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Abstract

Background: After infecting a mammalian host, the facultative intracellular bacterium, Francisella
tularensis, encounters an elevated environmental temperature. We hypothesized that this
temperature change may regulate genes essential for infection.

Results: Microarray analysis of F. tularensis LVS shifted from 26°C (environmental) to 37°C
(mammalian) showed ~I1% of this bacterium's genes were differentially-regulated. Importantly,
40% of the protein-coding genes that were induced at 37°C have been previously implicated in
virulence or intracellular growth of Francisella in other studies, associating the bacterial response
to this temperature shift with pathogenesis. Forty-four percent of the genes induced at 37°C
encode proteins of unknown function, suggesting novel Francisella virulence traits are regulated by
mammalian temperature. To explore this possibility, we generated two mutants of loci induced at
37°C[FTL_1581 and FTL_1664 (deoB)]. The FTL_1581 mutant was attenuated in a chicken embryo
infection model, which was likely attributable to a defect in survival within macrophages. FTL_158]1
encodes a novel hypothetical protein that we suggest naming temperature-induced, virulence-
associated locus A, tivA. Interestingly, the deoB mutant showed diminished entry into mammalian
cells compared to wild-type LVS, including primary human macrophages and dendritic cells, the
macrophage-like RAW 264.7 line, and non-phagocytic HEK-293 cells. This is the first study
identifying a Francisella gene that contributes to uptake into both phagocytic and non-phagocytic
host cells.

Conclusion: Our results provide new insight into mechanisms of Francisella virulence regulation
and pathogenesis. F. tularensis LVS undergoes considerable gene expression changes in response to
mammalian body temperature. This temperature shift is important for the regulation of genes that
are critical for the pathogenesis of Francisella. Importantly, the compilation of temperature-
regulated genes also defines a rich collection of novel candidate virulence determinants, including
tivA (FTL_I581). An analysis of tivA and deoB (FTL_1664) revealed that these genes contribute to
intracellular survival and entry into mammalian cells, respectively.
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Background

Francisella tularensis is a Gram-negative bacterium that is
pathogenic to humans [1]. This organism causes mortality
in up to 60% of infected individuals if untreated [2].
Based on the potential to weaponize this organism, the
Center for Disease Control and Prevention has classified
F. tularensis as a Category A biodefense agent [3]. It is
therefore vital to understand how this organism responds
to environmental and host signals, and how these cues
alter expression of virulence determinants. During the
course of a natural Francisella infection, this bacterium
may transition from an amoeba [4] or an arthropod host
[5] to colonize human cells. Accompanying this transi-
tion, it is likely that chemical and physical signals alert
Francisella that it has entered a mammalian host.

The manner by which F. tularensis integrates environmen-
tal stimuli to regulate gene expression is fundamental to
the success of this organism as an intracellular pathogen.
The most well-studied virulence factors of F. tularensis are
encoded in the Francisella Pathogenicity Island (FPI) [6].
The amount of one of the virulence proteins encoded in
this cluster, IglC, increases in response to growth in mac-
rophages and hydrogen peroxide [7]. In addition, iron
limitation has been shown to induce transcription and
protein levels of IgIACD and PdpB [8,9] as well as stimu-
late siderophore production by F. tularensis [10]. Previ-
ously, we have shown that differing culture conditions
greatly influence host-pathogen interactions and the abil-
ity of F. tularensis live vaccine strain (LVS) to activate mac-
rophages [11].

Prior to the current study, there has only been a single
published report characterizing the global transcriptional
Francisella response to an environmental cue, specifically
iron limitation [8]. Important insights into the regulation
of virulence factors like iglC were defined in this analysis.
However, numerous genes associated with virulence by
other studies are not affected by different iron concentra-
tions [8,12-15]. Because F. tularensis may transition
between hosts, mammalian body temperature is another
signal that is likely to be critical for this pathogen.

Pathogenic bacteria that encounter a shift in temperature
during their life cycle sometimes respond with enhanced
virulence factor expression [16-19]. However, there are
discrepancies among the specific groups of genes that are
affected by temperature and the mechanism of regulation
between organisms. For example, Shigella increases pro-
duction of its Type III secretion system in response to
mammalian temperature [20]. The homologous secretion
apparatus in pathogenic Salmonella, however, is not regu-
lated by temperature [21]. Regarding the mechanism of
regulation, genes involved in the heat-shock response are
often induced at mammalian temperatures relative to

http://www.biomedcentral.com/1471-2180/8/172

those of the environment. This regulation is usually due to
the presence of a conserved inverted repeat regulatory
structure in the promoter region [22], or control by a ¢32-
type heat shock sigma factor [23]. In contrast, the bacte-
rium responsible for whooping cough, Bordetella pertussis,
uses a two-component system comprised of BvgS and
BvgA to alter transcription of genes in response to temper-
ature. Following induction of bvgAS at 37°C, phosphor-
ylation by BvgS allows BvgA-binding to promoter regions
of virulence genes, such as the adhesin, fimX [24]. Given
the uncertainty of target temperature-regulated genes and
differences in mechanism among bacteria, it is necessary
to define the temperature regulon in individual species.
Studying gene expression changes induced by a shift to
mammalian temperature could provide valuable insight
into Francisella virulence.

A few previous studies have investigated the Francisella
response to temperature at the molecular level. High tem-
perature (42-44°C) synonymous with heat stress has
been shown to have dramatic effects on F. tularensis gene
and protein expression [25-27] including increased pro-
duction of the heat shock proteins GroEL, GroES, Dnak,
and ClpB [27]. Heat stress has also been shown to
enhance the virulence of a mutant form of F. tularensis LVS
[28]. Interestingly, F. novicida has been shown to alter its
outer membrane at 25°C versus 37°C by differentially
modifying the lipid A component of the lipopolysaccha-
ride [29]. In addition, it has been observed that virulent F.
tularensis clinical isolates increase the mannose modifica-
tion of their lipopolysaccharide when cultivated at tem-
peratures less than 25°C [30]. The results from these
previous studies suggest that a global transcript analysis
following a shift to mammalian body temperature should
reveal gene regulation that is critical to Francisella patho-
genesis.

Here we show that a shift from environmental to mam-
malian body temperature significantly alters the transcrip-
tome of F. tularensis LVS. Many genes that we identified as
significantly induced at 37°C have been previously impli-
cated in Francisella virulence, supporting the notion that
this temperature shift is important for the regulation of
pathogenesis. We provide evidence that the product of a
gene encoding the hypothetical protein most profoundly
induced by mammalian temperature contributes to viru-
lence and intracellular growth. Moreover, data presented
here indicate that a locus up-regulated at 37°C was
required for optimal uptake by eukaryotic cells. This is the
first F. tularensis gene identified to be involved in the entry
of this organism into both phagocytic and non-phagocytic
host cells. The results from this study support a model
where detection of mammalian body temperature by F.
tularensis is important for regulation of physiology neces-
sary for successful infection.
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Results

F. tularensis LVS global temperature regulation

To study Francisella gene expression changes associated
with exposure to mammalian temperature, we conducted
a microarray analysis of LVS as a model F. tularensis strain
(Table 1). Gene expression of LVS cultured at 26°C (non-
mammalian environment) was compared to bacteria
shifted to 37°C (mammalian host body temperature).
Labeled cDNA target was produced from RNA isolated
from F. tularensis LVS and was subsequently hybridized to
a custom Agilent Francisella microarray. Global gene
expression data were analyzed with a J5 statistical test,
which was selected to limit the number of false positives
[31]. This analysis identified 95 genes with significantly

Table I: Strains, plasmids, and primers used in this study.
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increased expression and 125 genes with decreased
expression in response to a shift to mammalian body tem-
perature (see additional files 1 and 2, respectively). Col-
lectively, this represents approximately ~11% of the genes
in the entire LVS genome. Genes with a significant change
in expression were examined with the Gene Pattern pro-
gram by hierarchical clustering (Fig. 1). The clustered data
exhibited a distinct pattern of transcript induction and
repression in response to mammalian body temperature
(Fig. 1). Together, these data indicate that this tempera-
ture shift has a broad impact on F. tularensis transcription.

