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Abstract

Background: Autoinducer 2 (Al-2), a widespread by-product of the LuxS-catalyzed S-
ribosylhomocysteine cleavage reaction in the activated methyl cycle, has been suggested to serve
as an intra- and interspecies signaling molecule, but in many bacteria Al-2 control of gene
expression is not completely understood. Particularly, we have a lack of knowledge about Al-2
signaling in the important human pathogens Staphylococcus aureus and S. epidermidis.

Results: To determine the role of LuxS and Al-2 in S. epidermidis, we analyzed genome-wide
changes in gene expression in an S. epidermidis luxS mutant and after addition of Al-2 synthesized
by over-expressed S. epidermidis Pfs and LuxS enzymes. Genes under Al-2 control included mostly
genes involved in sugar, nucleotide, amino acid, and nitrogen metabolism, but also virulence-
associated genes coding for lipase and bacterial apoptosis proteins. In addition, we demonstrate by
liquid chromatography/mass-spectrometry of culture filtrates that the pro-inflammatory phenol-
soluble modulin (PSM) peptides, key virulence factors of S. epidermidis, are under luxS/Al-2 control.

Conclusion: Our results provide a detailed molecular basis for the role of LuxS in S. epidermidis
virulence and suggest a signaling function for Al-2 in this bacterium.

Background

Quorum sensing is the cell population density-dependent
regulation of gene expression by small signaling mole-
cules, called autoinducers (Al) [1]. Many bacteria have
several quorum sensing systems. For example, in the
extensively studied Vibrio harveyi, there are two classes of
quorum-sensing systems, one of which utilizes an acylho-
moserine lactone as signal (Al-1), and the other a signal
molecule commonly referred to as AI-2 [2]. The biochem-
ical synthesis of AI-2 involves several enzymatic steps

starting from S-adenosylmethionine (SAM), particularly
that catalyzed by LuxS, which produces Al-2 as a side
product in addition to the primary role of this enzyme in
the activated methyl cycle metabolism [3].

Most quorum-sensing autoinducers are specific for a nar-
row range of organisms and promote intra-species com-
munication. In contrast, the widely conserved AI-2 has
been proposed to allow for communication between spe-
cies [4]. In fact, more than 55 bacterial species are known
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to possess a gene homologous to luxS, and many produce
Al-2 like activities [5]. Since the discovery of AI-2 in V. har-
veyi, many organisms have been shown to regulate genes
specifying diverse functions in a luxS-dependent manner,
such as virulence factors in Streptococcus pneumoniae [ 6], E.
coli (EHEC) O157:H7 [7], and Streptococcus pyogenes [8];
motility in Campylobacter jejuni [9], and biofilm formation
in Streptococcus gordonii [10], E. coli K-12 [11], Bacillus
cereus [12], Streptococcus mutans [13], and Klebsiella pneu-
monia [14]. However, the function of AI-2 in most bacteria
is not completely understood, owing to the fact that dis-
tinguishing between a genuine signal and a mere role as a
metabolic side product is difficult [15]. Clear evidence for
a signal function can be derived from the discovery of Al-
2-specific sensor/regulator systems and transporters. In V.
harveyi, Al-2 is detected by a two-component system called
LuxP/LuxQ [16,17], whose AI-2 dependent activation
results in the modulation of gene transcription. However,
LuxP homologues are found only in Vibrio [18]. In non-
Vibrio species, the only genes shown to be directly regu-
lated by AI-2 encode an ABC transporter in Salmonella
enterica serovar Typhimurium named Lsr, which in that
species is responsible for Al-2 uptake [19,20].

