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Abstract

Background: Haemophilus influenzae is one of the main aetiological agents of community-acquired
respiratory tract infections. The primary aim of this study was to evaluate the antibacterial activity
of telithromycin against H. influenzae clinical isolates showing different pattern of resistance in
comparison with azithromycin and clarithromycin at 1/4 %, 1/2 %, | %, 2 %, 4 x minimum inhibitory
concentration (MIC) and to peak concentrations in epithelial lining fluid (ELF). The secondary aim
was to determine the influence of CO, enriched atmosphere on bacterial susceptibility.

Results: Telithromycin showed high activity against H. influenzae, including strains susceptible to
B-lactams (n = 200), B-lactamase producer (n = 50) and B-lactamase negative ampicillin resistant
(BLNAR) (n = 10), with MIC from <0.03 to 4 mg/L, and MIC;,/MICy, of /2 mg/L with susceptibility
rate of 100%, and minimum bactericidal concentrations (MBC) from 2 to 4-fold higher than the
MIC. Azithromycin was the most active tested macrolide (range: 0.25 — 4 mg/L; MIC;,/MICqq: 1/2
mg/L), comparable to telithromycin, while clarithromycin showed the highest MICs and MBCs
(range: 0.25 — 8 mg/L; MIC;,/MICy,: 2/8 mg/L). In time-kill studies, telithromycin showed a
bactericidal activity at the higher concentrations (4 — 2 x MIC and ELF) against all the strains, being
complete after 12 — 24 hours from drug exposition. At MIC concentrations, at ambient air,
bactericidal activity of telithromycin and azithromycin was quite similar at 12 hours, and better than
that of clarithromycin. Besides, telithromycin and clarithromycin at ELF concentrations were
bactericidal after 12 hours of incubation for most strains, while 24 hours were needed to
azithromycin to be bactericidal. Incubation in CO, significantly influenced the MICs and MBCs, and
only slightly the in vitro killing curves.

Conclusion: Telithromycin showed an in-vitro potency against H. influenzae comparable to
azithromycin, with an in-vitro killing rate more rapid and superior to clarithromycin at 2X-MIC
against [-lactamase producers and BLNAR strains, and to azithromycin at ELF concentrations
against [3-lactamase negative strains. Against all strains, MICs and MBCs were lower in the absence
of CO, for the tested antibiotics, showing an adverse effect of incubation in a CO, environment.
The in-vitro potency together with the tissue concentrations of the antimicrobial, should be
considered in predicting efficacy.
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Background

Telithromycin has been the first ketolide to be approved
for clinical use, specifically developed for treatment of
community acquired respiratory tract infections (CARTI)
in order to overcome the spreading of resistance to mac-
rolides among pneumococci [1,2]. In comparison to mac-
rolides, telithromycin shows notable improvements in
antimicrobial and pharmacokinetic properties, even if it
shares with macrolides the same bacterial target, repre-
sented by the ribosome [2]. Particularly, telithromycin has
significantly lower minimum inhibitory concentration
(MIC) than the macrolide antibiotics for many gram-pos-
itive organisms, i.e Streptococcus. pneumoniae that shows,
at the ribosome, a dual-site binding to the drug [3].

Telithromycin is a concentration-dependent antibiotic,
thus the concentrations achieved at the infection site are
recognized as an important determinant of efficacy [4].
Due to the ability to penetrate into white blood cells and
being characterized by high penetration rate, it may be
delivered to sites of infections and reaches elevated con-
centrations in several tissues, particularly in the respira-
tory tract, comparable to those of macrolides and superior
to B-lactams [5,6]. H. influenzae, a major cause of CARTI
[7-10], demonstrates relatively good in vitro susceptibility
to macrolides, azalides and ketolides, which show a uni-
modal MIC distribution and low prevalence of high level
resistance when defined by current Clinical and Labora-
tory Standards Institute (CLSI) breakpoints [11].

Macrolides and azalides are currently recommended for
treatment of community acquired pneumonia and acute
exacerbations of chronic bronchitis, with the antipneu-
mococcal fluoroquinolones, such as levofloxacin and
moxifloxacin, as alternative agents in the most severe
cases [12-16].

