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Abstract

Background: Little is known about bacterial transcriptional regulatory networks (TRNs). In
Escherichia coli, which is the organism with the largest wet-lab validated TRN, its set of interactions
involves only ~50% of the repertoire of transcription factors currently known, and ~25% of its
genes. Of those, only a small proportion describes the regulation of processes that are clinically
relevant, such as drug resistance mechanisms.

Results: We designed feed-forward (FF) and bi-fan (BF) motif predictors for E. coli using multi-layer
perceptron artificial neural networks (ANNs). The motif predictors were trained using a large
dataset of gene expression data; the collection of motifs was extracted from the E. coli TRN. Each
network motif was mapped to a vector of correlations which were computed using the gene
expression profile of the elements in the motif. Thus, by combining network structural information
with transcriptome data, FF and BF predictors were able to classify with a high precision of 83%
and 96%, respectively, and with a high recall of 86% and 97%, respectively. These results were found
when motifs were represented using different types of correlations together, i.e., Pearson,
Spearman, Kendall, and partial correlation. We then applied the best predictors to hypothesize new
regulations for 16 operons involved with multidrug resistance (MDR) efflux pumps, which are
considered as a major bacterial mechanism to fight antimicrobial agents. As a result, the motif
predictors assigned new transcription factors for these MDR proteins, turning them into high-
quality candidates to be experimentally tested.

Conclusion: The motif predictors presented herein can be used to identify novel regulatory
interactions by using microarray data. The presentation of an example motif to predictors will make
them categorize whether or not the example motif is a BF, or whether or not it is an FF. This
approach is useful to find new "pieces” of the TRN, when inspecting the regulation of a small set of
operons. Furthermore, it shows that correlations of expression data can be used to discriminate
between elements that are arranged in structural motifs and those in random sets of transcripts.
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Background

Unraveling transcriptional regulatory systems is a key step
in understanding the regulation of bacterial biological
processes, as a whole. In bacteria, transcription factors
(TFs) dictate regulation in a great extent because they are
directly involved in environmentally-triggered internal
and external signals. This is well illustrated by the fact that
3/4 of the transcription factors (TFs) in E. coli have been
described as exogenous signal sensing [1]; i.e., they are
promptly activated/repressed by changes in extracellular
conditions. Nevertheless, our present knowledge of the E.
coli TRN is limited, as only half of the regulators currently
known, and only a quarter of the total number of genes,
are included in the TRN [2]. Therefore, the use of compu-
tational methods can help revealing additional TRNs and
contribute to a better understanding of bacterial systems
behavior.

As a consequence, several network inference techniques
have been introduced to predict regulatory interactions.
Initially, motif discovery algorithms and comparative
genomic approaches have been widely applied to the pre-
diction of regulatory interactions by identifying binding
sites in DNA sequences. Lately, with the increasing use of
high-throughput processes for obtaining gene expression
data, protein levels, and DNA-protein interactions, net-
work inference techniques started to make use of these
data. Identification of causal or dependence relationships
in source data rely mostly on static/dynamic Bayesian net-
works [3-6], graphical Gaussian models [7-9], and rele-
vance networks [10-12].

In general, these graphical models are used to learn causal
relationships among genes or proteins, depending on the
data available. The results of the analysis is a (un)directed
network, in which the links represent regulatory interac-
tions among the entities of the network. Usually, these
methods do not use the available information of the
organism's TRN as a prior input for the inference proce-
dure. Instead, these methods recover a whole network
from scratch, based only on data.

We propose a different view to tackle the problem of infer-
ring regulatory interactions from high-throughput data,
which uses pattern identification rather than causal anal-
ysis. Over the years, high-quality regulatory interaction
data has been collected for E. coli. By using a pattern iden-
tification technique, this accumulated knowledge can be
easily encoded as learning examples, and then a trained
model can infer new hypotheses.

As previous studies have shown [13], E. coli's TRN is made
up of building blocks known as structural network motifs.
Network motifs are clusters of transcription factors and
target genes that are linked together in a specific pattern
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that not appear in random networks. In E. coli, the FF and
BF arrangement patterns were identified to be these dis-
crete units. These blocks of the network reveal the mecha-
nisms of regulation employed by the bacterium. In the FF,
a global TF X regulates a function-specific TF Y, and both
cooperatively regulate an operon. In the BF, TFs X and Y
regulate a pair of operons involved in the same biological
process. Also, several motifs bundle together and distrib-
ute in functional modules that were found to control sev-
eral cellular processes [2,14].