Staphylococcus epidermidis is the most frequent cause of
nosocomial sepsis and catheter-related infection [21]. S.
epidermidis has one well-characterized quorum-sensing
system termed agr for accessory gene regulator [22,23].
Additionally, like many other bacteria, S. epidermidis con-
tains a luxS gene and produces Al-2 [24]. In S. aureus, inac-
tivation of luxS strains does not affect virulence-associated
traits, such as the production of hemolysins and extracel-
lular proteases, biofilm formation, and the agr system
[25]. In contrast, S. epidermidis luxS has been shown to
influence biofilm formation in vitro and enhance viru-
lence in a rat model of biofilm-associated infection [24].
However, whether AI-2 functions as a signaling molecule
in staphylococci has remained a matter of debate, mostly
because evidence was only derived from the comparison
of luxS mutants with the corresponding wild-type strains,
and sensors or transporters for Al-2 in Staphylococcus spe-
cies are not known. Therefore, to gain further insight into
the role of AlI-2 in staphylococci, and specifically in S. epi-
dermidis, we synthesized Al-2 using S. epidermidis Pfs and
LuxS enzymes and analyzed Al-2-dependent gene regula-
tion using transcriptional profiling in wild-type, luxS
mutant, and luxS mutant strain with exogenous addition
of Al-2. AI-2 regulated genes included genes involved in
glycol-, nucleotide, amino acid, and nitrogen metabolism,
but also virulence-associated genes coding for the pro-
inflammatory PSM peptides, lipase, and the bacterial
apoptosis Lrg proteins. Our study suggests that AI-2 has a
signaling function in S. epidermidis and an important role
in the control of metabolism and virulence.

http://www.biomedcentral.com/1471-2180/8/4

Results

Characterization of the S. epidermidis luxS mutant
First, the isogenic luxS mutant strain of strain S. epider-
midis 1457 was characterized for growth and AI-2 produc-
tion under the conditions used for the subsequent gene
expression experiments. As expected, no Al-2 could be
detected in the isogenic luxS mutant strain, grown in TSB
without glucose or TSB with 0.5% glucose (Fig. 1A). In the
wild-type strain, Al-2 activity peaked during exponential
growth phase and declined during stationary phase. Fur-
ther, deletion of luxS did not affect growth of S. epidermidis
1457, indicating that its role in metabolism is not essen-
tial for bacterial growth under the tested nutrient-rich
conditions (Fig. 1B).

In vitro production of Al-2 by purified Pfs and LuxS and
luxS-independent removal of Al-2 from cultures

For complementation of AI-2 dependent signaling in the
luxS mutant strain by external addition of Al-2, GST-Pfs
and 6His-LuxS were used to synthesize Al-2 from S-adeno-
sylhomocysteine (SAH). Most of His-tag-LuxS was soluble
using standard conditions. To obtain soluble GST-Pfs, a
low concentration of IPTG was used (0.25 mM), and cul-
tures were grown at low temperature (25°C). Protein
functionality was tested via AI-2 production using the V.
harveyi BB170 bioassay, and induction of the reporter
strain was determined as described before (Table 1).

Al-2 can be removed from culture supernatants in a luxS-
independent manner, as shown in Pseudomonas fluorescens
[3], which does not have luxS. Similarly, we found that the
S. epidermidis luxS mutant strain had the capacity to
remove Al-2 activity from culture supernatants, while Al-
2 in controls was stable over the same period of time (Fig.
1C). It is not clear at this point whether the removal of Al-
2 is due to it being metabolized or imported for signaling
purposes.

Al-2 dependent gene regulation in S. epidermidis

Genome-wide transcriptional profiling with DNA micro-
arrays was used to determine (i) the luxS regulon in S. epi-
dermidis 1457 and (ii) the extent to which addition of
synthetic AI-2 complements alterations in gene expression
in the luxS mutant (Table 2). We used 2-fold alteration as
a cutoff. Most of the AI-2 regulated genes were involved in
sugar, nucleotide, amino acid, and nitrogen metabolism,
but AI-2 also regulated virulence-associated factors such as
lipase, phenol-soluble modulins (PSMs) and the bacterial
apoptosis protein LrgB. Furthermore, we observed much
stronger changes in gene expression when using TSB with-
out glucose, while the addition of 0.5% glucose in general
had similar, but much reduced effects (data not shown).
These results may indicate that the metabolic role of luxS
is more important under nutrient limitation, consistent
with results achieved in S. aureus, where reduced growth
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(A) Detection of Al-2 activity during growth of S. epidermidis
1457 and S. epidermidis 1457 AluxS. Every hour, cell-free
supernatants were examined for the capacity to induce light
production in V. harveyi BB170. Data were obtained from at
least three independent experiments and normalized against
light production in TSB or TSB/0.5% glucose. (B) Growth of
S. epidermidis 1457 and S. epidermidis 1457 AluxS in TSB with
different concentration of glucose. Overnight cultures were
1:100 diluted in TSB without glucose or TSB supplemented
with 0.5% glucose and the ODgy ., during growth of the
main cultures was determined. (C) Al-2 activity during incu-
bation with S. epidermidis 1457 AluxS and in media controls.
Al-2 was added to cells of S. epidermidis 1457AluxS at expo-
nential growth phase in TSB without glucose and TSB with
0.5% glucose. The same quantity of Al-2 was added to the
cell-free culture as control. Afterwards, every hour | ml of
cell-free supernatant was collected for the detection of Al-2
activity.
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was only found under strong nutrient limitation in sulfur-
limited defined media [25].