The microarray data were confirmed using quantitative
real time PCR (Q-PCR), in which eight differentially-

Strain, plasmid, Description Source or
or primer Reference
Strains
F. tularensis
LVS F. tularensis subsp. holartica live vaccine strain Karen Elkins
1581d LVS with FTL_1581 disruption, HygR This study
1664d LVS with FTL_1 664 (deoB) disruption, HygR This study
E. coli
XL10-Gold A(mcrA) 183 A (mcrCB-hsdSMR-mrr) 173 endAl supE44 thi-1 recAl gyrA96 relAl lac Hte [F' proAB lacliZDMI5  Stratagene
Tnl0 (TetR) Amy CamR]
DH5a F-$80lacZAMI5 A(lacZYA-argF) U169 recAl endAl hsdR17 (r-, m+) phoA supE44 A-thi-1 gyrA96 relAl Invitrogen
JMI109 endAl, recAl, gyrA96, thi, hsdR17 (r,-, m,*), relAl, supE44, A(lac-proAB), [F' traD36, proAB, lagliZAMI5] Promega
Plasmids
pFNLTP8 Francisella shuttle plasmid, ApR, KmR [63]
pRK2013 Helper plasmid for triparental mating, KmR [64]
pMP615 Francisella shuttle plasmid, HygR [65]
pMQI31hyg F. tularensis suicide vector, pBBR1 ori, oriT, contains the hyg cassette driven by the groEL promoter from This study
pMP615, oriT, KmR, HygR
pMQI31hygl581d pMQI3lhyg with the central 560 base pair region of FTL_1581 This study
pMQI31hygl664d pMQI3Ilhyg with the central 900 base pair region of FTL_1664 (deoB) This study
pFTL_1581 Broad-host-range vector, pC194 ori, contains cloned FTL_1581 along with 600 base pairs upstream and 100  This study
base pairs downstream of this gene, complementing plasmid, ApR, CamR
pF8AX pFNLTP8 Anpt, ApR This study
pF8CAT pF8AX with cat, ApR, CamR This study
pFTL_l664 pF8CAT with cloned FTL_1664 (deoB) along with 600 base pairs upstream and 100 base pairs downstream  This study
of this gene, complementing plasmid
Primers
1581_560F 5'-ATGGATCCTGAGCTAAATGATGCTTTAGTATCTC-3' Invitrogen
1581_560R 5'-ATGGTACCAAGACGACATAGCCACG-3' Invitrogen
1664_900F 5'-ATGGATCCGAACCTGGAGCAGTTGAAT-3' Invitrogen
1664_900R 5'-ATGGTACCTAAGAAAGTTGCGGAATATAATAGATG-3' Invitrogen
1581 _clone_up 5'-GATCGGATCCAGGTCAATCAGGAGTTGG-3' Invitrogen
1581_clone_down 5'-GATCGGTACCCACCTATTTGAATTAAAAAGAAGTTTATACAC-3' Invitrogen
1664_clone_up 5'-GATCGGATCCGATGGCTATGGTATATCTTCGG-3' Invitrogen
1664_clone_down 5'-GATCGGTACCACCGAGAGAATTTCTCGC-3' Invitrogen
F8Agel 5'-CATTAGACCGGTGCGAAACGATCCTCATCCTGTC-3' Invitrogen
F8Xhol 5'-Phosphorylated - CATTAGCTCGAGGGAAGAGTATGAGTATTCAAC-3' Invitrogen
XholCAT 5'-CATGCTCGAGTTATAAAAGCCAGTCATTAGGCC-3' Invitrogen
AgelCAT 5'-CATGACCGGTATGAACTTTAATAAAATTGATTTAGACAATTGG-3' Invitrogen
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Figure |

Global Francisella gene expression changes induced
by mammalian body temperature. Genes that were
identified as statistically significant by J5 scores across three
independent microarray experiments were subjected to hier-
archical clustering. Fluorescence intensities were standard-
ized by the minimum mean ratio array normalization
followed by log, transformation. Values were clustered using
the Pearson correlation in GenePattern by independently
inputting individual data from each experiment. Oligonucle-
otides testing individual LVS ORFs are in duplicate on each
array and the results are displayed as two columns per
experiment in GenePattern. The 95 induced genes and 125
repressed genes clustered together in this GenePattern out-
put, validating the )5 statistical analysis from GEDA. (B).

expressed genes were analyzed, representing transcripts
that were both significantly up- and down-regulated (Fig.
2A). Induced genes chosen for validation were the car-
bamoyl-phosphate synthase large chain, carB (FTL_0029),
a hypothetical lipoprotein (FTL_1581), a dimethyladeno-
sine transferase annotated to function in kasugamycin
resistance, ksgA (FTL_1595), and phosphopentomutase,
deoB (FTL_1664). The down-regulated genes tested by Q-
PCR included two hypothetical proteins (FTL_1315 and
FTL_1846), a cold shock protein, cspC (FTL_1361), and a
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Figure 2

Validation of the microarray results and comparison
with Q-PCR. (A) RNA from the microarray experiments
depicted in panel A were tested for up- or down-regulation
of specific genes using Q-PCR. Q-PCR data are represented
with solid bars, whereas values from microarray experiments
are depicted as striped bars. Both data sets are presented as
mean * SEM from three individual experiments. (B) Correla-
tion analysis of the microarray and Q-PCR transcript meas-
urements for nine select F. tularensis LVS ORFs. The
microarray log, values were plotted against the Q-PCR log,
data. The correlation coefficient (R2) between the two analy-
ses is 0.94.

