M. bovis
BCG and M. smegmatis, the parA and parB genes comprise
an operon. Therefore, the expression of parB may be
derived from three promoters in M. bovis BCG – two
Group D and one Group A promoters – whereas parB tran-
scription in M. smegmatis seems to be driven from only
two promoters, both belonging to the Group D of Myco-
bacterium promoters (Figures 2 and 3 and Tables 2 and 4).

Results also indicated that the parA and parB genes in M.
bovis BCG and M. smegmatis were differentially expressed
(Figure 4), possibly due to the differential quantity and
activity that each promoter contributed to transcribe the
gidB parA and parB genes in each mycobacteria. It has been
suggested that mycobacterial promoters homologous to
E. coli σ70 have a higher activity than the Group D Myco-
bacterium promoters [27]. In agreement with these obser-
vations, we found that the TSSs in Group D mycobacterial

parA and parB mRNA synthesis during growth of Mycobacteria in broth cultureFigure 4
parA and parB mRNA synthesis during growth of Mycobacteria in broth culture. (A): Total RNA isolated from 
exponential (7 days) and stationary (21 days) cultures of M. bovis BCG. (B): Total RNA isolated from exponential (OD595 nm = 
0.9), late exponential (OD595 nm = 1.2) and stationary (OD595 nm = 3.0) cultures of M. smegmatis. At the indicated time, bacterial 
RNA was extracted and transcript levels of parA (black bars) and parB (white bars) were analysed by real-time PCR; 16S rRNA 
levels were used for normalization. The error bars show the mean (± SD) of at least two separate determinations made with 
different batches of total RNA.

Table 4: Co-transcription in the jag-parB region

Cotranscription region (cDNA copies/16S × 10-6)
orf60K-jag jag-gidB gidB-parA parA-parB

M. bovis BCG
Exponential (7 days) 9.16 ± 5.4 16.40 ± 1.4 17.92 ± 2.2 1.42 ± 0.1
Stationary (14 days) 43.45 ± 5.9 108.70 ± 20.4 65.85 ± 23.9 10.39 ± 0.1

M. smegmatis
Early Exponential (OD585nm = 0.6) 58.27 ± 5.6 0 4.29 ± 1.2 14.95 ± 0.1
Late Exponential (OD585nm = 1.2) 35.61 ± 4.5 0 3.39 ± 0.5 12.36 ± 1.9
Stationary (OD585nm = 2.0) 0 0 0.28 ± 0.0 1.65 ± 0.1
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promoter sequences (T2gidB and T2parB) showed weaker
signals in comparison with those preceded by Group A
(T1gidB and T1parB) of Mycobacterium promoters (Figure
2C).

The decrease of the mRNAs for parA and parB observed
during the transition from exponential to stationary phase
in M. smegmatis (Figure 3B) may be in agreement with the
assumption that genes involved in replication and cell
division must be down regulated during the stationary
phase. In keeping with this interpretation, the expression
of these genes decreases when M. tuberculosis is cultured
under starvation [40]. The parB gene expression in M. bovis
BCG seems to be differently regulated, because one Group
A Mycobacterium promoter as well as two "SigGC" promot-
ers appeared to contribute to parB expression in this
mycobacterial species (Figure 2 and Table 2). The expres-
sion of E. coli σ70-like promoters (P1parB) appears to be
particularly important for parB, because the transcription
from P2parB (T2parB in Figure 2C) as well as from parA
(Table 4) did not account for the mRNA-parB levels
observed at the stationary growth phase (Figure 4A). Since
during stationary growth, the levels of σA decrease [41]
whilst σB expression increases [41,42], we proposed that
transcription from P1parB may be driven by σB, the prin-
cipal-like sigma factor.

On the other hand, it has been suggested that the correct
stoichiometry of the Par proteins is important for parti-
tion of plasmids [43,44] and the bacterial chromosome
[9,45], and that therefore the par loci must be under strict
regulation. Recently, it has been suggested that modula-
tion of the chromosomal parAB expression may be medi-
ated by the binding of ParB to parS sites located near
promoter sequences [9]. Here, one putative parS site was
identified in the regulatory region of the gidB gene of M.
bovis BCG, which overlapped with the -10 sequence of one
Group A promoter (Figure 2C), suggesting that the bind-
ing of the ParB protein to the parS sequence may obstruct
the access of the RNA Polymerase and negatively regulate
the gidB expression. The other putative parS sequence
identified was located within the coding region of the
parA gene (Figure 2A). This suggests that ParB protein may
also affect the expression of the parA gene in M. bovis BCG
by blocking transcription initiated from TparA or the
translation of the mRNA-parA. Thus, the regulation of the
gidBparA genes and the parA expression by ParB binding
to the parS sequences might contribute to maintain appro-
priate levels of the Par proteins.

Conclusion
Transcriptional analysis demonstrated that the par genes
in M. bovis BCG and M. smegmatis had a dicistronic
arrangement in which parA and parB were mainly
expressed from weak "SigGC" promoters. However, addi-

tional Group A promoters were found upstream of parB
and gidB in M. bovis BCG. Furthermore, the presence of
multiple promoters for genes related to cell cycle as parAB,
which may be regulated by different sigma factors, might
be responsible of the differential regulation of these
genes.