To verify our microarray data, we performed real-time RT-
PCR on a selected number of the identified AI-2 regulated
genes (Fig. 2), which gave results consistent with those
achieved using the microarrays. Further, not all PSM genes
are included in the DNA microarray owing to their short
gene lengths. Therefore, we quantified PSMs in bacterial
culture supernatants by HPLC-MS to confirm the impact
of luxS on the expression of PSM genes (Fig. 3). PSM levels
were significantly reduced in the supernatants of the AluxS
strain compared to those obtained from the wild-type
strain, and production was restored after addition of syn-
thesized AI-2. These results demonstrate that Al-2 signal-
ing has a very significant impact on PSMs, which represent
one of the most important virulence factors of S. epider-
midis with involvement in both biofilm formation and
inflammation [26-28].

Discussion

In recent years, the skin commensal microorganism S. epi-
dermidis, has emerged as a leading cause of hospital-
acquired infections [29]. S. epidermidis infections are pri-
marily associated with the use of medical devices such as
venous catheters. Many regulatory systems control viru-
lence-associated traits in S. epidermidis [30]. Specifically,
we have recently reported that a luxS mutant strain of S.
epidermidis showed increased biofilm formation in vitro
and enhanced virulence in a rat model of biofilm-associ-
ated infection [24]. On the contrary, inactivation of [uxS
in various S. aureus strains has been reported not to affect
virulence-associated traits [25]. In further contrast to S.
aureus, we show here that Al-2 activity in S. epidermidis was
not maintained in stationary growth phase, but quickly
decreased after obtaining a maximum during exponential
growth. Thus, the role of Al-2 in staphylococci remains a
matter of debate and there might be species-specific differ-
ences.

To gain further insight into luxS-dependent gene regula-
tion and Al-2-dependent signaling in S. epidermidis, we
used genome-wide transcriptional profiling. We synthe-
sized Al-2 with over-expressed S. epidermidis enzymes and
used the synthesized AI-2 in transcriptional profiling
experiments to validate the signal role of Al-2. As main
results of our studies, we detected that (i) externally added
AI-2 almost completely restored gene expression patterns
of the wild-type strain in the luxS mutant strain and (ii) S.
epidermidis regulates virulence-associated factors in addi-
tion to metabolism in an Al-2-dependent fashion. Impor-
tantly, there was dramatic Al-2-dependent alteration of
PSM expression. PSMs have been recently recognized as
key pro-inflammatory and immune evasion factors in S.
epidermidis and S. aureus [27,28,31] and very likely have
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Table I: In vitro Al-2 production from SAH using purified
proteins

Substrate Protein Normalized fold induction
SAH None |
SAH Pfs 7
SAH LuxS 12
SAH Pfs+LuxS 29200
SAH Pfs+LuxS (filtered)! 28700

I reactions were filtered to remove protein

an additional function in biofilm development [26]. Fur-
ther, we did not observe any influence of luxS on agr, a
quorum-sensing system with a pronounced regulatory
effect on PSM expression [28,31] and therefore, luxS-
dependent regulation of PSMs occurs via a yet undiscov-
ered pathway. Moreover, we observed Al-2-dependent
regulation of the antiholin protein LrgB, a possible main
player in induced cell death in bacteria and DNA-depend-
ent bacterial biofilm formation [32,33]. Interestingly, we
did not find the ica genes coding for production of the
biofilm exopolysaccharide PIA among the genes regulated
by Al-2 under the conditions used (during exponential
growth at high activity of AI-2), which contrasts our previ-
ous findings that demonstrated luxS-dependent control of
ica during later growth stages [24], when AI-2 activity is
low. These findings may suggest that expression of the ica
genes is impacted by the metabolic function of LuxS
rather than AI-2 control, a hypothesis that remains to be
validated.