Due to the fact that the bactericidal activity of macrolides
and ketolides is related to the level of drug concentration
in the infected tissue [15,16], the evaluation of antibacte-
rial activity of concentrations achievable in vivo, particu-
larly in epithelial lining fluid (ELF), against H. influenzae,
which is one of the most common pathogen of these ana-
tomical districts, may provide further information on tel-
ithromycin activity. Carbon dioxide has been proved to
affect antibacterial activity of macrolides and ketolides,
when assessed by determination of MIC values [17-20].
Influence of CO, on bactericidal activity of ketolides and
macrolides as measured by time kill curves has been less
investigated.

The present study aimed mainly to evaluate the antibacte-
rial activity of telithromycin concentration achievable in
ELF against H. influenzae clinical isolates with different
pattern of resistance, in comparison with azithromycin
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and clarithromycin and the influence of CO, incubation
on activity of telithromycin and macrolides.

Methods

Microorganisms

H. influenzae strains isolated from respiratory tract infec-
tions with the following phenotypes were tested: B-lacta-
mase negative strains (n = 200), B-lactamase producer
strains (n = 50), and B-lactamase negative ampicillin
resistant (BLNAR) strains (n = 10). In order to avoid
duplicate strains, only one isolate for each patient was
considered. The strains were stored at -80°C in Haemo-
philus test medium (HTM) broth (Labobasi, Novazzano,
CH), supplemented with 10% glycerol before testing and
checked for purity throughout the study by culture and
Gram staining

Drugs

The following antibiotics, as pure substances or powder of
stated potency, were considered: telithromycin (sanofi-
aventis, Milan, Italy), azithromycin (Pfizer, Rome, Italy)
and clarithromycin (Abbott Italy, Rome, Italy). Stock
solutions of antibiotics were prepared in 95% ethanol
(azithromycin) and methanol (clarithromycin and tel-
ithromycin) at concentrations of 5120 mg/L and stored in
aliquots at -20°C until use. Epithelial lining fluid concen-
trations tested by time kill curve assay were chosen from
literature data and were equal to 3.12 mg/L for azithromy-
cin, 34 mg/L for clarithromycin and 5.4 mg/L for telithro-
mycin [21-23]. Concentration values for all tested drugs
were chosen on the basis of similar study conditions. In
particular, studies on healthy volunteers were selected for
this in vitro investigation due to the frequent inter-individ-
ual pharmacokinetics variability in patients

Determination of minimum inhibitory concentration
(MIC) and minimum bactericidal concentration (MBC)
Antibiotic susceptibilities to all the tested drugs were
determined using a broth microdilution method accord-
ing to the CLSI Approved Standards [24,25].

An adjusted inoculum of the tested organism was inocu-
lated into Haemophilus test medium broth containing
two fold serial dilutions of a starting antibiotic solution,
so that each well contained approximately 5 x 105 cfu/mL.
Results were observed after 18 h of incubation at 37°C
and MIC was defined as the lowest concentration able to
inhibit visible growth. Determination of MIC values were
performed both in presence and in absence of 10% CO,.
MBC was determined by plating 0.010 mL from the wells
showing no visible growth on agar plates and incubating
for 18-24 h in 10% CO, enriched atmosphere which
assures the best environment for growth of H. influenzae.
MBC was considered as the concentration at which a
99.9% reduction in cfu occurred, when compared with
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Table I: MIC values of H. influenzae strains
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Microorganisms Drug MIC
Ambient air co,
Range (mg/L) MIC;,/MICyy (mgiL) S (%)#  Range (mg/L) MIC;,/MICy, (mgiL) S (%)*
B-lactamase negative (n = 200) Tel$ 0.03-4 172 100 0.06 - 16 2/8 82
Cir 0.25-8 2/8 100 I-16 8/16 9l
Azm 0.25-2 12 100 05-8 2/4 88
B-lactamase positive (n = 50) Tel 0.06 - 4 172 100 0.125-8 2/8 87
Cir 05-8 2/8 100 I-16 8/16 89
Azm 0.25-2 12 100 05-8 2/4 89
BLNAR* (n = 10) Tel 0.06 — 4 1/4 100 0.125-8 2/8 90
Cir | -8 1/8 100 2-16 8/16 90
Azm 0.25-4 1/4 100 05-8 2/8 80

