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Abstract
Background: Although often viewed as elements "at the service of" bacteria, plasmids exhibit
replication and maintenance mechanisms that make them purely "selfish DNA" candidates. Toxin-
antitoxin (TA) systems are a spectacular example of such mechanisms: a gene coding for a cytotoxic
stable protein is preceded by a gene coding for an unstable antitoxin. The toxin being more stable
than the antitoxin, absence of the operon causes a reduction of the amount of the latter relative
to the amount of the former. Thus, a cell exhibiting a TA system on a plasmid is 'condemned' either
not to loose it or to die.

Results: Different TA systems have been described and classified in several families, according to
similarity and functional parameters. However, given the small size and large divergence among TA
system sequences, it is likely that many TA systems are not annotated as such in the rapidly
accumulating NCBI database. To detect these putative TA systems, we developed an algorithm that
searches public databases on the basis of predefined similarity and TA-specific structural
constraints. This approach, using a single starting query sequence for each of the ParE, Doc, and
VapC families, and two starting sequences for the MazF/CcdB family, identified over 1,500 putative
TA systems. These groups of sequences were analyzed phylogenetically for a better classification
and understanding of TA systems evolution.

Conclusion: The phylogenetic distributions of the newly uncovered TA systems are very different
within the investigated families. The resulting phylogenetic trees are available for browsing and
searching through a java program available at http://ueg.ulb.ac.be/tiq/.

Background
Plasmids are autonomously-replicating extra-chromo-
somal circular DNA molecules usually nonessential for
cell survival under non-selective conditions and widely
distributed in prokaryotic cells. Because plasmids some-
times bear genes that provide bacteria with functions
(such as virulence, resistance to drugs, the ability to
exploit a specific source of carbon) that can be adaptive in

variable environments, they are often viewed as elements
"at the service of" a (intra- or inter-specific) pool of bacte-
ria, thus allowing the long-term survival of these lines or
species. However, their ability to autonomously replicate
makes plasmids possible purely "selfish DNA" candi-
dates. Indeed, some plasmids exhibit features that seem to
be strictly restricted to mechanisms related to their main-
tenance in cell lines (through replication and partitioning
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mechanisms) or dispersal across cell lines or species
(through conjugation mechanisms).

Poison-antidote, or Toxin-antitoxin (TA) systems, were
first discovered on plasmids [1] and associated to plas-
mid-maintenance mechanisms. Later, several TA systems
were identified on chromosomes [2-5] and interpreted as
bacterial programmed cell death or stress response loci
[2,6,7]. Thought to occur in many Prokaryotic species [8],
most TA systems are organized as follows: a gene coding
for a cytotoxic and stable protein is preceded by a DNA
sequence coding for an unstable antitoxin (or "antidote")
protein or antisense RNA that can neutralize the toxic pro-
tein or its corresponding mRNA, respectively. The insta-
bility of the antitoxin protein is due to specific
degradation by a protease [9,10]. Most systems investi-
gated to date (i) involve a proteic (rather than RNA) anti-
toxin that efficiently sequesters the toxin, and (ii) exhibit
a tandem organization with a single promoter and a small
distance (about 20–30 bases), or even an overlap (about
20–30 bases), between the antitoxin and toxin genes (Fig.
1a). The transcription of the system is auto-regulated by
the binding of the antitoxin (and/or the [antitoxin+toxin]

complex) to the promoter region of the operon [11,12].
We hypothesize here that, despite the instability of the
antitoxin, cells containing such an operon survive proba-
bly because the frequency of translation termination is
increased after the stop-codon of the antitoxin (for exam-
ple due to the overlap and/or frame-shift between the two
genes) making the antitoxin protein more abundant than
the toxin protein. Once a bacteria has received one or
more copies of the system (through cell division or hori-
zontal transfer), that cell is 'condemned' either not to
loose the operon or to die (Fig. 1b) because absence of the
operon would cause a reduction in the amount of anti-
toxin relative to the amount of toxin through degradation
of the former (that cannot be replenished) prompting, in
turn, the poison to exert its toxicity on an essential intrac-
ellular host target, such as the gyrase or RNA translation
mechanisms [6,13,14], eventually causing cell death or
cell-cycle arrest. Note that TA systems have been domesti-
cated as biotechnological tools [15] for facilitating DNA
engineering and protein production without the use of
antibiotics [16].

(a) Organization of a canonical TA system (after [49])Figure 1
(a) Organization of a canonical TA system (after [49]). (b) In the presence of the operon (mother cell and right daughter cell), 
the antitoxin (blue) is produced together with the poison (red) and the former neutralizes the latter; the transcription of the 
system is auto-regulated by the binding of the antitoxin (and/or the [antitoxin+toxin] complex) to the promoter region (yel-
low) of the operon. In the absence of the TA operon, the unstable antitoxin is degraded by a protease (green) and the poison 
can exert its toxicity on an essential intracellular host target.
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Different TA systems have been described and classified in
several families, according to the target of the toxin and/
or the nature of the protease that degrades the antitoxin
[17]. Recently, about 150 toxin genes have been separated
into 4 groups on the basis of sequence or structure simi-
larities and gene neighborhood criteria [18]: the "fami-
lies" relE/parE, mazF/kid/ccdB, and Doc, as well as the
family of proteins sharing a "PIN-domain". On the basis
of phylogenetic analyses, these families have been sug-
gested to be non-homologous [18], i.e., the TA systems
would have appeared at least four times independently
during evolution.