We present herein a novel approach for inferring regula-
tory interactions from transcriptome data tailored for E.
coli. The method uses the information encoded in the E.
coli's TRN in the form of motifs, and benefits from the fact
that experimentally validated E. coli's network is larger
than other organisms' TRNSs. In this study we show that in
the TRN, FF and BF motifs exhibit a joint-expression pat-
tern that differs from a random collection of regulators
and targets.

Having this in mind, we designed ANNSs classifiers to infer
network motifs in E. coli. Those ANNs use the information
learned from the collection of FF and BF motifs that
appeared in the TRN, as well as from gene expression data,
to suggest new motifs. Thus, as FF and BF predictors, these
ANNs could be applied for inferring novel regulatory
interactions in transcriptome data.

We applied FF and BF predictors to study the regulation of
operons that participate in efflux transport systems related
to multidrug resistance (MDR) in E. coli. Lately, clinically
relevant strains of human pathogens exhibiting an MDR
phenotype have been identified, including S. aureus, P.
aeruginosa, and E. coli [15]. To expel toxic molecules out of
its outer membrane, these strains switch on their MDRs
pumps. This mechanism may also be responsible for turn-
ing these strains resistant to antibiotics. Despite their
potential role in turning bacteria resistant to antibiotics,
which is a major health problem, little is known about
these transport systems. Only 14 (~12%) of E. coli TFs
have been described to modulate MDR pumps, which is a
tiny proportion of the TRN [16]. In addition, recent
microarray studies [17-25] that analyzed E. coli K-12
grown under anaerobic, aerobic, alkaline, or acid condi-
tions have shown that expression of several MDR pumps
depends on a given stress conditions.

We built an expression dataset consisting of 58 Affymetrix
chips that contained 95.36% of the bacteria genome and
which hybridized with RNA samples from bacteria grown
in different stress conditions, such as aerobic knock-out,
anaerobic knock-out, and pH changes. Then, motif pre-
dictors were applied to investigate the transcriptional con-
trol of 16 operons that coded for key transport proteins in
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MDR pumps. This approach was useful to predict novel
TFs that regulate the expression of drug transporters oper-
ons and which are involved in responding to those stress
conditions.

Results and Discussion

The design of the ANNs as motif predictors comprised
building the learning dataset, and training the networks
and model assessment, as detailed below.

Assembling the Learning Dataset

The learning dataset is the set of examples that is used by
the ANNs to adjust the weight for the classification task.
Our learning dataset was built with two classes: true
motifs examples that were extracted exclusively from the
E. coli TRN available at RegulonDB version 5.0 [26], and
non-motif samples.

Feature vectors were built in three steps. First, we applied
Mfinder [27] to find the motifs (Figure 1A). Mfinder iden-
tifies interconnecting patterns between nodes (i.e., TFs
and operons) that are more frequent than in random net-
works. Mfinder identified 199 instances of the FF motif
and 926 instances of the BF motif in the TRN. These sets
of motifs were labelled as the true motif class (TM).

Next, the examples for the non-motif class were generated
(NM). For each true motif extracted, a non-motif example
was generated by replacing one or more targets of the true
motif, randomly chosen among the rest of the operons
(Figure 1B). Thus, to create a non-BF motif we could
change either the first, or the second, or both targets of the
original sample. For instance, consider the BF motif with
Crp and Fnr as common activators of acnA and hlyE. We
can modify the targets of these regulators to say, mtr and
zwf because it is known that they do not control these
operons. Having this in mind, we assembled a balanced
learning dataset with 50% of samples from each class.