* BLNAR: B-lactamase negative ampicillin resistant; §: Tel: telithromycin; Clr: Clarithromycin; Azm: Azithromycin. # S:susceptible strains according
to CLSI breakpoints: Telithromycin: susceptibility: < 4 mg/L, resistance: > 16 mg/L; Clarithromycin: susceptibility: < 8 mg/L, resistance: > 32 mg/L;

Azithromycin: susceptibility: <4 mg/L.

the original inoculum. For each analytical series, quality
controls were carried out with H. influenzae ATCC 49247
strains. To interpret MIC results, susceptibility break-
points from CLSI were used: susceptible MIC < 4 mg/L, <
8 mg/L, < 4 mg/L for azithromycin, clarithromycin and
telithromycin respectively, resistant MIC > 4 mg/L, >32
mg/L and >16 mg/l for azithromycin, clarithromycin and
telithromycin, respectively.

Time kill curves

Bactericidal activity of drugs under study were evaluated
by performing time kill curves experiments on all H. influ-
enzae strains. HTM broth containing drug concentrations
equivalent to 1/4 x MIC, 1/2 x MIC; 1 x MIC, 2 x MIC, 4
x MIC and to peak concentrations reachable by each drug
in ELF was inoculated with 5 x 10> - 5 x 10° cfu/mL, and
incubated at 37°C in presence or absence of 10% CO,.
Viability counts of antibiotic containing suspensions and
controls, lacking antibiotic, were obtained at 0, 3, 6 12

Table 2: MBC values of H. influenzae strains

and 24 h by plating 10-fold dilutions of 0.1 mL aliquots
from each tube onto chocolate agar plates, which were
incubated for up to 48 h in CO, enriched atmosphere at
37°C. A given concentration of antibiotic was considered
bactericidal if it reduced the inoculum viable count by > 3
log,, CFU/mL, or bacteriostatic if it reduced the inoculum
viable count by <3 log CFU/mL

Results

Antibacterial activity of azithromycin, clarithromycin and
telithromycin against H. influenzae expressed as MIC and
MBC values and rate of susceptibility is depicted in Tables
1 and 2, where data obtained by incubating bacteria at
ambient air or at 10% CO, are summarized. Telithromy-
cin in ambient air showed activity against all the tested H.
influenzae strains, with MIC values ranging from < 0.03 to
4 mg/L, and susceptibility rates of 100%, similar to the
azithromycin rates.

Microorganisms Drug Ambient air co,
Range (mg/L) MBCso/MBCy, (mg/L) Range (mg/L) MBCs/MBCy, (mgIL)
B-lactamase negative (n = 200) Tel$ 0.125-16 1/4 0.06 — 32 4/16
Cir 0.25 - 64 4/16 I —128 8/64
Azm 0.25-8 1/4 0.5 -64 4/8
B-lactamase positive (n = 50) Tel 0.125-8 1/4 0.125- 16 4/16
Cir 0.5-32 4/16 | — 64 8/64
Azm 025-8 1/4 0.5-32 4/8
BLNAR* (n = 10) Tel 0.125-8 1/8 025-8 4/8
Cir 116 4/16 2-32 8/32
Azm 025-8 1/8 05-16 4/16
* BLNAR: B-lactamase negative ampicillin resistant; §: Tel: telithromycin; Clr: Clarithromycin; Azm: Azithromycin.
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Generally, MICs and MBCs against f-lactamase negative
H. influenzae strains were lower in absence of CO, for all
the tested antibiotics, with a decrease from 2 to 4 fold in
respect to the CO, incubation, being MIC;,/MIC,, 2/8
and 1/2 mg/L for telithromycin, 8/16 and 2/8 mg/L for
clarithromycin, 2/4 and 1/2 mg/L for azithromycin, after
incubation with or without CO,, respectively.