As known TA systems, identified on different plasmids,
phages, and prokaryotic (including archaeal) genomes are
all very small and potentially very divergent (TA systems
originated from one or a few very old radiations), we
hypothesize that many TA systems might not be anno-
tated as such in the NCBI database. However, given that
(i) TA-bearing plasmids with broad host range can be
found in multiple bacterial species, and (ii) most systems
exhibit the structural organization outlined above, we pre-
dicted that many more descendent systems than previ-
ously described should be detected across a wide range of
prokaryotic genomes and plasmids. To detect these puta-
tive TA systems, we developed an algorithm, implemented
into a computer program, TAQ V1.0 (for "TA Query"), that
searches public databases on the basis of predefined sim-
ilarity and TA-specific structural constraints. Our algo-
rithm is complementary to that implemented in RASTA-
Bacteria [19]. The latter first identifies sequences exhibit-
ing conserved putative TA domains and then uses struc-
tural constrains to further restrict and score the resulting
set of putative TA systems. Our approach, using a single
starting query sequence for each of the ParE, Doc, and PIN
families and two starting sequences for the MazF/CcdB
family identified over 1,500 putative TA systems, of which
many were unknown. These five groups of sequences are
analyzed phylogenetically for a better classification and
understanding of TA systems evolution.

Results and Discussion
In order to produce a single set of homologous sequences
per family, we performed one TAQ V1.0 search for each
family of TA systems starting with a single poison (the
ParE toxin from the E. Coli RK2 plasmid for the relE/parE
family [20]; the MazF toxin from the delivery vector
pIEF16S for the mazF/kid/ccdB family, [21]; the VapC toxin
from Leptospira interrogans [serovar Lai str. 56601] for the
PIN-domain family [18,22], and the Doc toxin from the
Enterobacteria phage P1 for the Doc family, [23]). Since
we did not find any CcdB sequence during the search
using the MazF toxin as query (despite that CcdB and
MazF are thought to belong to the same family), we also
run one search using CcdB from the F plasmid as the start-
ing sequence. In each case, the program TAQ V1.0 con-
verged after 1 or 2 days of computation on a standard Intel
Pentium 4 computer (2.0 GHz) and generated the results
summarized in Table 1.

Although induced expression of the bacterial RelE toxin in
yeast and in human cell lines indicated the broad poten-
tial activity of TA systems [24,25], none of the sequences
that met all the sequence similarity and structural criteria
defined in our algorithm are found in eukaryotic
genomes. On the other hand, other categories include
eukaryotic sequences: e.g., Tetrahymena thermophyla (Alve-
olata), Debaryomyces hansenii (Fungi), and Dictyostelium
discoideum (Mycetozoa) in the ParE "Bad poisons" category,
and Cryptosporidium hominis (Alveolata) in the ParE "with-
out antidote poisons" category; Aspergillus fumigatus (Asco-
mycota), Coccidioides immitis (Ascomycota) Macaca
mulatta (Mammalia), Drosophila melanogaster (Insecta),
Mus musculus (Mammalia), Homo sapiens (Mamma-
lia),Gallus gallus (Aves), Rattus norvegicus (Mammalia),
Pan troglodytes (Mammalia), Canis lupus (Mammalia), Bos
taurus (Mammalia) in the Doc "Bad poisons" category.
Some of these sequences contain a domain (Fic domain in
the Drosophila and Mus sequences; HYPE domain in other
mammals and the chicken) that has been suggested to be
homologous to the Doc domain [18].

Table 1: Taxonomic distribution of the in-silico inferred toxins identified for the 5 TAQ runs.

Query sequences In silico inferred toxins Total in silico inferred toxins Bad Poisons Without antinodes poisons

Bacteria Archaea Viruses Artificial & Plasmids

ParE 665 38 0 7 710 102 387
MazF 205 14 1 7 216 88 196
Doc 83 1 2 0 86 59 43
CcdB 20 0 0 2 22 67 85
VapC 717 143 0 0 860 121 87

Values represent the number of sequences in each category. The " in silico inferred toxins" are sequences that meet all the constraints implemented 
in TAQ whereas the "bad poisons" do not match the length constraints and the "without antidote poisons" meet the size constraints but do not 
exhibit an ORF of constrained size and position (see text for details). "Artificial" sequences are engineered sequences such as cloning vectors.
Page 3 of 17
(page number not for citation purposes)



BMC Microbiology 2008, 8:104 http://www.biomedcentral.com/1471-2180/8/104
Figure 2a shows the assignment of the ParE "in-silico
inferred toxins" to functional categories. Note that this clas-
sification is simply based on the annotation of the corre-
sponding sequences as provided by the NCBI database.
The bulk of the sequences uncovered by our algorithm are
annotated by the NCBI as "ParE", "RelE", "unknown",
and "toxins". Note that annotation of the NCBI database
is improving fast: the "unknown" category moved from
the most frequent to the third most frequent category in 7
months (Fig. 2a&2b). Similarly, the erroneous annotation
of 2 sequences as "Doc" and "KidB" disappeared in the
most recent run. We suggest that, without accurate and
extensive functional data (for example on the exact mech-
anism by which each poison exerts its action), a phyloge-
netic approach might generate the most appropriate and
objective classification (e.g., because it is likely to be rea-
sonably stable to the addition of new sequences). Note
that one preliminary run of our program TAQ V1.0 with
low BLAST stringency (E-value of 1 instead of 0.1) col-

lected about 30 sequences annotated as belonging to the
"merR" gene family, whose members are involved in
metallic-ion metabolism [26]. Visual inspection of the
run log files indicates that the low stringency of the simi-
larity search generated a (probably inapt) hit on one merR
protein, which, in turn (when used as query), collected
additional members of the family. The merR genes hap-
pened to meet the structural constraints because they
form operons with short genes arranged in tandem. Note
that changing the E-value from 1 to 0.1 caused the loss of
very few sequences of the category "unknown", suggesting
that the merR family was the only significant artifact.