metal ion transporter, tlyC (FTL_1697). A similar pattern
of expression was observed in both Q-PCR and in the
microarray experiments (Fig. 2A). A correlation plot (Fig.
2B) showed a strong, positive association between both
data sets (R2 = 0.94). This indicated the microarray plat-
form and the subsequent statistical analysis were robust
compared to the sensitive, though low-throughput Q-PCR
approach.
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To analyze the differentially-regulated genes more thor-
oughly, we categorized their presumed protein products
based on their Clusters of Orthologous Groups (COG)
category. As expected, many of the induced and repressed
genes were involved in central biological functions such
as metabolism, transcription, translation, DNA replica-
tion, and RNA genes (Fig. 3). Heat shock proteins belong
to the category labeled "posttranslational modification/
protein turnover/chaperones”, and as anticipated, these
genes were induced at the higher temperature, providing
additional support to our microarray analysis (Fig. 3). The
heat shock protein result was confirmed by analyzing
Hsp70 protein quantity by Western blotting, which
showed significantly more Hsp70 in bacteria shifted to
37°C versus F. tularensis LVS cultured at 26°C (data not
shown). COG categories found only among the up-regu-
lated transcripts included genes functioning in secretion
and cell division, suggesting that host temperature may
trigger these cellular processes and reflect, in part,
enhanced growth rate (Fig. 3). In addition, the COG for
bacterial defense mechanisms, which includes type I site-
specific restriction-modification systems, was uniquely

Increased expression at 37 °C
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down-regulated. This response may have evolved to allow
this bacterium to better contend with environmental
stresses, such as invading bacteriophages. We observed
that a large percentage of both up- and down-regulated
genes (44% and 64% respectively) did not belong to a
known COG category (Fig. 3). Proteins with an unknown
COG category may have a novel biological role in F. tula-
rensis associated with their temperature regulation.

F. tularensis LVS temperature regulation of genes
necessary for infection

We hypothesized that the shift from environmental to
mammalian temperature may be used to regulate genes
important for infection. Surprisingly, none of the genes
encoded in the FPI were significantly up-regulated at
37°C in the microarray analysis. We also confirmed, by
immunoblotting, that IgIC protein levels were equivalent
in bacteria grown at the two different temperatures (data
not shown). Upon further scrutiny, we did notice that one
gene in the FPI, pdpC (FTL_0116; FTL_1162), was near the
statistical threshold for induction at 37°C. We therefore
analyzed pdpC transcript levels by Q-PCR as before, which

Decreased expression at 37 °C

B Transcription/translation / DNA replication / RNA

B Posttranslational modification / protein turnover / chaperones
Bl Cell division and chromosome partitioning

O Cell envelope biogenesis / outer membrane

B Cellular functions / trafficking / secretion

O Transport and metabolism

B Defense mechanisms
O Unknown

Figure 3

COG analysis of genes up- or down-regulated by mammalian temperature. COG categories were identified for
each significantly up- or down-regulated gene based on the genomic annotation (accession, NC_07880). Specific COG catego-
ries were consolidated into general categories as follows: |, K, L, and RNA genes were combined into "Transcription/transla-
tion/DNA replication/RNA"; P, C, G, E, F, H, |, and Q were merged into "Transport and metabolism"; categories N and U were
combined into "Cellular functions/trafficking/secretion"; and categories R, S, and uncategorized genes were classified as
"Unknown". All other COG categories were reported as they were originally assigned.
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confirmed that this gene was induced at mammalian body
temperature (Fig. 2A).

We next compared our list of genes induced at 37°C with
those previously shown to be necessary for Francisella
infection, or postulated to be involved in the pathogenesis
of this organism (Table 2). Forty percent of the protein-
coding genes significantly up-regulated at 37 °C have been
reported or predicted to be important for intracellular
growth and/or virulence of F. tularensis (Table 2). The list
depicted in Table 2 included an assortment of metabolic
genes, chaperones, genes encoding hypothetical proteins,
and others. The data from Table 2 and the pdpC expression
results in Fig. 2A further supported our hypothesis that
genes important for Francisella infection are regulated by
mammalian body temperature.

FTL_1581 is associated with F. tularensis LVS virulence

FTL_1581, annotated as a hypothetical lipoprotein, was
induced by mammalian temperature more profoundly
than any other hypothetical protein gene in the F. tularen-
sis LVS genome (based on both fold change and J5 score;
Additional file 1). We selected this gene for further study
to test our hypothesis that temperature regulates genes

http://www.biomedcentral.com/1471-2180/8/172

necessary for infection. A BLAST search [32] against the
National Center for Biotechnology Information database
of non-redundant sequences did not identify proteins
from organisms other than Francisella that had >30%
identity to FTL_1581 (data not shown). This suggested
that FTL_1581 may have a function unique to F. tularensis.
The primary structure of FTL_1581 was further examined
by a PROSITE analysis [33] which indicated this protein
likely contained a lipoprotein signal sequence (Fig. 4A)
consistent with its annotation. This analysis also revealed
that the signal sequence overlapped with a motif similar
to that of the Enterobacterial TraT complement resistance
protein (Fig. 4A). Although the initial BLAST search did
not retrieve homologous proteins with high degrees of
identity, it did show that FTL_1581 contained a domain
with 20-24% identity and 40-44% similarity with the
vacuolating cytotoxin (VacA; jhp0819) [34,35] and para-
logs (jhp0556, jhp0856) of Helicobacter pylori J99 (Fig.
4A). Because FTL_1581 contained domains similar to
other proteins that had a role in pathogenesis, we hypoth-
esized that this protein may contribute to the virulence of
F. tularensis.

Table 2: List of genes induced at 37°C shown or implicated to be associated with intracellular growth and/or virulence of F. tularensis.

Locus tag  Description, gene name (if available) Fold Change Reference
FTL_0028 Aspartate carbamoyltransferase, pyrB 22 [12,14]
FTL_0029 Carbamoyl-phosphate synthase large chain, carB 2.6 [12,14,66]
FTL_0030 Carbamoyl-phosphate synthase small chain, carA 2.6 [12,14]
FTL_0094 Chaperone, clpB 25 [13,14,27,67,68]
FTL_0198 Pyridoxal/pyridoxine/pyridoxamine kinase, pdxY 2.0 [14]
FTL_0267 Chaperone Hsp90, htpG 2.3 [14,46,66,69]
FTL_0307 Dephospho-CoA kinase, coaE [46,69]
FTL_0337 Pseudogene with homology to miaB 2.1 [13]
FTL_0445 Hypothetical protein with homology to NADPH-dependent FMN reductase 2.5 [13,46,69]
FTL_0479 glycine cleavage system P protein, subunit |, gcvP/ 1.4 [14]
FTL_0671 Annotated as transcriptional regulator, homologous to Pantothenate kinase type lll, coaX 23 [46,69]
FTL_0672 Aspartate-|-decarboxylase, panD 2.0 [14,46,69]
FTL_0675 Conserved hypothetical protein 23 [46,69]
FTL_0837 D-methionine binding transport protein, ABC transporter, membrane and periplasmic protein, metlQ 2.0 [13]
FTL_0885 PhoH-like protein 1.9 [14]
FTL_0886 Conserved hypothetical protein, yleA 1.8 [68]
FTL_0899 protease, GTP-binding subunit, hflX 1.8 [13]
FTL_0928 DJ-1/Pfpl family protein 2.1 [13]
FTL_1048 Conserved hypothetical protein 1.8 [14]
FTL_1190 Chaperone protein (heat shock protein family 70 cofactor), grpE 1.7 [46,69]
FTL_1338 Alanine racemase, alr 2.1 [67]
FTL_1474 transcriptional elongation factor, qreA 1.8 [13]
FTL_1485 Conserved hypothetical membrane protein 2.2 [46,69]
FTL_1545 SNO glutamine amidotransferase family protein 2.6 [46,69]
FTL_1546 Pyridoxine/pyridoxal 5-phosphate biosynthesis protein 22 [46,69]
FTL_1553 Succinyl-CoA synthetase beta chain, sucC 1.6 [13]
FTL_1595 Dimethyladenosine transferase, kasugamycin resistance, ksgA 32 [14]
FTL_1664 Phosphopentomutase, deoB 2.1 [14]
FTL_1714 Chaperonin (Hsp60 family), groEL 3.2 [14]
FTL_1782 adenine phosphoribosyltransferase, apt 1.5 [14]
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Figure 4