Conclusion

Our results indicate important species-specific differences
in luxS-dependent gene regulation between S. epidermidis
and S. aureus. Further, based on the complementation
with synthesized AI-2 and the inclusion of virulence genes
in the luxS regulon, our study suggests that AI-2 has a sig-
naling function in S. epidermidis. However, Al-2 signaling
in staphylococci needs to be confirmed on a molecular
level showing how AI-2 interacts with an external sensor,
or alternatively, is imported into the cell for an internal
sensor mechanism.

Methods

Bacterial strains and growth conditions

The bacteria and plasmids used are listed in Table 3. E. coli
strains were grown in Luria-Bertani (LB, Oxoid) medium,
and S. epidermidis strains were grown in tryptic soy broth
(TSB, Oxoid). When necessary, antibiotics were added:
ampicillin (amp) 100 pg/ml, kanamycin (kan) 25 pg/ml,
erythromycin (erm) 2.5 pg/ml. V. harveyi BB170 was
grown in autoinducer bioassay (AB) medium at 30°C. For
microarray experiments, overnight cultures of S. epider-
midis (wild-type and luxS mutant) were 1:100 diluted into

http://www.biomedcentral.com/1471-2180/8/4

50 ml of TSB and incubated at 37°C with shaking at 180
rpm until grown to mid-logarithmic growth phase. After
addition of Al-2 to S. epidermidis 1457 AluxS, incubation
was continued for 1 h.

Overexpression and purification of LuxS and Pfs

The pfs gene was cloned and overexpressed as a glutath-
ione-S-transferase (GST) fusion. The luxS gene was cloned
and overexpressed as histidine residue-tagged (6 x His
tag) fusion. Primers for amplification of pfs and luxS genes
from S. epidermidis 1457 genomic DNA were as follows.
For amplification of the pfs gene, the primers used were 5'-
GCTTTATAAATGAGGTGTGAAAGGATCCATGATAG-3'
and 5'-CAATATCITTTCACCTGAATTCITATAATGATTCT-
3'. For amplification of the luxS gene, the primers used
were 5'-CAATAAGGAGGATGTCGACATGACTAAAAT-
GAATG-3' and 5'-TTAGTTGTATTGTCTGCAGTTTACCT-
TCTCCGTAG-3'. PCR products were purified, digested
using BamHI and EcoRI for pfs and Sall and Pstl for IuxS.
The pfs gene was cloned into the GST gene fusion vector
pGEX-4T-1 (Amersham Biosciences), and the recom-
binant vector pGEX-pfs was maintained in E. coli strain
BL21 (Amersham Biosciences) for overexpression. The
luxS gene was cloned into the His-tag fusion vector pQE-9
(Qiagen), the recombinant vector pQE-luxS was trans-
ferred to E. coli strain XL1 blue (Qiagen) for propagating
plasmids and then transferred to E. coli strain SG13009
[PREP4] (Qiagen) for overexpression. Unless otherwise
noted, cultures of these two strains were grown at 37°C
with aeration to an ODy,, of 1.0. IPTG was added to a
final concentration of 0.5 mM, the cultures were incu-
bated with aeration for an additional 5 h, and cells were
harvested. For recombinant Pfs, the fusion protein was
purified using the GST-Tag purification Kit (Chemicon)
according to the manufacturer's instructions. For recom-
binant LuxS, the fusion protein was purified on Ni-NTA
agarose matrix columns by washing with 10 volumes of
50 mM NaH,PO4, 300 mM NaCl, 20 mM imidazole, pH
8.0, followed by elution with 5 volumes of 50 mM
NaH,PO4, 300 mM NaCl, 100 mM imidazole, pH 8.0.
The purified fusion proteins were concentrated in Cen-
triprep-10 concentrators (Amicon) and dialysed against
10 mM sodium phosphate buffer (pH 7.5) using PD-10
Desalting columns (Amersham Biosciences). The sizes of
the Pfs GST fusion protein and the LuxS His-tag fusion
protein were confirmed by SDS-PAGE.