Figure 3a shows the assignment of the 216 MazF "in-silico
inferred toxins" to functional categories. Most sequences
uncovered by our algorithm are annotated by the NCBI as
"ChpA", "ChpK", "MazF", "PemK", "Kid", and
"unknown". The frequency of the latter category is much
smaller than in the run using ParE as query. Note that one

Assignment of the in-silico inferred toxins to functional categories (following the NCBI annotations) for (a and b) ParE runs performed at a 7 months intervalFigure 2
Assignment of the in-silico inferred toxins to functional categories (following the NCBI annotations) for (a and b) ParE runs 
performed at a 7 months interval.
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(a) Assignment of the in-silico inferred toxins to functional categories (following the NCBI annotations) for the MazF run, (b) the ccdB run and (c) the Doc runFigure 3
(a) Assignment of the in-silico inferred toxins to functional categories (following the NCBI annotations) for the MazF run, (b) 
the ccdB run and (c) the Doc run.
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hit in the MazF analysis is an acetyl-CoA acetyltransferase
("AcoA"), but close inspection of the NCBI file indicates
that annotation was automatic (no functional experimen-
tal evidence) and we included this sequence in our phylo-
genetic analyses.

Figure 3b shows the assignment of the 22 CcdB "in-silico
inferred toxins" to functional categories. Only two
sequences are "unknown", all the others are CcdB anno-
tated.

Figure 3c shows the assignment of the 86 Doc "in-silico
inferred toxins" to functional categories: about 10% of the
sequences are annotated as unknown, whereas all remain-
ing sequences are annotated as "Doc".

The run that was started with a single member of the PIN
family generated 1418 putative toxins, 544 bad poisons,
and 611 without-antidote poisons. Among the 1418 puta-
tive toxins, 381 are known VapC toxins, 163 are
unknown, and 556 are simply annotated as containing a
PIN domain. However, as the PIN domain is not specific
to TA systems, it is highly likely that the first step of our
TAQ algorithm (i.e. the BLASTP search) returns many
false positives (i.e., sequences that are not TA systems)
that are not efficiently filtered out by the structural-con-
strain criteria. One example is the FlbT protein clearly
involved in the flagellum biosynthesis [27]; note that one
cannot exclude the possibility that some proteins regulat-
ing gene expression (e.g., the FlbT gene product may act as
a negative regulator of the flagellin fljK gene expression
[28]) originate from TA systems. Surprisingly, TAQ even
identified known Phd antitoxins. Hence, to avoid com-
paring non-homologous sequences, we decided to
decrease the E-value to 10-3. Under that setting, TAQ did
not recover any FlbT, Phd, or any other sequence that can
readily be identified as false positives.

This second run generated 860 putative toxins, 121 bad
poisons, and 87 without-antidote poisons. Among the
860 putative toxins, 368 are known VapC toxins, 89 are
unknown, 25 are annotated as toxins and 377 as contain-
ing a PIN domain (Fig 4).

We compared the results of TAQ to those obtained by
RASTA-Bacteria [19], a program that searches for putative
TA systems in a specific organism but that restricts the
BLAST search to known TA domains before applying addi-
tional structural constraints (ORF size, occurrence of an
operon). RASTA-Bacteria finds many more putative TA
elements (including isolated putative poisons or putative
antidotes) than does TAQ because the latter uses more
stringent size criteria (and constraint for the presence of
both a toxin and an antitoxin genes) to minimize the risk
of false positives that would seriously jeopardize the phy-

logenetic analyses. RASTA-Bacteria and TAQ have differ-
ent objectives as the former attempts to score putative
Toxin or Antitoxin elements whereas the latter attempts to
generate a phylogeny among poison sequences that are
very likely to belong to real TA systems (because they are
all associated to a putative antidote and they all meet mul-
tiple size and localization criteria).

For a meaningful evolutionary analysis of the large sets of
proteins recovered by TAQ, an additional criterion (e.g.,
the use of RASTA-Bacteria to test for the presence of an
antitoxin domain in the putative antitoxin sequence)
would be warranted. Unfortunately, RASTA-Bacteria does
not allow, in its present form, to perform automated mul-
tiple searches using batch files.

Ancestral sequences tree
After initially grouping sequences by query, we manually
separated or merged groups for generating low ambiguity
alignments. We used 35 groups for the ParE analysis, 12
groups for the MazF analysis, 7 groups for the Doc analy-
sis, and 54 groups for the VapC analysis. Sequences within
each group were then aligned and used to produce ML
phylogenies. Then, the 35 inferred ML root sequences
(MLRS) for the ParE analysis (12, 7, and 54 MLRS for the
MazF, Doc and VapC analyses, respectively) were them-
selves aligned and analyzed phylogenetically (see Meth-
ods for details). The final trees and their branch support
values are available through TIQ v1.0, a Java program,
available at [29] (using the login "tiq" and password "yqg-
Wrj.81"). TIQ allows browsing the trees, select branches,
perform searches of NCBI annotation fields (such as
sequence, taxa names, Global Identifiers (GI), etc.) and
filter sequences according to the host taxonomy. The 22

Assignment of the in-silico inferred toxins to functional cate-gories (following the NCBI annotations) for the PIN runFigure 4
Assignment of the in-silico inferred toxins to func-
tional categories (following the NCBI annotations) 
for the PIN run.
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CcdB sequences were simply incorporated into a single
MrBayes analysis.

Supertree
For the ParE analysis, after grouping hits on the basis of
the query sequence(s) that generated them, we obtained
710 groups of which many were highly redundant. Using
the algorithm described in the Methods section, we
reduced that number to 111 partially-overlapping groups
that collectively contain all putative TA systems uncovered
here. We then inferred the ML phylogenetic relationships
among sequences within each group, generating 111 trees
that are partially overlapping in terms of the included
sequence. The overlapping trees were then used as input
for "supertree" inference (see Methods section). The strict
consensus among the 4 best supertrees (score 310.49) is
available through TIQ v1.0 (see above). Similarly, for the
MazF analysis, the initial 227 highly redundant groups
were reduced to 76 partially-overlapping groups that col-
lectively contain all uncovered putative TA systems. The
single best supertree (score 157.57) is available through
TIQ v1.0. For the Doc analysis, the initial 86 highly redun-
dant groups were reduced to 9 partially-overlapping
groups that collectively contain all uncovered putative TA
systems. The strict consensus among the 17 best super-
trees (score 11.72) is available through the java program
TIQ v1.0. Finally, for the VapC analysis, the initial 860
highly redundant groups were reduced to 208 partially-
overlapping groups that collectively contain all uncovered
putative TA systems. The 50% majority-rule consensus
among the 115 best supertrees (score 246.91) with a cut-
off value of 50% is available through the java program
TIQ v1.0. No supertree analysis was run for the 22 CcdB
sequences given the small size of that dataset.