FTL_1581 contributes to F. tularensis LVS virulence. (A) A schematic of FTL_158I protein is depicted showing domains
predicted by PROSITE. (B) Competition studies in the chicken embryo infection model using a mixture of LVS and 1581d (I:1
based on OD; viable bacteria in the inoculum were quantified by diluting and plating the input). Competition ratios (1581d:
LVS) were normalized to the input to account for differences in the inoculum. These ratios were analyzed for statistical signifi-
cance by Chi square; P < 0.001 at days |, 2, and 3 post-infection. Data are mean competition ratio + SEM of three embryos per
time point within one experiment and are representative of duplicate experiments. (C) Macrophages were infected with LVS,
1581d, or 1581d/pFTL_158I and were lysed at the indicated times. Data are mean + SEM of triplicate wells within one experi-
ment and are representative of four experiments performed using cells from separate donors. Following log transformation,
differences in CFU were determined by a Student's t-Test in which P = 0.003 at 24 h.
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We disrupted FTL_1581 in LVS, producing strain 1581d,
to determine if this gene was associated with F. tularensis
virulence. To assess the virulence of 1581d, we utilized a
competition assay based on the chicken embryo infection
model [36-38]. The chicken embryo produces a robust
innate immune response comprised of complement,
phagocytic cells, and cytokine production [39,40]. Here,
chicken embryos were infected with a ~1:1 mixture of LVS
and 1581d. At days 1, 2, and 3 post-infection, wild-type
LVS exhibited superior survival compared to 1581d (P <
0.001 at each time point) (Fig. 4B). This result was not
due to a growth defect since 1581d grew identically to
wild-type LVS when cultivated in bacterial growth
medium (data not shown). In a separate experiment in
which chicken embryos were infected only with 1581d,
isolates from homogenates were all resistant to hygromy-
cin, indicating that this mutant did not revert to wild type
during infection (data not shown). Since 1581d was
attenuated compared to LVS, the results suggest the func-
tion of the FTL_1581 gene product contributes to F. tula-
rensis virulence.

We wanted to determine if the virulence attenuation of
1581d in the chicken embryo infection model was due to
a reduced ability to inactivate complement, as FTL_1581
contained a putative complement resistance domain (Fig.
4A). Therefore, we subjected LVS and 1581d to serum sen-
sitivity assays. There was equivalent survival of wild-type
LVS and 1581d when cultured in media containing 20%
serum or 20% heat-inactivated serum for up to 20 h (data
not shown). To ensure that the serum complement was
functional, E. coli DH50. was used as a control. Here, the
CFU from the serum-treated E. coli exhibited a reduction
of 3 logs relative to the input or heat-inactivated serum
groups after 30 min (data not shown). This suggested that
the disruption in 1581d does not affect complement
resistance.

We determined if FTL_1581 contributed to growth in a
macrophage environment. Primary human monocyte-
derived macrophages were infected in vitro with either LVS
or 1581d. At various time-points, macrophages were
lysed, and the lysates were diluted and plated to enumer-
ate viable CFU. We observed attenuated growth of 1581d
in macrophages at 24 h post-infection (P = 0.003) (Fig.
4C). When FIL_1581 was complemented in trans in
1581d, wild-type level of growth was restored (Fig. 4C).
This complementation confirmed that the reduced intrac-
ellular fitness of 1581d was due to the inactivation of
FTL_1581, and not due to polar effects or alternate muta-
tions. This experiment (Fig. 4C) also suggested that the
attenuation of 1581d in the chicken embryo model (Fig.
4B) was likely due to a defect in intracellular survival.
Together, the data presented here implicate FTL_1581, a
Francisella ORF induced by mammalian body temperature
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that has no obvious homologs, with virulence and intrac-
ellular survival. Therefore, we propose that FTL,_1581 be
named temperature-induced, virulence-associated locus
A, or tivA.

Involvement of FTL_1664 (deoB) in uptake of F.
tularensis LVS

Many of the genes critical for Francisella infection involved
metabolism (Table 2), a major COG category induced at
37°C (Fig. 3). This suggested that physiology vital for the
success of F. tularensis as a pathogen was regulated by the
temperature shift. Therefore, we were interested in deter-
mining the contribution of temperature-regulated meta-
bolic genes toward Francisella pathogenesis. Previously, a
microarray-based negative selection screen of F. novicida
transposon mutants identified the phosphopentomutase,
deoB, as a gene contributing to growth and/or survival in
mice [14]. In other bacteria, proteins encoded by deoB
homologs normally catalyze the reversible reaction
between ribose-1-phosphate and ribose-5-phosphate or
between deoxyribose-1-phosphate and deoxyribose-5-
phosphate [41,42]. An F. tularensis LVS chromosomal dis-
ruption mutant of deoB, FTL_1664, was constructed
(strain 1664d). This mutant had a cellular and colony
morphology similar to its wild-type parent strain (data
not shown). Also, 1664d grew similarly to wild-type LVS
in bacterial culture medium (data not shown).

We employed the chicken embryo infection model [36-
38] to confirm that deoB contributes to LVS pathogenesis,
as it did in F. novicida [14]. Here, chicken embryos that
had been infected with F. tularensis LVS 1664d exhibited
significantly enhanced survival compared to those
infected with wild-type LVS over a 5 day period (P =
0.0254) (data not shown) corroborating the deoB data
from F. novicida [14].

Accessing the host cytoplasm to replicate intracellularly is
a hallmark of Francisella pathogenesis. Therefore, we next
tested if the virulence attenuation of 1664d in the chicken
embryo infection model was due to a defect in entering
host cells. At two hours post-infection in vitro, human,
monocyte-derived macrophages were treated with gen-
tamicin to kill extracellular bacteria, followed by extensive
washing. We consistently observed that substantially
fewer 1664d cells were phagocytosed relative to wild-type
LVS (Fig. 5A) (P = 0.00005). Importantly, trans comple-
mentation of 1664d (1664d/pFTL_1664) rescued the
uptake defect (Fig. 5A). This suggested deoB is involved in
a bacterial mechanism that enhances uptake of F. tularen-
sis. This finding was extended by conducting similar
uptake assays in primary human dendritic cells (Fig. 5A).
In both phagocytic cell types, the uptake defect of 1664d
was reproduced and complemented (Fig. 5A).
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Figure 5 (see previous page)