The MBCs of telithromycin were closer to the MIC values
with respect to the two comparators. MBCs,/MBC,, were
4/16 and 1/4 mg/L for telithromycin, 8/64 and 4/16 mg/
L for clarithromycin, 4/8 and 1/4 mg/L for azithromycin
after incubation with or without CO,, respectively. In
absence of CO,, all the strains were fully susceptible to the
study drugs (100%). After incubation in CO,, the suscep-
tibility rate was generally decreased (from 82% of telithro-
mycin to 91% of clarithromycin), showing an interfering
effect of this particular medium. The non-susceptible
strains were included into the I (Intermediate) category,
with the exclusion of 3 strains resistant to telithromycin.
Similar results were observed for -lactamase positive H.
influenzae strains with MICg,, MIC,,, MBCs, and MBC,,
equal to those observed for B-lactamase negative strains.
The microbiological activity of telithromycin was not sig-
nificantly affected by B-lactamase production. Also in this
case, the addition of CO, to the medium influenced the
microbiological results, in terms of MIC and MBC values
and susceptibility rates: 100% of susceptibility in open air
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for all the tested drugs, 87 and 89% in CO2 respectively
for telithromycin and macrolides.

The 10 BLNAR strains were fully susceptible to the antibi-
otics in open air medium. In CO, atmosphere, MIC and
MBC were higher in presence of CO, for all the tested anti-
biotics; the activity of telithromycin and clarithromycin
was slightly superior to that of azithromycin being the
susceptibility rate 90%, 90% and 80%, respectively.

Results obtained in time-kill curves for azithromycin, clar-
ithromycin and telithromycin against f-lactamase-nega-
tive, B-lactamase-positive and BLNAR H. influenzae are
shown in Figures 1, 2, 3 and in Tables 3, 4, 5. Bactericidal
activities of telithromycin, clarithromycin and azithromy-
cin against H. influenzae were similar, independently from
the pattern of resistance. All these drugs were fully bacte-
ricidal after 12 hours at concentration of 4 x MIC and after
24 hours at the highest concentrations (2-4 x MIC, and
ELF) against B-lactamase-negative strains (Figure 1, Table
3). Telithromycin and clarithromycin were bactericidal
after 12 hours of incubation also at ELF concentration,
while at the same time, azithromycin was bactericidal at 2
x MIC (Figure 1).

Similar trends in bactericidal activities were observed for
B-lactamase producer and BLNAR strains (Figures 2 and 3,
Tables 4 and 5).

Table 3: Time kill curve against -lactamase negative H. influenzae strains (N = 200)

Antibiotic Mean changes in colony counts vs initial inocula after
3h 6h 12h 24 h

Cco, Air co, Air co, Air Cco, Air
Telithromycin 4 x MIC -1.42 -1.72 -238l -2.61 >-3.0 >-3.0 >-3.0 >-3.0
2 x MIC -0.64 -0.18 -1.87 -1.91 271 -2.45 >-3.0 >-3.0

I x MIC -0.36 -0.15 -0.99 -0.26 -1.21 -1.18 -1.32 -1.81

1/2 x MIC 0.22 0.39 1.20 0.85 2.27 243 3.74 4.12

1/4 x MIC 0.43 0.35 1.51 1.35 2.94 2.54 4.93 4.59
ELF -1.43 -1.54 -2.43 >-3.0 >-3.0 >-3.0 >-3.0 >-3.0
Clarithromycin 4 x MIC -1.03 -0.94 -2.18 -2.32 >-3.0 >-3.0 >-3.0 >-3.0
2 x MIC -0.75 -0.69 -1.80 -1.61 242 -2.30 >-3.0 >-3.0