Consensus among methods
Given (i) the very large divergence among the very short
poison sequences from TA systems (even within each of
the major families: ParE, MazF, Doc and VapC), (ii) the
heuristic nature of the inference methods used here (see
below), and (iii) that ML models used are only approxi-
mations of the real substitution process across the billions
of years of TA systems history, a high degree of uncertainty
is very likely attached to the phylogeny analyses per-
formed here. However, given that the two heuristics used
are quite different (i.e., either inferring relationships
among reconstructed most likely ancestral sequences of
predefined groups of poison sequences or using a super-
tree approach among a set of overlapping trees), a consen-
sus between the two resulting phylogenies might
highlight the most robust portions of these trees. Hence,
for each major family, we combined the trees generated by
the two approaches into an Adams consensus tree (Fig. 5,
6, 7 and 9). An Adams consensus [30] typically preserves
more structure than a strict consensus by displaying "nest-

ings", rather than clades, shared among trees (given two
sets of leaves, A and B, and a tree T, set A nests inside set B
if (i) A is a subset of B, and (ii) the leaves in set A have a
more recent common ancestor in T than do the leaves in
set B). In other words, one group is said to nest within a
larger group if the most recent common ancestor of the
smaller group is a descendant of the most recent common
ancestor of the larger group, which needs not require
monophyly of either group. The consensus trees, pre-
sented in Figures 5, 6, 7 and 9 are also available (for
browsing and searching) through the java program TIQ
v1.0 (see above). The CcdB tree (Figure 8) is also available
through TIQ.

Origin of the TA systems
Very little objective data is available to shed light on the
origin of the TA systems. Considering the structural rela-
tive similarity (i.e., the criteria implemented in our soft-
ware TAQ V1.0, see Methods section) among known
systems, Gerdes [17] suggested that they all share a com-
mon ancestor. However, the evolutionary relationships
and functional (dis)similarities among TA families are
unclear. For example, the similarities between, on one
hand, toxin sequences from the RelE family and, on the
other hand, those from the ParE family (see refs [8,31]
and analyses above) demonstrate that the two families are
homologous (i.e., they share a common ancestor). How-
ever, RelE and ParE proteins are thought to exert their
toxic activity on different targets: mRNA cleavage for RelE
and DNA gyrase for ParE [7]. Similarly, MazF and CcdB
proteins are thought to be homologous because they
share the same basic tertiary structure [31,32]. Finally,
Schmidt et al. [33] described an "hybrid" TA system, i.e.,
whose antidote sequence is similar to the MazE antitoxin,
whereas its toxin sequence is similar to RelE, providing a
putative evolutionary link between the RelE/ParE and
MazF/CcdB superfamilies.

Conversely, other scholars suggested that TA systems
evolved several times independently. For example, on the
basis of protein domains and "gene-neighborhood analy-
sis", Anantharaman and Aravind [18] proposed that RelE/
ParE, MazF/CcdB, Doc, and PIN form different TA super-
families that have been assembled more than once during
the evolution, from a limited pool of protein domains.

To test for the possible homology among TA super-
families, we run TAQ using PSI-BLAST criteria (e-value of
10.0 and PSI-BLAST threshold of 0.1, 10 iterations) more
permissive than in a classical TAQ run (see Methods).
Using ParE as input, we found 4ζ toxins from the ω -ε -ζ
system, as well as a sequence containing the PIN domain
(previously detected in some VapC toxins [18] of the
VapBC system [22]). This result suggests possible homol-
ogies among ParE/RelE, ζ, and VapC families, and the
Page 7 of 17
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rapid accumulation of new prokaryotic genome
sequences might bridge additional putative phylogenetic
gaps among TA families. Moreover, our first run of TAQ
with a VapC toxin as initial query retrieved some Phd anti-
toxins (see above).

We also input 303 sequences of putative toxins (139
referred as "toxins" and 164 referred as "unknown")
uncovered by TAQ V1.0 into RASTA-Bacteria [19]. When
RASTA-Bacteria gave more than one possible domain per
sequence, we only considered the domain with the high-
est score. Strikingly, seven of our putative poisons belong-

Adams consensus among tree generated through the two heuristics used here ("ancestral tree" and "supertree", see text for details) for the ParE familyFigure 5
Adams consensus among tree generated through the two heuristics used here ("ancestral tree" and "super-
tree", see text for details) for the ParE family. Blue and red lineages represent known and unknown TA systems, respec-
tively.
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ing to the RelE superfamily (Figure 5) were assigned non-
RelE domains (a Doc, PemK, CcdB, VapC, and PIN
domain for 3, 1, 1, 1, and 1 sequences, respectively) by
RASTA-Bacteria. Although these results exhibit low scores,
they might prove to be the first objective link, in terms of
homology, among TA superfamilies. In-vivo experiments,

identifying the nature of the domains by which these pro-
teins exert their putative toxicity, would probably shed
light on this exciting hypothesis (see below).

Adams consensus among tree generated through the two heuristics used here ("ancestral tree" and "supertree", see text for details) for the MazF familyFigure 6
Adams consensus among tree generated through the two heuristics used here ("ancestral tree" and "super-
tree", see text for details) for the MazF family. Blue and red lineages represent known and unknown TA systems, 
respectively.
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Conclusion
Figure 5 indicates that among the "in-silico inferred ParE
toxins", i.e., the new putative TA systems (red lineages)
identified by our search algorithm (Fig. 10) are widely dis-
tributed into the phylogenetic tree of the ParE family.
Conversely, the new putative TA systems uncovered here

for the MazF, Doc, and VapC families are more restricted
in their phylogenetic localization (Fig. 6, 7 and 9). How-
ever, for the MazF family, the new putative TA systems are
particularly ancient (hence, divergent) in the phylogeny
of the family, emphasizing the efficiency of our algorithm
for identifying new TA systems.