deoB is important for entry of F. tularensis LVS. (A) Primary human macrophages (M®s) or dendritic cells (DCs) were
infected with either LVS, 1664d, or 1664d/pFTL_1664 in microtitre plates. After a two-hour incubation, wells were treated
with gentamicin to kill extracellular bacteria, followed by vigorous washing. Subsequently, phagocytic cells were lysed and serial
dilutions of lysates were plated for CFU enumeration. Data are mean * SEM of triplicate wells within one experiment and are
representative of four (primary human macrophages) or two experiments (dendritic cells) performed using cells from separate
donors. Following log transformation, differences in CFU between LVS and 1664d were determined by a Student's t-Test in
which P = 0.00005 and 0.003 for M®s and DCs, respectively. (B) Bacteria were stained with the fluorescent green stain, Syto-9
prior to infection. After a two-hour incubation with RAW 264.7 cells, extracellular bacteria were washed away and cells were
analyzed under brightfield (BF) and fluorescence (Fluor.) microscopy. The exposure time was extended to enhance sensitivity
of detecting the low numbers of 1664d within the RAW 264.7 cells, leading to some background fluorescence. Fluorescence
images were initially captured in grayscale and pseudocolored using Adobe Photoshop. Data displayed are representative of
duplicate experiments. Scale bar = 50 um. (C) Human embryonic kidney 293 (HEK-293) cells were infected similarly to the
phagocytic cells in panel A. Data are mean * SEM of triplicate wells within one experiment and are representative of three
experiments. Following log transformation, differences in CFU between LVS and 1664d were determined by a Student's t-Test

in which P = 0.0004.

We then qualitatively assessed uptake into phagocytes by
microscopy to confirm the quantitative results obtained
with CFU measurements. LVS, 1664d, and 1664d/
PFTL_1664 were treated with the green fluorescent stain,
Syto-9, and then incubated with RAW 264.7 cells, a
murine macrophage-like cell line. After a two hour incu-
bation and washes, cells were observed by fluorescence
microscopy. Here, RAW 264.7 cells infected with LVS or
1664d/pFTL_1664 exhibited bright green fluorescence
(Fig. 5B). In contrast, the RAW 264.7 cells infected with
1664d produced considerably less fluorescence despite
comparable inocula to the cultures (Fig. 5B). The results
obtained by microscopy suggested the discrepancy in CFU
between wildtype and 1664d was not due to killing in the
early phagosome. Rather, the levels of fluorescence in Fig.
5B were consistent with the CFU uptake data presented in
Fig. 5A and confirmed that the temperature-regulated
deoB is important for optimal uptake by mammalian

phagocytes.

To determine if deoB contributed to entry into non-phago-
cytic cells, we exposed the human embryonic kidney cell
line HEK-293 to either LVS, 1664d, or 1664d/pFTL_1664.
At two hours post-infection, these cells were treated with
gentamicin to kill extracellular bacteria followed by exten-
sive washing. Subsequently, HEK-293 cells were lysed and
the lysates were diluted and plated to enumerate CFU.
Here we observed that 1664d showed reduced entry into
the non-phagocytic HEK-293 cells (Fig. 5C). The uptake
defect was again rescued by trans complementation (Fig.
5C). These data suggest that deoB contributes significantly
to entry into both phagocytic (Fig. 5A and 5B) and non-
phagocytic cells (Fig. 5C).

Discussion
In this paper, we provide evidence that F. tularensis LVS
undergoes significant gene expression changes in

response to mammalian body temperature (Fig. 1 and 2,
Table 2, and Additional files 1 and 2). We hypothesized
that genes important for infection of mammals may be
induced during transition to this higher temperature.
Although some genes, such as ribosomal RNA and tRNA
genes, may reflect an increased growth rate at 37°C, our
overall hypothesis was supported by the finding that 40%
of the protein coding genes induced at 37°C have been
shown or implicated to be important for successful Fran-
cisella infection (Table 2). In addition, we showed that
two specific genes induced at 37°C contribute to the fit-
ness of F. tularensis LVS during infection. While infection
of a mammalian host exerts a complex set of signals on F.
tularensis in addition to temperature, it is likely that many
of the unexplored genes induced at mammalian tempera-
ture have a role in pathogenesis of F. tularensis. Differen-
tial responses to temperature among virulent and less
virulent F. tularensis strains will also provide a focused list
of relevant candidate virulence determinants to investi-
gate further. The products of temperature-regulated genes
with central roles in physiology and virulence could be
targets for novel therapeutics or mutation to generate
defined live attenuated vaccines.

One gene induced at 37°C, tivA (FTL_1581), encodes a
protein with little overall identity to other proteins. It
does, however, contain regions of meager similarity to the
domains of proteins involved in the pathogenesis of other
bacteria (Fig. 4A). We showed that this gene was necessary
for full F. tularensis LVS virulence in the chicken embryo
model, most likely because it contributed to optimal rep-
lication in primary human macrophages (Fig. 4B and 4C).
In a previous high-throughput microarray-based, nega-
tive-selection screen for F. novicida genes important for a
murine infection, the tivA allele of F. novicida (FTN_0573)
was not identified [14]. There are two possible explana-
tions for this discrepancy. There may be intrinsic differ-
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ences between F. tularensis LVS and F. novicida
pathogenesis [43] and their reliance on tivA. A more prob-
able explanation is that F. tularensis LVS and the more
pathogenic F. tularensis Schu S4 contain a single copy of
this gene. In contrast, F. novicida has two homologs of tivA
in its genome, suggesting the possibility of functional
redundancy. These alternate forms (FIN_1103, 52% iden-
tity; FIN_1101, 49% identity) may have compensated for
a mutation of tivA (FIN_0573) during the negative-selec-
tion screen [14], thereby masking any effects on patho-
genesis. This possibility underscores the value of
analyzing several different strains when probing F. tula-
rensis pathogenesis.

Strain 1664d, a disruption mutant of deoB, exhibited sig-
nificant reduction in uptake into mammalian cells (Fig. 5)
indicating that this gene's product is involved in a mecha-
nism that enhances entry. It would be advantageous for
Francisella to couple expression of a gene important for
uptake (deoB) with mammalian temperature, a cue
encountered early in infection. Augmenting entry would
improve access to the intracellular environment in which
F. tularensis proliferates [44]. A previous study showed
that pyrB (FTT1665) from F. tularensis Schu S4 was impor-
tant for invasion in the human HepG2 hepatocellular car-
cinoma line [12]. However, a Schu S4 mutant of pyrB was
not defective in uptake by J774.1 macrophage-like cells
[12], suggesting that the Francisella mechanisms of opti-
mal uptake by phagocytes and invasion into hepatocytes
are separate phenomena. In another prior study, mutants
of MglA, a key regulator of the FPI [45], and mutants of six
genes controlled by this protein were not defective for cell
entry [46]. This suggests that Francisella has evolved sepa-
rate regulatory mechanisms for enhancing uptake and for
intracellular survival. However, based on our data, genes
critical for both phenomena are affected by mammalian
temperature indicating that this cue is an important signal
for multiple regulatory networks in Francisella. The uptake
defect we have shown with the deoB mutant in both
phagocytic and non-phagocytic cells has not been
described previously.