In vitro production of Al-2

Commercially available S-adenosylhomocysteine (SAH,
Sigma) was used as the substrate for AI-2 synthesis [34]. In
vitro AI-2 synthesis reactions were carried out at 37°C.
SAH (1 mM) was incubated with 1 mg/ml purified Pfs in
10 mM sodium phosphate buffer (pH 7.5) for 1 h, and the
reactions were filtered through Ultrafree-10 units (Ami-
con). Subsequently, 1 mg/ml purified LuxS in 10 mM
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Table 2: Gene regulatory responses in S. epidermidis wild-type, AluxS and AluxS with exogenous Al-2

Gene number  Gene product AluxSIWT  AluxS+ Al-2/AluxS

Glycometabolism

SEOI64 Hexose phosphate transport protein 0.46 4.82
SEI219 Truncated transposase 241 0.44
SERPI1353 Phosphoenolpyruvate carboxykinase 0.3 6.43
SERP1791 PTS system, lactose-specific IA component 0.52 2.15
SERP1792 Tagatose |,6-diphosphate aldolase 0.45 2.23
SERP1793 Tagatose-6-phosphate kinase 0.41 2.47
SERP1794 Galactose-6-phosphate isomerase 0.4 245
SERP1795 Galactose-6-phosphate isomerase 0.42 2.48
SERP1909 PTS system, IIBC components 0.37 3.88
SERP2057 Gluconate transporter, permease protein 0.48 3.94
SERP2058 Gluconokinase 0.33 6.43
SERP2059 Gluconate operon transcriptional repressor 0.37 6.03
SERP2100 Ribokinase 0.49 2.71
SERP2101 Ribose transport protein 0.42 3.14
SERP2260 PTS system, fructose-specific IABC components 0.29 8.11
SERP226 | Mannose-6-phosphate isomerase 0.34 5.9
SERP2312 Malate:quinone oxidoreductase 2.64 0.33

Nucleotide metabolism

SERP0067 Xanthine phosphoribosyltransferase 3.17 0.4
SERP0068 Xanthine permease 3.35 0.39
SERP0652 Phosphoribosylformylglycinamidine synthase, PurS protein 3.65 0.45
SERP0653 Phosphoribosylformylglycinamidine synthase | 3.84 0.37
SERP0654 Phosphoribosylformylglycinamidine synthase | 3.17 0.4
SERP0655 Amidophosphoribosyltransferase 3.68 0.26
SERP0656 Phosphoribosylaminoimidazole synthetase 2.62 0.33
SERP0657 Phosphoribosylglycinamide formyltransferase 2.52 0.35
SERP0658 Phosphoribosylaminoimidazolecarboxamide formyltransferase/IMP cyclohydrolase 2.45 0.34
SERP0659 Phosphoribosylamine — glycine ligase 2.21 0.42
Amino acid metabolism
SERP2128 Delta- | -pyrroline-5-carboxylate dehydrogenase, putative 0.42 3.2
SERP2327 Acetoin dehydrogenase, E3 component, dihydrolipoamide dehydrogenase 0.49 6.18
SERP2326 Acetoin dehydrogenase, EI component, alpha subunit 0.44 5.24
SERP2325 Acetoin dehydrogenase, EI component, beta subunit 0.53 4.95

Nitrogen metabolism

SERP1980 Nitrite extrusion protein 3.16 0.28
SERP1984 Respiratory nitrate reductase, gamma subunit 2.57 0.47
SERP1985 Respiratory nitrate reductase, delta subunit 4.81 0.39
SERP1986 Respiratory nitrate reductase, beta subunit 3.93 0.47
SERP1989 Nitrite reductase 2.52 0.46
Other
SERP0878 Portal protein, truncation 3.76 0.48
SERP2027 Antiholin-like protein LrgB 0.46 9.38
SERP2069 Major facilitator superfamily protein 0.5 2.36
SERP2222 Transcriptional regulator CadC 2.09 0.48
Unclassified
SERP0895 Hypothetical protein 0.36 3.53
SERP1923 Hypothetical protein 2.27 0.43
SERP2068 Hypothetical protein 0.45 3.99
SERP2102 Hypothetical protein 0.37 3.84
SERP2333 Hypothetical protein 0.53 2.55
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Figure 2