Adams consensus among tree generated through the two heuristics used here ("ancestral tree" and "supertree", see text for details) for the Doc familyFigure 7
Adams consensus among tree generated through the two heuristics used here ("ancestral tree" and "super-
tree", see text for details) for the Doc family. Blue and red lineages represent known and unknown TA systems, respec-
tively.
Page 10 of 17
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All analyses presented here include exclusively sequences
that met all similarity and structural constraints imple-
mented in TAQ V1.0, i.e., the "in-silico inferred toxin"
sequences. However, many additional hits meet the simi-
larity criterion but fail to meet either the size criterion or
the presence of a putative antidote ("bad toxins" or "with-
out-antidote putative toxins" sequences, respectively). It
would be particularly interesting to extend the phyloge-

netic analyses performed here to these additional
sequences, especially for those found in eukaryotic
genomes, to assess their likelihood to represent functional
or degenerated poison genes.

Putative toxins particularly divergent in the phylogenies
presented in figure 5, to 9, as well as those making the
possible link between different TA superfamilies (see

MrBayes tree of the ccdB familyFigure 8
MrBayes tree of the ccdB family. Blue and red lineages represent known and unknown TA systems, respectively.
Page 11 of 17
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above), must be tested in vivo to (i) authenticate their
toxic nature, (ii) identify their mode of action, and/or (iii)
possibly confirm their hybrid character (i.e., with the toxic
mode of action from family A, and the antitoxin structure
of family B). Finally, it would be worth investigating
which of the two proteases known to degrade antitoxins

are active against the antitoxins of the tested putative TA
systems.

Adams consensus among tree generated through the two heuristics used here ("ancestral tree" and "supertree", see text for details) for the VapC familyFigure 9
Adams consensus among tree generated through the two heuristics used here ("ancestral tree" and "super-
tree", see text for details) for the VapC family. Blue and red lineages represent known and unknown TA systems, 
respectively. Green lineages represent sequences annotated as "containing a PIN domain".
Page 12 of 17
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Methods
Search for TA homologs
Given the small size of and the very large divergence
among TA systems, we assumed that many might not be
annotated as such in the NCBI database. Hence, we devel-
oped an algorithm and implemented into a computer
program, TAQ V1.0, for the detection of putative TA sys-
tems (Figure 10a). The program starts with an input file
that contains one or more amino-acid poison sequence(s)
in FASTA format. The first sequence in the list is used for
a sequence similarity search against a local copy of the
"nr" public database (non-redundant protein sequence
database; see [34] for additional information). The local
alignment algorithm used is BLASTP V2.2.9 or PSI-BLAST
V2.2.9 (Position-Specific Iterated – BLAST). The latter is a
method that automatically combines statistically-signifi-
cant alignments produced by BLAST [35] into a position-
specific score matrix; the database is then searched using
this matrix [36,37]. PSI-BLAST was used with an e-value
threshold (E) of 0.1 (i.e., 0.1 expected random hit with the
same score, given the sizes of the query and database) and
4 iterations. All other parameters were set as default.

The next step of the algorithm consists into using struc-
tural parameters to check if BLAST hits are likely to belong
to TA systems. To this end, TAQ V1.0 uses the annotated
NCBI file (listing all hits) generated by BLAST to identify,
for each amino-acid sequence hit, the corresponding
genomic region and nucleotide sequence. Sequences are
then filtered according to the following successive criteria
(Figure 10a): (i) the length of the putative toxin (LpT) must
be 60aa <LpT < 150aa, a range encompassing the length
distribution of all known toxin genes plus 40 aa; (ii) an
additional ORF (putative antitoxin) of length 40aa <LpA <
150aa must be found (using the appropriate translation
table and the three phases) in the 410 bp interval down-
stream of the putative toxin ORF; (iii) the separation or
overlap between the putative antitoxin and putative toxin
ORFs (i.e., between the stop codon of the former and the
start codon of the latter) must be of maximum 30 bp.
Only the sequences meeting all the above conditions are
stored as "in-silico inferred toxins" (and the corresponding
antitoxins are stored in a separate database) for further
analyses. For each run, we assume that all sequences
retained are (i) TA systems (active or inactive), and (ii)
homologous (i.e., share a common ancestor). Every new
"in-silico inferred toxin" sequence is automatically fed as a
query into the TAQ V1.0 software until it converges (i.e.,
until no new sequence is found, Figure 10b). BLAST hits
that do not meet the size criterion are stored in a "bad
toxin" database, whereas BLAST hits that meet the size cri-
terion but cannot be associated to a putative antitoxin are
stored in a "without-antidote putative toxins" database. It is
indeed conceivable that real toxin genes can lose their

activity, hence, their associated antitoxin, during evolu-
tion.

In order to produce a single set of homologous sequences,
we performed one TAQ V1.0 search for each family of TA
systems starting with a single poison (the parE toxin from
the E. Coli RK2 plasmid for the relE/parE family, the MazF
toxin from the delivery vector pIEF16S for the mazF/kid/
ccdB family, the Doc toxin from the Enterobacteria phage
P1 for the Doc family, and the VapC toxin from Leptospira
interrogans [serovar Lai str. 56601] for the PIN domain
proteins). Since we did not find any CcdB sequence dur-
ing the search using the MazF toxin as query (despite that
CcdB and MazF are thought to belong to the same family),
we also run one search using CcdB from the F plasmid as
the starting sequence.