In our system, DeoB may have a direct or indirect role in
the uptake of Francisella. DeoB may influence the LPS
structure of Francisella, secondarily improving interactions
with host cell receptors. Importantly, complement recep-
tors and mannose receptors are crucial for optimal Fran-
cisella phagocytosis [47-50]. This model is consistent with
the fact that deoB is induced at 37°C and the finding that
Francisella LPS structure is different at lower temperature
versus mammalian temperature [29,30]. Alternatively,
DeoB may directly promote Francisella entry into host
cells as this protein may have an additional function aside
from being a phosphopentomutase. Another possibility is
that mutation of metabolic genes in pathogenic bacteria
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can yield pleiotropic effects, resulting in defects in viru-
lence mechanisms, including invasion [12]. Further inves-
tigation is necessary to determine the precise mechanism
of Francisella DeoB in host cell entry.

The data presented here suggest that some genes impor-
tant for Francisella during infection are induced by mam-
malian temperature. Although we showed by Q-PCR that
pdpC transcripts were induced at 37°C, none of the other
loci in the FPI [6] were up-regulated at mammalian body
temperature. This is consistent with other findings sug-
gesting that IglC protein levels were not induced by a shift
from 37°C to 42°C [7]. Because many of the loci in the
FPI are essential for intra-amoeba growth [45], which
would occur at lower, ambient temperatures, it seems log-
ical that these genes are not regulated by temperature.
Therefore, the virulence associated-genes induced by
mammalian temperature that we have identified are on a
separate regulon than most of the genes of the FPI. This
suggests Francisella possesses an intricate regulatory circuit
to maximize its success in diverse environments.

Conclusion

F. tularensis LVS undergoes significant gene expression
changes in response to mammalian temperature. This
temperature shift is important for the regulation of patho-
genesis. Our study characterizes a previously underappre-
ciated environmental cue that regulates the expression of
F. tularensis genes associated with virulence in other stud-
ies. Importantly, the collection of temperature-regulated
genes also defines a rich set of novel candidate virulence
determinants, including tivA (FTL_1581). Detailed inves-
tigation of tivA and deoB (FTL_1664) revealed unknown
or unrecognized roles of these genes in intracellular sur-
vival and entry into mammalian cells, respectively.

Methods

Bacterial strains and growth conditions

Bacterial strains used in this study can be found in Table
1. All broth cultures were grown with agitation (250 rpm).
For general cultivation of Escherichia coli, bacteria were
grown at 37°C on LB agar plates, or in LB broth. F. tula-
rensis LVS, a model organism for tularaemia, was used in
this study. For F. tularensis LVS strains, frozen stock cul-
tures were streaked onto chocolate II agar plates and incu-
bated at 37°C, 5% CO, for 2-4 days. These bacteria were
subsequently used to inoculate broth cultures. For experi-
ments assessing the effect of temperature on transcript lev-
els, Chamberlain's chemically defined broth medium
(CDM) [51] was inoculated with LVS and incubated at
37°C overnight. This start-up culture was used to inocu-
late fresh CDM (2 ml start-up culture into 25 ml fresh
broth) and incubated at 26°C for 24 h. Following this
incubation, the optical density (ODg,,) of this culture was
recorded and RNA was extracted. For the temperature
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shift, 5 ml of the same culture was diluted into 25 ml fresh
CDM and incubated at 37°C until attaining an OD,,
comparable to the 26°C culture (typically ~6 h). When
the 37°C culture reached the desired OD,,, RNA was har-
vested. This strategy of growing bacteria to comparable
ODy, prior to RNA extraction was similar to a previous
study assessing global temperature regulation in Group A
Streptococcus [19] and mitigates the effects of growth phase
on the subsequent analysis.

For macrophage and chicken embryo infections, LVS
strains were grown in TSBc (trypticase soy broth [Becton,
Dickinson and Company]| supplemented with 0.1% L-
cysteine hydrochloride monohydrate) at 37°C while
shaking at 250 rpm. When required, antibiotics were
added to the media at the following concentrations: amp-
icillin at 150 pg/ml for E. coli; kanamycin at 35 pg/ml for
E. coli and 10 pg/ml for F. tularensis LVS; chloramphenicol
at 5 pg/ml for F. tularensis LVS; polymixin at 100 pg/ml;
and hygromycin at 200 pg/ml.

The rationale for using CDM for the transcriptional anal-
ysis, while TSBc was used for all other experiments is two-
fold. Using CDM for general cultivation of LVS is not prac-
tical because CDM is an aqueous mixture of 22 nutrients,
some of which do not have a long shelf-life. Secondly,
CDM was selected for transcriptional analyses to benefit
future studies to analyze synergistic effects of temperature
and media components.

RNA extraction

Immediately upon removal from the shaking incubator,
six ml of broth culture were mixed with 18 ml TriReagent
LS (Molecular Research Center). Chloroform (4.8 ml) was
added to this material, and the aqueous phase was subse-
quently separated by centrifugation in a Phase Lock Heavy
tube (Eppendorf). RNA was precipitated from this aque-
ous layer with isopropanol, followed by centrifugation.
Pelleted material was washed in 80% ethanol and resus-
pended in nuclease-free water. This RNA-containing mix-
ture was treated with DNase (Turbo DNA-free, Ambion),
and then precipitated using ammonium acetate and etha-
nol. RNA quantity was measured spectrophotometrically,
and quality was assessed using an Agilent Bioanalyzer.

Microarray analysis

Custom Agilent Francisella microarrays designed using the
eArray framework were used in this study. All predicted
open reading frames, including pseudogenes, were
included for F. tularensis subsp. holarctica LVS, F. tularensis
subsp. tularensis (SchuS4), F. tularensis subsp. holarctica
OSU18, F. novicida U112 and the Francisella plasmids,
pOM1, and pFNL10. Individual genes from LVS, SchuS4,
and OSU18 were spotted in duplicate on this array,
whereas genes from the other strains and plasmids were
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printed as single copies. cDNA was synthesized from RNA
by reactions using random hexamers (Invitrogen) and
MMLYV (Agilent). The cDNA target was labelled with Alexa
Fluor 555 conjugated dUTP according to manufacturer's
protocol (AF555-aha-dUTP; Invitrogen). Labelling reac-
tions were incubated at 40°C for 3 hours. After cDNA syn-
thesis, RNA was hydrolyzed with with NaOH and EDTA,
and subsequently, the pH was neutralized with an equiv-
alent volume of HCI. The labelled cDNA was precipitated
using isopropanol and ammonium acetate and washed
with 80% ethanol. 0.5 pg of labelled cDNA was hybrid-
ized to custom Agilent 8 x 15 K microarrays according to
the protocol of the manufacturer and incubated at 60°C
for 18 hours in a rotary oven. Following hybridization,
arrays were washed with Agilent wash buffers before being
scanned on an Agilent microarray scanner. At least 3 sep-
arate RNA extractions were used for each condition tested
by microarray (26°C or 37 °C-grown bacteria).