I x MIC -0.23 -0.49 -0.75 0.66 -0.91 -1.04 -1.18 -1.58

1/2 x MIC -0.19 -0.19 0.69 0.66 1.57 271 3.8l 431

1/4 x MIC 0.51 0.45 1.69 1.40 293 2.99 5.01 4.84
ELF -1.09 -1.26 -2.68 >-3.0 >-3.0 >-3.0 >-3.0 >-3.0
Azithromycin 4 x MIC -1.99 -1.38 -2.86 -2.44 >-3.0 >-3.0 >-3.0 >-3.0
2 x MIC -0.98 -0.94 -1.73 -1.88 >-3.0 -2.57 >-3.0 >-3.0

I x MIC -0.10 -0.06 -0.56 -0.45 -1.55 -1.84 -1.80 -1.99

1/2 x MIC 0.18 0.29 091 1.03 1.71 231 3.49 341

1/4 x MIC 0.39 0.36 1.38 1.63 2.23 2.53 4.58 4.28
ELF -0.45 -1.22 -2.40 -2.12 -2.72 -2.55 >-3.0 >-3.0

Control 0.64 0.38 1.96 1.95 432 3.05 5.44 4.90
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Table 4: Time kill curve against -lactamase positive H. influenzae (n = 50)
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Antibiotic Changes in colony counts vs initial inocula after
3h 6h 12 h 24 h
co, Air co, Air co, Air Cco, Air
Telithromycin 4 x MIC -1.28 -1.44 -2.74 -2.80 >.-3.0 >-3.0 >-3.0 >-3.0
2 x MIC -0.37 -0.89 -1.57 -1.77 -2.77 -2.88 >-3.0 >-3.0
| x MIC -0.53 -0.16 -0.82 -0.76 -0.96 -1.12 -1.51 -1.62
112 x MIC -0.13 -0.04 1.06 0.13 1.33 1.6l 3.59 2.08
1/4 x MIC 0.33 0.41 1.66 1.29 2.46 2.74 4.03 3.19
ELF -1.00 -0.96 -2.68 -2.72 >-3.0 >-3.0 >-3.0 >-3.0
Clarithromycin 4 x MIC -1.47 -0.88 -2.00 -2.22 >-3.0 >-3.0 >-3.0 >-3.0
2 x MIC -0.80 -0.30 -1.14 -1.51 -1.42 -1.86 >-3.0 >-3.0
| x MIC -0.27 -0.06 -0.79 -0.60 -1.31 -1.61 -1.40 -1.86
112 x MIC 0.52 0.45 243 242 2.36 2.38 2.63 2.84
1/4 x MIC 0.71 0.69 2.69 2.47 2.73 3.25 391 3.98
ELF -0.91 -1.22 -2.65 >-3.0 >-3.0 >-3.0 >-3.0 >.-3.0
Azithromycin 4 x MIC -1.49 -2.22 -2.61 -2.85 >-3.0 >.3.0 >-3.0 >-3.0
2 x MIC -0.98 -1.68 -1.65 -1.93 >-3.0 >-3.0 >-3.0 >-3.0
| x MIC -1.03 -0.64 -1.23 -0.48 -1.43 -0.68 -1.62 -0.23
112 x MIC -0.67 -0.15 -0.03 1.86 0.47 1.93 3.67 2.18
1/4 x MIC 0.29 0.26 1.58 1.96 2.34 2.13 4.12 3.28
ELF -1.05 -1.20 -2.27 -2.53 >-3.0 >-3.0 >-3.0 >-3.0
Control 0.62 0.73 2.38 2.49 4.02 4.13 4.44 4.55

Incubation of the bacterial culture in open air or in CO,
seemed to slightly influence the killing curves, as, glo-

bally, no marked differences in bactericidal activity were

Table 5: Time kill curve against f-lactamase negative-ampicillin resistant H. influenzae (n = 10)

observed between incubation in the presence or absence
of CO,.