Alignment and phylogenetic analyses
Given the difficulties to analyze sequence matrices includ-
ing a large number of short and highly divergent
sequences, we used several criteria to separate them into
groups. First, we grouped all sequences found with the
same query. Large groups were sometimes very difficult to
align and were manually separated into sub-groups until
alignment became much less ambiguous. On the con-
trary, very small groups (< 6 sequences) were manually
combined with a larger group with which they aligned
best. Final alignment among aa sequences within each
group was generated with PROALIGN V0.4 (available at
[38]), a program implementing a method for multiple
sequence alignment that combines an HMM approach, a
progressive alignment algorithm, and a probabilistic evo-
lution model describing the character substitution process
[39]. This method allows the assignment of a posterior
probability to each aligned position at each node of the
guide tree and has been demonstrated to perform particu-
larly well in benchmarks comparing different approaches
[40]. Each alignment was used to produce a maximum
likelihood (ML) phylogeny (see below), and the most
likely ancestral (root) sequence (MLRS) was estimated
using software GASP [41], with mid-point rooting. MLRS
(one per alignment) were then themselves aligned using
PROALIGN and their ML phylogenetic relationships were
inferred (see below). The final tree was built by replacing
MLRS, on the tree among MLRS, by the corresponding ini-
tial trees (Figure 11a).

ML phylogeny inference was carried out with the Bayesian
approach [42] implemented in MRBAYES 3.1.2 [43,44]
with the "mixed protein model". The Markov chain Monte
Carlo search was run with 6 chains for 106 millions gener-
ations and an initial temperature of 0.1, with trees sam-
pled every 100 generations (the first 2,500 trees were
discarded as "burnin"). Hence, Bayesian posterior proba-
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(a) The algorithm implemented in the program TAQ V1.0 for the detection of putative TA systemsFigure 10
(a) The algorithm implemented in the program TAQ V1.0 for the detection of putative TA systems. See text for details. (b) 
Dynamic of solution finding by the TAQ V1.0 program. The central black dot stands for the initial input sequence, and the 
colored dots for the "good poisons". During the first BLAST (in blue) new poisons are discovered (blue dots) and used as que-
ries for new BLASTs (in red then in green). When the total solution space (dotted-line delimited) does not grow anymore, 
convergence is reached and the search stops.
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bilities were estimated as the majority-rule consensus tree
among the 7,500 last sampled trees.

As an alternative to the above-mentioned approach (per-
forming phylogenetic analysis among MLRS inferred from
sub-groups of sequences), we also applied the supertree
method [45,46]. To this end, we requested our program
TAQ V1.0 to output the query sequence(s) that generated
each hit. Different poison sequences were grouped when
they had been generated by the same query sequence. As

different queries can generate the same hit, the groups are
partially overlapping. As many of these groups are highly
redundant (some group are even fully included into oth-
ers), we reduced the number of groups using the follow-
ing rules. First, groups of less than 3 sequences are
discarded. Second, groups are sorted by decreasing size;
groups 2 to N are compared each with group 1 (the largest
group); any group sharing more than 2 sequences with
group 1 are discarded and group 1 is set aside; the proce-
dure is then iterated using the remaining groups. Once the
two last groups have been compared, we checked that all
toxin sequences in the initial list were included in the
union of all groups set aside. Note that for the MazF fam-
ily, the maximum allowed overlap between groups was
raised from 2 to 3. We then inferred the phylogenetic rela-
tionships among sequences (using MRBAYES 3.1.2 with
the "mixed protein model") within each of the N groups,
generating N trees that are partially overlapping in terms
of the included sequence. The overlapping trees were then
used as input for "supertree" inference (Fig. 11b) using
CLANN v 3.0.3d [47]. This program implements 5 differ-
ent methods of supertree reconstruction, of which only
the "Most Similar Supertree" approach allowed analysis of
the RelE and VapC datasets in practical computing time.
This hill-climbing heuristics consists into generating a
supertree topology Ti (i.e., containing all taxa as leaves) at
iteration i by performing a random branch swapping (fol-
lowing the SPR algorithm, [48]) on the topology Ti-1 gen-
erated at iteration i-1. Ti is accepted as a new starting
topology if its score (evaluated under an optimality crite-
rion described below) is better than that of tree Ti-1, other-
wise it is rejected and a new branch swapping is
performed on Ti-1. The score of a proposed supertree
topology is evaluated as follows. First a taxa distance
matrix is computed for each of the N source trees: the dis-
tance between a pair of taxa is the number of nodes that
separate them in the source tree. Second, each source tree
topology is compared to the proposed supertree topology:
for each comparison, the supertree topology is pruned of
all the taxa that are not present in the source tree and the
supertree distance matrix is computed. Third, the score of
the supertree topology relative to a given source tree is
computed as the absolute difference between the distance
matrix of the latter and that of the corresponding pruned
supertree. Finally, the full score of the proposed supertree
topology is computed as the normalized sum of all scores.
For each major toxin family (ParE, MazF, and Doc) we
performed 10 CLANN (v 3.0.3d) runs and kept all equally
best trees. For the VapC family, we performed 5 runs (each
using a starting trees generated using various heuristics
since CLANN did not manage to build a starting tree from
our set of trees) and kept all equally best trees.

(a) Schematic of the "ancestral sequence tree" method used for inferring the phylogeny among putative toxins sequences uncovered by TAQ V1.0Figure 11
(a) Schematic of the "ancestral sequence tree" method used 
for inferring the phylogeny among putative toxins sequences 
uncovered by TAQ V1.0. In this hypothetical example, the 
sequences are separated into 4 groups. Black edges repre-
sent the ML phylogenies within each of the 4 considered 
groups. The red dots stand for the inferred ancestral 
sequence of each group. The red edges define the phylogeny 
among the inferred ancestral sequences. (b) Schematic of the 
second heuristic ("super tree" approach) used for inferring 
the phylogeny among putative toxins sequences uncovered 
by TAQ V1.0. In this hypothetical example, the sequences 
are separated into 3 groups. The red, green, and blue trees 
represent the ML phylogenies within each of the 3 consid-
ered groups. These source trees are then used collectively 
for generating the best super tree, i.e., the tree including all 
sequences that is most compatible with all source trees (see 
Methods section for details).