Gene Expression Data Analyzer (GEDA; http://bioinfor
matics.upmc.edu/GE2/GEDA html) was utilized for anal-
ysis of the microarray data [31]. This online software pack-
age was used for minimum mean ratio array
normalization followed by log, transformation. Data
were grouped into two categories, cultivated at 26°C and
shifted to 37°C, and analyzed for significance with the J5
statistical test [31]. The J5 metric was designed for data
sets composed of limited replicates, thereby reducing the
chance of generating false positives [31]. Genes were con-
sidered to be significantly differentially regulated if they
had aJ5 score greater than 2. Additional files 1 and 2 con-
sist of lists showing both the J5 value and fold change for
genes that were significantly up- or down-regulated upon
a shift to mammalian temperature. Normalized, log,
transformed intensity values for genes that were differen-
tially expressed were input into GenePattern [52] and data
are presented after hierarchical clustering (Pearson corre-
lation).

Categories assigned for clusters of orthologous groups
were identified for each significantly up- or down-regu-
lated gene based on the annotation assigned from the F.
tularensis holarctica genome (accession, NC_07880). Spe-
cific clusters of orthologous groups categories were con-
solidated into general categories as follows: J, K, L, and
RNA genes were combined into "Transcription/transla-
tion/DNA replication/RNA"; P, C, G, E, F, H, [, and Q were
merged into "Transport and metabolism"; categories N
and U were combined into "Cellular functions/traffick-
ing/secretion"; and categories R, S, and uncategorized
genes were classified as "Unknown". All other clusters of
orthologous groups categories were reported as they were
originally assigned.
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Quantitative real time PCR

One pg of total RNA was used as a template for cDNA syn-
thesis catalyzed by Superscript III (Invitrogen). Diluted
cDNA was used as a template for real time reactions con-
taining primer sets (designed by Primer 3 [53] for the
desired genes) and SYBR Green Supermix (BioRad). These
reactions were carried out on a BioRad IQ5 real time
machine. The bacterial 50S ribosomal protein 124
(FTL_0247) was used as an internal reference, as it was
observed to have no change in expression following a shift
to 37°C according to the microarray analysis (data not
shown). The quantitative real time PCR data are presented
as log, transformed fold change values (37°C versus
26°C).

Construction of plasmids

Plasmids and primers used in this study can be found in
Table 1. The disruption plasmids, pMQ131hyg1581d and
pMQ131hyg1664d were constructed using the following
procedures. First, the Pvul/Spel fragment of pMP615 con-
taining hyg under the control of the groEL promoter was
subcloned into pMQ131 (R. Shanks and G. O'Toole,
unpublished data) that had been digested with Pvul/Xbal
which produced pMQ131hyg. The internal 560 base pairs
of FTL_1581 were amplified by PCR using the primers
1581_560F and 1581_560R and this amplicon was ini-
tially TA cloned into pGEM-T (Promega). The Kpnl/
BamHI fragment of this construct containing the internal
portion of FTL_1581 was subcloned into pMQ131hyg
that had been digested with these same enzymes, which
produced pMQ131hyg1581d. Similarly, the internal 900
base pairs of FTL_1664 were amplified by PCR using the
primers 1664_900F and 1664_900R and this amplicon
was initially TA-cloned into pGEM-T (Promega). Subse-
quently, this fragment internal to FLT_1664 was sub-
cloned (Kpnl/BamHI) into pMQ131hyg, producing the
plasmid pMQ131hygl664d.

The FTL_1581 complementing plasmid (pFTL_1581) was
constructed using the following procedures. The primers
1581_clone_up and 1581 _clone_down were used to
amplify 600 base pairs upstream, the entire FTL_1581
open reading frame, and 100 base pairs downstream of
this gene by PCR. This amplicon encompassed the pre-
dicted native FTL_1581 promoter, this gene's coding
region, as well as the predicted transcriptional stop (data
not shown). Initially, this amplicon was TA-cloned into
PGEM-T (Promega). The Sacl/Sacll fragment of this con-
struct containing FTL_1581 was subsequently subcloned
into pMQ2 (R. Shanks and G. O'Toole, unpublished data)
that had been digested with these same enzymes. This
yielded pFTL_1581.

The FIL 1664 (deoB) complementing plasmid
(pFTL_1664) was constructed using the following proce-
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dures. Initially, the KanR gene from pFNLTP8 was deleted
using an inverse PCR strategy [54]. The primers F8Agel
and F8Xhol were used to amplify pFNLTP8. Following
PCR, template DNA was digested with Dpnl leaving only
amplified product. This amplicon was self-ligated, pro-
ducing pF8AX. The cat194 gene was amplified by PCR
using the primers XhoICAT and AgelCAT with pMQ2 as a
template, and this amplicon was TA-cloned into pGEM-T
(Promega). The Age I/Xhol fragment of this construct that
encoded the cat194 gene was subcloned into pF8AX using
these same enzymes producing pF8CAT. 1664_clone_up
and 1664_clone_down were used to amplify 600 base
pairs upstream, the entire FTL_1664 open reading frame,
and 100 base pairs downstream of this gene by PCR. This
amplicon encompassed the predicted native FTL_1664
promoter, this gene's coding region, as well as the pre-
dicted transcriptional stop (data not shown). Initially, this
amplicon was TA-cloned into pGEM-T(Promega). The
BamHI/Kpnl fragment of this construct containing
FTL_1664 was subsequently subcloned into pF8CAT that
had been digested with these same enzymes. This yielded
PFTL_1664.

Construction of the FTL_1664 and FTL_1581 mutants

F. Otularensis LVS disruption mutants of FTL_1664 and
FTL_1581 were constructed as previously reported [55]. A
homologous recombination between the LVS chromo-
somal copy of FTL_1581 and the internal FTL_1581 frag-
ment in pMQ131hyg1581d would disrupt the coding
sequence of 38 amino acids at the C-terminus. Also,
homologous recombination between chromosomal
FTL_1664 and pMQ131hygl1664d would disrupt coding
sequence for the C-terminal 56 amino acids of the
encoded protein. Disruption constructs (either
pMQ131hygl1664d or pMQ131hygl1581d) were mobi-
lized into F. tularensis LVS by triparental mating. Mating
mixes were composed of LVS (10° CFU), E. coli/pRK2013
(107 CFU), and either E. coli/pMQ131hyg1664d or E. coli/
pMQ131hyg1581d (107 CFU). Similarly to the previously
described Francisella conjugation methodology [56], the
mating mixture here was plated on LB agar plates, and
incubated at room temperature for 18 hours. Cells were
resuspended in phosphate buffered saline (PBS) and
spread onto chocolate II agar plates containing polymyxin
(100 pg/ml) and hygromycin. Hygromycin-resistant colo-
nies were screened by PCR using primers specific for either
FTL_1581 or FTL_1664 and the vector-portion of
pMQ131hyg1581d or pMQ131hygl664d. The F. tularen-
sis LVS FTL_1664 and FTL_1581 disruption mutants
(FTL_1664::pMQ131hygl1664d;
FTL_1581:pMQ131hyg1581d) are referred to as strains
1664d and 1581d respectively. Mobilization of comple-
mentation constructs into the disruption mutants was
accomplished by electroporation as previously described
[57].
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Complement resistance assay

Bacteria (1.5 x 10% CFU) were incubated in solutions of
PBS with 20% serum (human serum [Gemini Bio-
science]) or 20% heat-inactivated serum at 37°C while
shaking at 250 rpm. Serum was incubated at 56°C for 30
minutes to inactivate complement. At certain time-points,
cell suspensions were diluted and plated to enumerate
CFU.