Antibiotic Changes in colony counts vs initial inocula after
3h 6h 12h 24 h
co, Air Cco, Air Cco, Air Cco, Air
Telithromycin 4 x MIC -1.53 -1.96 -2.38 -2.69 >-3.0 >-3.0 >-3.0 >-3.0
2 x MIC -0.68 -0.30 -1.55 -1.96 -2.82 -2.84 >-3.0 >-3.0
I x MIC -0.38 -0.56 -0.88 -0.66 -1.23 -1.27 -1.66 -1.37
172 x MIC 0.17 0.78 2.26 243 2.94 3.26 3.53 4.40
1/4 x MIC 0.33 0.92 2.66 2.68 3.26 3.30 3.64 451
ELF -0.55 -0.92 -2.85 -2.89 >-3.0 >-3.0 >-3.0 >-3.0
Clarithromycin 4 x MIC -1.68 -0.96 -2.02 -1.96 >-3.0 >-3.0 >-3.0 >-3.0
2 xMIC -0.16 -0.62 -1.16 -1.38 -1.70 -1.99 >-3.0 >-3.0
I x MIC -0.14 -0.21 -0.45 -0.42 -1.56 -0.67 -1.75 -1.74
1/2 x MIC 0.33 0.51 1.76 1.34 1.99 1.45 3.51 4.28
1/4 x MIC 0.64 0.75 2.87 2.88 3.44 335 4.03 4.61
ELF -0.71 -1.36 -2.43 -2.62 >-3.0 >-3.0 >-3.0 >-3.0
Azithromycin 4 x MIC -1.55 -1.62 -2.50 -2.76 >-3.0 >-3.0 >-3.0 >-3.0
2 x MIC -1.16 -1.37 -1.90 -1.96 >-3.0 >-3.0 >-3.0 >-3.0
I x MIC -1.01 -0.56 -0.90 -0.89 -1.68 -1.06 -1.78 -1.59
1/2 x MIC 0.21 0.72 0.92 1.28 1.98 2.01 2.49 2.53
1/4 x MIC 0.27 0.79 2.54 2.04 3.04 3.14 3.72 4.16
ELF -1.12 -1.40 -2.57 -2.73 -2.83 >-3.0 >-3.0 >-3.0
Control 0.97 0.98 3.07 3.01 3.87 3.46 5.05 4.68
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Figure |

Bactericidal activities against -lactamase negative
H. influenzae. Time kill curve of telithromycin (upper), clar-
ithromycin (middle) and azithromycin (lower). black circle:
Control growth (no antibiotic); red square: 1/2 x MIC; dark
blue triangle: | x MIC; pink square: 2 x MIC; blue rhomb: 4 x
MIC; green triangle: ELF. Full line: ambient air; dashed line:
CO, enriched atmosphere.
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Figure 2

Bactericidal activities against 3-lactamase positive H.
influenzae. Time kill curve of telithromycin (upper), clari-
thromycin (middle) and azithromycin (lower). black circle:
Control growth (no antibiotic); red square: 1/2 x MIC; dark
blue triangle: | x MIC; pink square: 2 X MIC; blue rhomb: 4 x
MIC; green triangle: ELF. Full line: ambient air; dashed line:
CO, enriched atmosphere.

Discussion

The in vitro activity of telithromycin, the first ketolide
developed for clinical use, has been widely evaluated in
international and local studies, demonstrating a spectrum

of activity that encompasses the key respiratory patho-
gens, including H. influenzae. As the bactericidal activity of
macrolides and ketolides is related to the magnitude of
drug concentration at the site of infection, it is instrumen-
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Figure 3

Bactericidal activities against -lactamase negative
amppicillin resistant H. influenzae. Time kill curve of tel-
ithromycin (upper), clarithromycin (middle) and azithromycin
(lower). black circle: Control growth (no antibiotic); red
square: 1/2 x MIC; dark blue triangle: | x MIC; pink square: 2
x MIC; blue rhomb: 4 x MIC; green triangle: ELF. Full line:
ambient air; dashed line: CO, enriched atmosphere.

tal the evaluation of antimicrobial activity of concentra-
tions achievable in vivo at the bronchial tree. Thus the
present study assessed the comparative in vitro bacterio-
logical activity and the killing kinetics of telithromycin,

http://www.biomedcentral.com/1471-2180/8/23

azithromycin and clarithromycin against H. influenzae at
concentrations multiple of the MIC and equal to ELF.