Quantitative RT-PCR of selected luxS/Al-2 regulated genes.
Growth conditions of cultures in which relative transcription
levels were determined were the same as in the microarray
experiments. *, p < 0.05, *¥, p < 0.01, ***, p < 0.001. Com-
parisons are vs. wild type for AluxS and vs. AluxS for AluxS +
Al-2.

http://www.biomedcentral.com/1471-2180/8/4

. wr
3 Aluxs
3 Aluxs + Al-2

180+
l Hokk

160 hude fr o

F ok

I = =
(=] N Fd
2 9

relative intensity (WT=100%)
3 8

&
o
1

N
o
1

o
T

PSM alpha PSM betal Delta-toxin PSM delta
(PSM
gamma)
Figure 3

Relative production of major PSMs in wild-type, AluxS, and
AluxS strain with Al-2 addition. **, p < 0.01, *** p < 0.001.
Data are from the integration of extracted ion chromato-
grams of the two major peptide peaks produced in electro-
spray mass chromatograms of culture filtrates using HPLC/
MS. Comparisons are vs. wild type for AluxS and vs. AluxS for
AluxS + Al-2. No statistical analysis could be performed for
PSM betal as there were no detectable levels of PSM betal
in the AluxS strain.

sodium phosphate buffer (pH 7.5) was added, and the
reaction mixture was incubated for another hour. After
incubation, reactions were filtered through the same fil-
ters as described above to remove protein from the reac-
tion product.

Al-2 bioassays

The AI-2 bioassay that uses the V. harveyi reporter strain
BB170 was performed as described [35]. Briefly, the V.
harveyi reporter strain was grown overnight at 30°C with
aeration in AB medium, diluted 1:5000 into fresh AB
medium, and 90 pl of the diluted cells were added to
microtiter wells containing 10 pl of the samples to be
tested for Al-2 activity. Sodium phosphate buffer (10 mM,
pH 7.5) or medium alone was added as negative control.
The microtiter dishes were shaken in a rotary shaker at
180 rpm at 30°C. Every hour, light production was meas-
ured using a Microlumatplus LB 96 V luminometer
(Berthold). All assays were repeated at least three times.

S. epidermidis microarray experiments

Total RNA was isolated using an RNeasy Mini Kit (Qia-
gen) as recommended in a standard protocol. In brief, cell
pellets were washed with RNase-free water, resuspended
in 700 pl of RLT Buffer supplemented with B-mercap-
toethanol (10 pl B-mercaptoethanol per 1 ml RLT). The
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Table 3: Bacterial strains and plasmids used in this study

http://www.biomedcentral.com/1471-2180/8/4

Strains/plasmids Relevant genotype and property Source/reference
S. epidermidis

1457 Wild-type strain [38]

1457 AluxS luxS mutant (JuxS- ermr) [24]

E. coli

XLI blue recAl endAl gyrA96 thi-1 hsdR17 supE44 relAl lac [F' proAB laclgZAM |5 Tnl0 (Tet)] Qiagen

SG13009 [pREP4] K12 derivative, Nals Strs Rift Thi- Lac- Ara- Gal* Mtl- F- RecA* Uvr* Lon* [pREP4 KanR] Qiagen

BL2I F-,ompT, hsdS(rg-, mg’), gal Amersham

V. harveyi

BBI70 luxN::Tn5(sensor-1- sensor-2*), Al-2 reporter strain ATCC BAA-I 117
Plasmids

pQE-9 lacls, 3.4 kb, Apr, T5, C-terminal 6 X His-tag Qiagen

pQE-luxS pQE-9 containing the luxS gene of S. epidermidis 1457 this study
pGEX-4T-I laclq, 4.9 bp, Apr, GST gene fusion vector Amersham
pGEX-pfs pGEX-4T-I containing the pfs gene of S. epidermidis 1457 this study

bacterial suspension was transferred to a 2-ml FastPrep
lysing tube (Q-BioGene). The cells were lysed in a Bio101
high-speed homogenizer (Savant Instruments), at the fol-
lowing setting: speed, 6.0; time, 20 s. The lysate was incu-
bated on ice for 5 min and centrifuged at 15,000 rpm at
4°C for 15 min. The supernatant was collected and
diluted with 500 pl of 100% ethanol. Samples were mixed
and transferred to an RNeasy mini column. RNA isolation
was performed according to the manufacturer's instruc-
tions. Remaining DNA was removed using RNase-free
DNase I (Amersham Biosciences). Removal of contami-
nant DNA was confirmed by PCR. The reaction product
was cleaned up with an RNeasy mini column. cDNA was
synthesized and labeled according to the manufacturer's
suggestions for Affymetrix antisense genome arrays
(Affymetrix) as described [36]. A gel shift assay with Neu-