A      B   C    E  G      H

A    B    C      D   E    H

 A     B    C      D   E     F    G    H    I

E   F   G    I

a.

b.
Page 15 of 17
(page number not for citation purposes)



BMC Microbiology 2008, 8:104 http://www.biomedcentral.com/1471-2180/8/104
Authors' contributions
MCM and CS conceived the study. JG wrote the programs
TAQ v1.0 and TIQ, and performed the phylogenetic anal-
yses. MCM and JG wrote the manuscript. All authors com-
mented on the draft manuscript and approved the final
manuscript.

Acknowledgements
This work was supported by grants from the 'Communauté Française de 
Belgique' (ARC 1164/20022770), the National Fund for Scientific Research Bel-
gium (FNRS), and the Université Libre de Bruxelles. JG is PhD candidate at the 
Fonds pour la formation à la Recherche dans l'Industrie et dans l'Agriculture 
(FRIA), Belgium. We thank Raphaël Helaers for assistance to JG in java pro-
gramming.

References
1. Ogura T, Hiraga S: Mini-F plasmid genes that couple host cell

division to plasmid proliferation.  Proc Natl Acad Sci USA 1983,
80(15):4784-4788.

2. Aizenman E, Engelberg-Kulka H, Glaser G: An Escherichia coli
chromosomal "addiction module" regulated by guanosine
[corrected] 3',5'-bispyrophosphate: a model for pro-
grammed bacterial cell death.  Proc Natl Acad Sci USA 1996,
93(12):6059-6063.

3. Brown JM, Shaw KJ: A novel family of Escherichia coli toxin-anti-
toxin gene pairs.  J Bacteriol 2003, 185(22):6600-6608.

4. Gotfredsen M, Gerdes K: The Escherichia coli relBE genes
belong to a new toxin-antitoxin gene family.  Mol Microbiol
1998, 29(4):1065-1076.

5. Gronlund H, Gerdes K: Toxin-antitoxin systems homologous
with relBE of Escherichia coli plasmid P307 are ubiquitous in
prokaryotes.  J Mol Biol 1999, 285(4):1401-1415.

6. Couturier M, Bahassi el M, Van Melderen L: Bacterial death by
DNA gyrase poisoning.  Trends Microbiol 1998, 6(7):269-275.

7. Gerdes K, Christensen SK, Lobner-Olesen A: Prokaryotic toxin-
antitoxin stress response loci.  Nat Rev Microbiol 2005,
3(5):371-382.

8. Pandey DP, Gerdes K: Toxin-antitoxin loci are highly abundant
in free-living but lost from host-associated prokaryotes.
Nucleic Acids Res 2005, 33(3):966-976.

9. Christensen SK, Mikkelsen M, Pedersen K, Gerdes K: RelE, a global
inhibitor of translation, is activated during nutritional stress.
Proc Natl Acad Sci USA 2001, 98(25):14328-14333.

10. Jensen RB, Gerdes K: Programmed cell death in bacteria: pro-
teic plasmid stabilization systems.  Mol Microbiol 1995,
17(2):205-210.

11. Salmon MA, Van Melderen L, Bernard P, Couturier M: The antidote
and autoregulatory functions of the F plasmid CcdA protein:
a genetic and biochemical survey.  Mol Gen Genet 1994,
244(5):530-538.

12. Smith AS, Rawlings DE: Autoregulation of the pTF-FC2 proteic
poison-antidote plasmid addiction system (pas) is essential
for plasmid stabilization.  J Bacteriol 1998, 180(20):5463-5465.

13. Bahassi EM, O'Dea MH, Allali N, Messens J, Gellert M, Couturier M:
Interactions of CcdB with DNA gyrase. Inactivation of Gyra,
poisoning of the gyrase-DNA complex, and the antidote
action of CcdA.  J Biol Chem 1999, 274(16):10936-10944.

14. Bernard P, Couturier M: Cell killing by the F plasmid CcdB pro-
tein involves poisoning of DNA-topoisomerase II complexes.
J Mol Biol 1992, 226(3):735-745.

15. Delphi Genetics   [http://www.delphigenetics.com]
16. Szpirer CY, Milinkovitch MC: Separate-component-stabilization

system for protein and DNA production without the use of
antibiotics.  Biotechniques 2005, 38(5):775-781.

17. Gerdes K: Toxin-antitoxin modules may regulate synthesis of
macromolecules during nutritional stress.  J Bacteriol 2000,
182(3):561-572.

18. Anantharaman V, Aravind L: New connections in the prokaryotic
toxin-antitoxin network: relationship with the eukaryotic
nonsense-mediated RNA decay system.  Genome Biol 2003,
4(12):R81.

19. Sevin EW, Barloy-Hubler F: RASTA-Bacteria: a web-based tool
for identifying toxin-antitoxin loci in prokaryotes.  Genome Biol
2007, 8(8):R155.

20. Roberts RC, Helinski DR: Definition of a minimal plasmid stabi-
lization system from the broad-host-range plasmid RK2.  J
Bacteriol 1992, 174(24):8119-8132.

21. Zhang XZ, Yan X, Cui ZL, Hong Q, Li SP: mazF, a novel counter-
selectable marker for unmarked chromosomal manipula-
tion in Bacillus subtilis.  Nucleic Acids Res 2006, 34(9):e71.

22. Pullinger GD, Lax AJ: A Salmonella dublin virulence plasmid
locus that affects bacterial growth under nutrient-limited
conditions.  Mol Microbiol 1992, 6(12):1631-1643.

23. Lehnherr H, Maguin E, Jafri S, Yarmolinsky MB: Plasmid addiction
genes of bacteriophage P1: doc, which causes cell death on
curing of prophage, and phd, which prevents host death
when prophage is retained.  J Mol Biol 1993, 233(3):414-428.

24. Kristoffersen P, Jensen GB, Gerdes K, Piskur J: Bacterial toxin-
antitoxin gene system as containment control in yeast cells.
Appl Environ Microbiol 2000, 66(12):5524-5526.

25. Yamamoto TA, Gerdes K, Tunnacliffe A: Bacterial toxin RelE
induces apoptosis in human cells.  FEBS Lett 2002,
519(1–3):191-194.