Methods
Media, bacterial strains and growth conditions
E. coli XL1-blue cultures were grown in Luria-Bertani (LB)
broth or on LB agar plates at 37°C. M. smegmatis mc2155
[46] and M. bovis BCG Pasteur (ATCC 35734) were grown
at 37°C using Middlebrook 7H9 broth or 7H10 agar sup-
plemented with 0.5 % (v/v) glycerol and 10 % (v/v) Mid-
dlebrook OADC (Difco). To avoid clumping, Tween 80
(0.05 %) was added to liquid media. The following con-
centrations of antibiotics were added when appropriate:
Carbenicillin (Cb, 50 μg ml-1) or Kanamycin (Km, 50 μg
ml-1 for E. coli, 25 μg ml-1 for mycobacteria).

Transcriptional fusion to gfp and fluorescence 
measurement
The nucleotide sequences of the orf60k-parB regions were
obtained in a Blast search [29,30]. Fragments of variable
length containing the upstream region of the genes parA
and parB from M. smegmatis and M. bovis BCG were
inserted into the shuttle plasmid pFPV27 [47] to obtain
the transcriptional fusions to gfp. The fragments were the
products of PCR amplification using specific primers and
chromosomal DNA as template. Plasmids digestions with
restriction endonucleases and sequencing confirmed the
direction of the inserts. The plasmids generated (Table 1)
were electroporated in M. smegmatis mc2155 and grown at
37°C in 7H9 medium containing Km. Aliquots of the cul-
tures were taken at exponential (OD595 nm = 0.8 – 1.3) and
stationary (OD595 nm > 1.6) growth phases for fluores-
cence measurements. Fluorescence was determined from
150 μl of culture using a fluorimeter (Tecan GENius) and
the appropriate filter combinations for GFP. The specific
promoter activities were expressed as relative fluorescence
units (RFU) corrected by subtracting the fluorescence
emission of M. smegmatis bearing the promoterless plas-
mid pFPV27.

RNA extraction and primer extension analysis
RNA was isolated from M. smegmatis and M. bovis BCG by
cell disruption as previously described [48]. For primer
extension experiments, at least six synthetic oligonucle-
otides complementary to the mRNA strand of the
upstream jag-gidB-parA-parB sequences were 5' end
labeled with [γ-32P] ATP and T4 polynucleotide kinase.
Each labeled primer (100 fmol) was annealed to 5–20 μg
of total RNA at 52°C for 30 min. After cooling at room
temperature, the primer extension reactions were carried
out with AMV reverse transcriptase (Promega) at 42°C for
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45 min. The extension products were separated on an 8%
polyacrylamide/urea gel, alongside the sequencing reac-
tion generated using the PCR fragments corresponding to
the analysed sequence and the oligonucleotide used in the
primer extension reaction as primer [49].

Detection of mRNA by quantitative RT-PCR
Total RNA was treated with DNAseI (Promega) during 45
min at 37°C and the absence of DNA was checked before
reverse transcription by PCR amplification. The number
of amplicons was measured by real-time PCR using gene-
specific primers and SYBR Green. A standard curve was
obtained for each set of primers by performing four differ-
ent PCRs in parallel, using 10-fold dilutions of known
amounts of M. bovis BCG or M. smegmatis chromosomal
DNA (1,000, 10,000, 100,000, and 1,000,000 theoretical
copies) alongside the uncharacterized samples. The melt-
ing curve of each amplicon was determined at the end of
each experiment. Each measurement was performed at
least in duplicate and repeated twice using independent
RNA preparations from different cultures. In each sample
500 ng (or as indicated) of RNA and 0.5 μg of random
hexamers (total concentration of 1 μM) were mixed in a
total volume of 12 μl, heated to 65°C for 10 min and
immediately chilled in ice-water for at least 5 min. Subse-
quently, 1 × PCR Buffer (10 mM Tris-Cl pH 8.3; 50 mM
KCl), 5 mM MgCl2, 40 U of RNase inhibitor (RNasin Plus,
Promega), 200 U of M-MLV (Moloney murine leukemia
virus; Invitrogen) or AMV (Avian myeloblastosis virus;
Promega) reverse transcriptase (RT) and all four deoxynu-
cleoside triphosphates (final concentration of 1 mM each)
were added. The reverse transcription reaction was per-
formed at 42°C for 60 min. In all cases, a duplicate sam-
ple was prepared without RT as a control to measure DNA
carryover. The enzyme was inactivated by heating at 99°C
for 5 minutes.

Amplifications were performed in the DNA Engine Opti-
con (MJ Research) with sampling during elongation.
Reactions were performed in 20 μl volume consisting of
0.25 μM concentration of each primer (Table 3), 10 μl of
2 × SG1Master mix (DyNAmo SYBR Green qPCR Kit.
FINNZYMES) and 2 μl of the cDNA previously obtained.
A control without RT was included in each run. The sam-
ples were subjected to 40 cycles of amplification (96°C
denaturation for 10 s, specific annealing temperature for
15 s and 72°C extension for 20 s) in sealed strip tubes
with optical caps; followed by incubation at 72°C for 5
min. To ensure that the fluorescent levels detected were
due to the amplification of a specific product, a melting
curve followed the final extension step, from 60°C to
95°C, with readings every 0.2°C.

Other molecular techniques
Digestions, ligations, filling of protruding ends and plas-
mid DNA isolation were performed according to standard
procedures. Amplified fragments and plasmid DNAs were
sequenced with USB Sequenase 2.0 (USB, Amersham)
and [α-35S]dATP or with a dye terminator cycle sequenc-
ing kit and an ABI377 sequencer (PE Biosystem), using
the appropriate primers.
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