Table 4: Oligonucleotide primers and probes used for RT-PCR

trAvidin (Pierce Biotechnology) was performed to esti-
mate the labeling efficiency based on the instructions
from Affymetrix. Biotinylated S. epidermidis cDNA was
hybridized to custom Affymetrix GeneChips (RMLChip 3)
with 98.9% coverage of genes from S. epidermidis RP62A
(2467 probe sets of 2494 ORFs) and scanned according to
standard GeneChip protocols (Affymetrix). Each experi-
ment was replicated at least 3 times. Affymetrix GeneChip
Operating Software GCOS v1.4 was used to perform the
preliminary analysis of the custom chips at the probe-set
level. Subsequent data analysis was performed as
described [36]. To be included in the final gene list, gene
expression must have been changed at least 2-fold for one
of the treatments. The complete set of microarray data was
deposited in NCBIs Gene Expression Omnibus [37] and is

Gene product

Oligonucleotide(5'-3")

Acetoin dehydrogenase

Gluconokinase

Antiholin-like protein LrgB

Nitrite extrusion protein

PTS system, fructose-specific IABC components

Forward
Probe
Reverse

Forward
Probe
Reverse

Forward
Probe
Reverse

Forward
Probe
Reverse

Forward
Probe
Reverse

GAGCAAGCTAAAGAGGCTGGTTAT
CCTTGAAATGCTGATTGAGTCACTTTCACAT
CCTTTGATTAACGCCTTTGCAT

AGTAAAACCAGGTGCAGAAGGATT
CGCGCTCTCCAGCTAAATAGGG
CGTCAGCGTTCCACAATGG

TGTCGCGGCAGCTAAAGAA
ACTGCAATACTTCCCATTGATTCTTCAG
CAACAATAACGCCAACGATGAC

GGTTGGTGGTGTTATAGGTGATAAATTT
AAGCGCTTATCATCGACTTCGTG
GCTTAATATAAGCGCACCAATAATCAT

TTAATCACAGCAAACAACTCTCACAT
CAATGAGTGATTTATCGAACACCATAT
TCTTGTCATTGGTTCCTTGGTAATT
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accessible accession number

GSE9427.

through GEO Series

Quantitative reverse-transcription (RT) polymerase chain
reaction (PCR)

Oligonucleotide primers and probes (Tab. 4) were synthe-
sized by Sigma. Probes for quantitative RT-PCR were used
to continuously monitor formation of PCR products dur-
ing PCR. cDNA was synthesized from total RNA using the
SuperScript III first-strand synthesis system (Invitrogen)
according to the manufacturer's instructions. The result-
ing cDNA and negative control samples were amplified
with TagMan Universal PCR Master Mix (Applied Biosys-
tems). Reactions were performed in a MicroAmp Optical
96-well reaction plate using a 7700 Sequence Detector
(Applied Biosystems). Standard curves were determined
for each gene, by use of purified chromosomal template
DNA at concentrations of 0.005-50 ng/ml. All RT-PCR
experiments were performed in triplicate, with 16S RNA
used as a control.

Detection and quantitation of PSMs in bacterial culture
filtrates

High-pressure liquid chromatography - mass spectrome-
try (HPLC-MS) was used to detect and quantify PSMs in
bacterial culture supernatants. One hundred-microliter
samples from cultures were injected onto an analytical
reversed-phase column (Zorbax C8, 2.1 x 30 mm; Agi-
lent). A gradient from 0.1% trifluoroacetic acid (TFA) in
50% acetonitrile/50% water to 0.1% TFA in 90% ace-
tonitrile/10% water was applied by use of an Agilent 1100
system connected to a VL trap mass spectrometer.
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