Chicken embryo infections

Chicken embryos were infected with F. tularensis LVS,
1664d, and 1581d as previously described [37,38].
Whiteleghorn chicken eggs (fertilized, specific pathogen
free) were purchased from Charles River Laboratories,
North Franklin, CT, USA. Eggs were incubated at 37°C
with gentle rocking and humidity for one week prior to
infection. Following the initial 7 day incubation, those
without a live embryo were discarded. For infections, the
surface of the egg shell was sterilized with 70% ethanol.
The egg shell membrane was exposed and removed after
introducing a small hole in the shell. Bacteria suspended
in PBS (100 pl) were then injected beneath the chorioal-
lantoic membrane. The hole in the egg shell was covered
with transparent tape and subsequently eggs were incu-
bated as previously described. On a daily basis, eggs were
candled to assess viability for 6 days. As previously
reported [37], embryos that expired within 24 h of the
infection were presumed to have experienced lethal
trauma during inoculation, and were removed from the
experiment. Survival differences in chicken embryo infec-
tions were analyzed with the log rank test in GraphPad
Prism 5.

Competition studies in the chicken embryo infection
model were conducted similar to the single infections
described above. Here chicken embryos were infected
with a mixture of LVS and 1581d (1:1 based on OD,
~105 total bacteria). Actual input (6.5 x 10> total bacteria)
was determined by diluting the inoculum followed by
plating to enumerate viable bacteria. Three infected, via-
ble eggs were sacrificed at 1, 2, and 3 days (9 total eggs)
post infection. Egg contents were homogenized with an
OMNI tissue homogenizer, and serial dilutions of the
homogenates were plated on chocolate II agar plates with
or without antibiotic. The total number of 1581d (plates
with antibiotic) was subtracted from the number of total
bacteria (plates without antibiotic) to determine the
amount of viable wild-type LVS. Competition ratios
(1581d: LVS) were normalized to the input to account for
small differences in the inocula, as has been done previ-
ously [58,59]. Competition ratios were analyzed for statis-
tical significance by Chi square.
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Mammalian cell infections

Human monocytes were differentiated into macrophages
by in vitro culture as has been described previously
[11,57,60]. Buffy coats from blood donations (Central
Blood Bank, Pittsburgh, Pennsylvania) served as the
source of monocytes. Monocytes were purified using
Ficoll gradients (Amersham Biosciences) to isolate
PBMCs, Optiprep gradients (Axis-Shield) to enrich for
monocytes, and panning on plastic to further purify
monocytes (final purity >95% based on microscopy).
Cells were cultured in 60 mm culture dishes for 7 days at
37°Cwith 5% CO,in 7 ml of DMEM (Invitrogen) supple-
mented with 20% FCS (Invitrogen), 10% human serum
(Gemini Biosciences), 25 mM HEPES (Gibco), and 1%
Glutamax (Invitrogen) [11,57,60]. Macrophages were
detached from the culture dish on day 7 using a lidocaine/
EDTA solution (5 mM EDTA and 4 mg/ml lidocaine in
PBS pH 7.2). For monocyte-derived dendritic cells,
human monocytes were seeded at a density of 1 x 10°
cells/ml in 24 well plates (Costar) in complete RPMI [10%
FCS, 25 mM HEPES, 1% non-essential amino acids, 1%
sodium pyruvate, 1% Glutamax and 0.1% 2-mercaptoeth-
anol (all from Gibco)| supplemented with 1000 U/ml
GM-CSF and 1000 U/ml IL-4 (both from eBioscience) and
incubated at 37°C with 5% CO,. On day 3 of culture,
10% of the media was replaced with fresh complete RPMI
supplemented with GM-CSF and IL-4 and non-adherent
cells were harvested at day 5. For in vitro infections, all pri-
mary cells were washed and resuspended in DMEM sup-
plemented with 1% human serum, 25 mM HEPES, and
1% Glutamax and then plated onto Primaria-coated 96-
well culture dishes (Becton, Dickinson and Company) at
a density of 5.0 x 104 cells per well.

Murine macrophage-like RAW 264.7 cells (ATCC number
TIB-71) were routinely cultured in DMEM supplemented
with 10% fetal calf serum, 25 mM HEPES, and 1%
Glutamax with 100 U/ml penicillin-streptomycin. Two
days prior to infection, the medium for these cells was
replaced with DMEM supplemented with 10% human
serum, 25 mM HEPES, and 1% Glutamax, and infections
were carried out using this same medium.

HEK-293 cells (ATCC number CRL-1573), a non-phago-
cytic cell line [61], were cultivated in DMEM supple-
mented with 10% fetal calf serum, 25 mM HEPES, and 1%
Glutamax with 100 U/ml penicillin-streptomycin. One
day prior to infection, HEK-293 cells were seeded in 96-
well plates at a concentration of 5 x 104 cells per well in
this same medium devoid of antibiotic and infections
were carried out in this same medium.

For infection experiments, bacterial cultures were adjusted
to an OD,,0f 0.3 (approximately 1.5 x 10° CFU/ml) and
diluted to attain a multiplicity of infection (MOI) of 500,
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which typically yields infection rate >80% after a 2 hour
co-incubation [11,62]. Alternatively, macrophages were
suspended in DMEM supplemented with 10% human
serum, 25 mM HEPES, and 1% Glutamax and transferred
to culture dishes before infection. Prior to administration
of the bacteria onto the macrophages, the F. tularensis
strains were incubated at 37°C with 5% CO, for 20 min
in this same medium. Macrophages were infected with
bacteria that had been diluted to an MOI of 40. This alter-
native infection protocol used a lower MOI because it
took advantage of the complement-mediated uptake of F.
tularensis into macrophages [47]. Comparable results were
obtained regardless of which infection protocol was used.
Actual MOIs were measured by plating serial dilutions of
inocula on chocolate II agar plates.

For intracellular CFU enumeration, mammalian cells
were exposed to the initial bacterial load for 2 hours at
37°C with 5% CO, and then incubated with gentamicin
(20 pg/ml) for 20 min to kill extracellular bacteria. The
cells were washed with warm Hank's balanced salt solu-
tion and then incubated at 37 °C with 5% CO, for another
22-48 h with fresh culture media. At the indicated time-
points post-infection, mammalian cells were lysed with
0.02% sodium dodecyl sulfate. The 2 hour time point was
used to determine entry similarly to a prior study [46].
Serial dilutions of the lysates were plated on chocolate 11
agar plates for enumeration of viable bacteria. CFU counts
were converted to log,, values and analyzed by the Stu-
dent's t-Test to determine statistical differences. For
uptake analysis, CFU were normalized to actual MOI to
account for minor variations in the density of inocula
[46].

For fluorescence microscopy, bacteria were stained with
10 uM Syto 9 (Invitrogen) for 15 min and washed three
times with PBS prior to infection. Here, stained cells were
diluted in DMEM supplemented with 10% human serum,
25 mM HEPES, and 1% Glutamax, and were incubated at
37°C with 5% CO, for 20 min. These bacteria were used
to inoculate RAW 264.7 in this same medium at an MOI
of 10.
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