Telithromycin in ambient air showed activity against all
the tested H. influenzae strains, with susceptibility rates of
100%, similar to azithromycin. The respective MBCs were
from 2 to 4 fold higher than the MIC, generally lower than
the comparators. Previous in vitro studies have already
showed that the in vitro potency against H. influenzae of
telithomycin is similar to azithromycin, considered the
most active macrolide against this pathogen, and superior
to clarithomycin [7,11,26-33].

The incubation in carbon dioxide affected the antibacte-
rial activity of all the tested antibiotics, causing a notable
increase in MICs and MBCs, resulting in a decreased rate
of susceptibility among H. influenzae strains.

Susceptibility testing of respiratory tract pathogens is
often performed in a CO, environment to ensure that the
bacteria grow faster; however in this ambient the pH of
the test medium decrease and macrolides and telithromy-
cin activity seems adversely affected by this pH decrease.
Thus the results of our study show that telithromycin sus-
ceptibility should be tested in ambient air, as well as that
of macrolides. Notably, other recent in vitro studies have
highlighted the adverse impact of CO, on susceptibility
testing of telithromycin in key respiratory pathogens
including H. influenzae [17-19].

Few studies have evaluated the bactericidal activity of tel-
ithromycin alone or in comparison with macrolides
against respiratory pathogens, and in particular against H.
influenzae [8,32,33]. Our data confirm the results of these
studies, indicating that the bactericidal activity of telithro-
mycin is mainly evident at concentrations as high as twice
and four times the MIC. For all the tested antibiotics the
killing of H. influenzae was not affected by different resist-
ance patterns of the strains included into the study. When
MIC concentrations were considered, bactericidal activi-
ties of the studied drugs were quite similar, with azithro-
mycin showing a more rapid killing at 2 x MIC. However,
although not fully bactericidal, activity of telithromycin
against H. influenzae seemed superior in comparison with
that of clarithromycin and close to that of azithromycin.
By contrast, when bactericidal activity of pulmonary con-
centrations was tested, telithromycin and clarithromycin
showed a higher rate of killing than azithromycin on
some strains, probably due to the inferior tissue distribu-
tion of this drug.

As both telithromycin and azithromycin are concentra-
tion dependent antibiotics, their penetration rate in site
infection is an important determinant in predicting effi-
cacy, thus MIC, breakpoints of macrolides, azalides and
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ketolides against this organism must be considered
together with their levels in respiratory tissues and ELF.
There is growing evidence that, even though MICs for
macrolides against H. influenzae may be in the 'suscepti-
ble' range (as defined by current MIC breakpoints), in vivo
bacteriological efficacy is poor against this pathogen,
while PK/PD derived breakpoints seems to be more con-
sistent with clinical outcomes [34]. For both clarithromy-
cin and azithromycin, the PK/PD breakpoint is five
doubling dilutions lower than the CLSI breakpoint [35],
while for telithromycin a breakpoint of 0.5 mg/L has been
proposed [36]. By considering these values, all the strains
evaluated in the present study should be considered resist-
ant to the two macrolides, while some of them should be
classified as susceptible to telithromycin. However, deter-
mination of PK/PD breakpoints is usually based on serum
concentrations chosen for optimal bacterial eradication
and may not reflect the actual concentration at the site of
infection, as occurs for the tested drugs which provide
higher concentrations in the lungs than in other compart-
ments, thus allowing higher susceptibility breakpoints
when treating pulmonary infections.

Conclusion

In conclusion, telithromycin showed an in-vitro potency
against H. influenzae comparable to azithromycin, with a
superior in-vitro killing rate to clarithromycin at 2X-MIC
against B-lactamase producers and BLNAR strains, and to
azithromycin at ELF concentrations against -lactamase
negative strains. Against all strains, MICs and MBCs were
lower in the absence of CO, for the tested antibiotics,
showing an adverse effect of incubation in a CO, environ-
ment. The in-vitro potency together with the pharmacoki-
netic profile of the antimicrobial, should be considered in
predicting its efficacy in the empirical therapy of CARTI.
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