26. Brown NL, Stoyanov JV, Kidd SP, Hobman JL: The MerR family of
transcriptional regulators.  FEMS Microbiol Rev 2003,
27(2–3):145-163.

27. Schoenlein PV, Ely B: Characterization of strains containing
mutations in the contiguous flaF, flbT, or flbA-flaG transcrip-
tion unit and identification of a novel fla phenotype in Caulo-
bacter crescentus.  J Bacteriol 1989, 171(3):1554-1561.

28. Mangan EK, Malakooti J, Caballero A, Anderson P, Ely B, Gober JW:
FlbT couples flagellum assembly to gene expression in Cau-
lobacter crescentus.  J Bacteriol 1999, 181(19):6160-6170.

29. TiQ v1.0   [http://ueg.ulb.ac.be/tiq/]
30. Adams EN: N-trees as nestings: complexity, similarity, and

consensu.  Journal of Classification 1986, 3:299-317.
31. Hargreaves D, Santos-Sierra S, Giraldo R, Sabariegos-Jareno R, de la

Cueva-Mendez G, Boelens R, Diaz-Orejas R, Rafferty JB: Structural
and functional analysis of the kid toxin protein from E. coli
plasmid R1.  Structure 2002, 10(10):1425-1433.

32. Kamada K, Hanaoka F, Burley SK: Crystal structure of the MazE/
MazF complex: molecular bases of antidote-toxin recogni-
tion.  Mol Cell 2003, 11(4):875-884.

33. Schmidt O, Schuenemann VJ, Hand NJ, Silhavy TJ, Martin J, Lupas AN,
Djuranovic S: prlF and yhaV Encode a New Toxin-Antitoxin
System in Escherichia coli.  J Mol Biol 2007, 372(4):894-905.

34. National Center for Biotechnology Information (NCBI)
[http://www.ncbi.nlm.nih.gov/]

35. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local
alignment search tool.  J Mol Biol 1990, 215(3):403-410.

36. Altschul SF, Koonin EV: Iterated profile searches with PSI-
BLAST–a tool for discovery in protein databases.  Trends Bio-
chem Sci 1998, 23(11):444-447.

37. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lip-
man DJ: Gapped BLAST and PSI-BLAST: a new generation of
protein database search programs.  Nucleic Acids Res 1997,
25(17):3389-3402.

38. Unit of Evolutionary Genetics   [http://www.ulb.ac.be/sciences/
ueg]

39. Loytynoja A, Milinkovitch MC: A hidden Markov model for pro-
gressive multiple alignment.  Bioinformatics 2003,
19(12):1505-1513.

40. Gardner PP, Wilm A, Washietl S: A benchmark of multiple
sequence alignment programs upon structural RNAs.  Nucleic
Acids Res 2005, 33(8):2433-2439.

41. Edwards RJ, Shields DC: GASP: Gapped Ancestral Sequence
Prediction for proteins.  BMC Bioinformatics 2004, 5:123.

42. Huelsenbeck JP, Ronquist F, Nielsen R, Bollback JP: Bayesian infer-
ence of phylogeny and its impact on evolutionary biology.
Science 2001, 294(5550):2310-2314.

43. Huelsenbeck JP, Ronquist F: MRBAYES: Bayesian inference of
phylogenetic trees.  Bioinformatics 2001, 17(8):754-755.

44. Ronquist F, Huelsenbeck JP: MrBayes 3: Bayesian phylogenetic
inference under mixed models.  Bioinformatics 2003,
19(12):1572-1574.

45. Bininda-Emonds OR: The evolution of supertrees.  Trends Ecol
Evol 2004, 19(6):315-322.
Page 16 of 17
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6308648
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6308648
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8650219
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8650219
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8650219
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14594833
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14594833
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9767574
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9767574
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9917385
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9917385
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9717215
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9717215
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15864262
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15864262
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15718296
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15718296
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11717402
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11717402
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7494469
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7494469
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8078480
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8078480
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8078480
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9765582
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9765582
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9765582
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10196173
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10196173
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10196173
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1324324
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1324324
http://www.delphigenetics.com
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15945374
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15945374
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15945374
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10633087
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10633087
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14659018
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14659018
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14659018
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17678530
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17678530
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1459960
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1459960
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16714443
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1495391
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1495391
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1495391
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8411153
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8411153
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8411153
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11097943
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11097943
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12023043
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12023043
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12829265
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12829265
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2646286
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10498731
http://ueg.ulb.ac.be/tiq/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12377128
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12377128
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12718874
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12718874
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12718874
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17706670
http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2231712
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2231712
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9852764
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9852764
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9254694
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9254694
http://www.ulb.ac.be/sciences/ueg
http://www.ulb.ac.be/sciences/ueg
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12912831
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12912831
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15860779
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15860779
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15350199
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15350199
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11743192
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11743192
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11524383
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11524383
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12912839
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12912839
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16701277


BMC Microbiology 2008, 8:104 http://www.biomedcentral.com/1471-2180/8/104
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

46. Bininda-Emonds OR: Supertree construction in the genomic
age.  Methods Enzymol 2005, 395:745-757.

47. Creevey CJ, McInerney JO: Clann: investigating phylogenetic
information through supertree analyses.  Bioinformatics 2005,
21(3):390-392.

48. Swofford DL, Olsen GJ, Waddell PJ, Hillis DM: Phylogenetic infer-
ence.  In molecular systematics Edited by: Mable BK. Sinauer & Asso-
ciates, Sunderland, UK; 1996:407-514. 

49. Hayes F: A family of stability determinants in pathogenic bac-
teria.  J Bacteriol 1998, 180(23):6415-6418.
Page 17 of 17
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15865993
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15865993
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15374874
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15374874
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9829958
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9829958
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results and Discussion
	Ancestral sequences tree
	Supertree
	Consensus among methods
	Origin of the TA systems

	Conclusion
	Methods
	Search for TA homologs
	Alignment and phylogenetic analyses

	Authors' contributions
	Acknowledgements
	References