The final step involved computing the correlations, and
assembling the feature vectors. The expression data was
used to compute different types of pairwise correlations,
as well as partial correlations, for all operons and TFs in
the microarray dataset. These correlation values were later
used to assemble the feature vectors. Thus, the correlation
values between profiles of motif and non-motifs elements
mapped to feature vectors. The example in Figure 1C dem-
onstrates how the 1, 2, 3, and 4 BF motifs, as well as the
BF motifs 1, 2, 5, and 6 are represented as feature vectors
(see legend of Figure 1C for a detailed description). We
assembled six different feature vectors: Pearson correla-
tion only (p), Spearman correlation (s), Kendall correla-
tion (k), partial correlation (pc), Spearman/Kendall/
Pearson (skp), and a sixth type containing all previous
measures (all). Next, principal component analysis (PCA)
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was applied in order to reduce the dimensionality of the
feature vectors and to optimize the classification task.

Training ANNs

Using these learning datasets, we trained two types of neu-
ral networks, one for predicting FF motifs and one for pre-
dicting BF motifs. We trained the predictors using the six
feature vectors designs (p, s, k, pc, skp, and all) mentioned
earlier in the Assembling Learning Dataset section. All
ANN’s had the same architecture that included the follow-
ing: (i) an input layer with a size that depended on the fea-
ture vector size after PCA, (ii) a 3-neurons hidden layer,
and (iii) an output layer with a single classification neu-
ron (Figure 1D). The over-fitting was avoided using one
partition of the data as the validation dataset.

Validating and Assessing ANNs Performance

The FF and BF predictors were trained and evaluated using
a 10 x 10-fold cross-validation, which is a widely adopted
approach to evaluate classification algorithms.

This approach consists in splitting the learning dataset in
10 folds of equal size (last fold may have a slight different
size). Then, eight folds are used for training (adjusting the
weights of the ANN), one fold is used for validation and
one fold is used for testing. The validation fold is useful
for preventing over-fitting. The testing fold is used to com-
pute the classification statistics, i.e. error, precision, recall
(sensitivity) and f-measure (see Methods for definitions).
In each cross-validation, all different possibilities of folds
for training, testing and validation are chosen. The classi-
fication statistics for each cross-validation round are taken
as the mean of the 10 possible iterations. These results are
shown in Figure 2 (see Additional file 1 for the complete
data on classification measures for each cross-validation,
including confidence intervals). As shown in Figure 2, for
the FF ANNss that use only one type of correlation (FFp,
FFs, FFk, FFpc), the error rates were similar and around
30%, whereas recalls were nearly 70%. Using hybrid fea-
ture vectors, the classification results improved substan-
tially. FFskp and FFall correctly identified 83% of the
samples classified as FF motifs (high precision or positive
prediction value) and achieved a high sensitivity (recall)
of 83% and 86%, respectively. This indicates that hybrid
network models had a low number of both false positives
and false negatives. The same was observed for BF ANNSs.
Error and recall rates for single correlation feature vectors,
BFp, BFs, BFk and BFpc, were approximately 30% and
80%, respectively. For the mixed correlation networks,
BFskp and BFall, the precision also increased to 88% and
96%, respectively, and the recall to 90% and 97%, respec-
tively. Figure 3 depicts the histograms for the output neu-
ron (class neuron) for each network configuration. The
neural network assigned to each sample in the training
dataset a real value between -1 (motif) and +1 (non-
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Steps on designing the artificial neural networks as motif predictors. (A) Feed-forward and bi-fans instances were
extracted from the E. coli regulatory network. Square nodes correspond to TFs, and circles to their targets that are either
operons or isolated genes. (B) Generic examples of true FF/BF motifs and their counterparts. Non-motif samples were gener-
ated by modifying one or more targets of the real motif example, as exemplified in the highlighted orange nodes. (C) Proce-
dures for assembling the feature vectors. Here, there is an example of how the BF motifs /, 2, 3, 4 and BF motifs I, 2, 5, 6
(illustrated in (B)) are encoded as vectors of correlations. These vectors store the correlations among transcript profiles of
motif elements, for all possible pairwise combinations. The k(x, y), s(X, y) and p(x, y), are the Kendall, Spearman and Pearson
correlation between x and y, respectively. Also, pc(x, ¥, z) and pc(X, ¥, Z, t) correspond to the Istand 2" order Pearson partial
correlation. Therefore, k(1, 2) is the Kendall correlation between the expression profile of TFI and TF2, k(1,3) is the correla-
tion between TF | and its target 3 (an operon or a gene). (D) Learning dataset and the neural network topology used in the
study.

motif). In this study, configurations using hybrid vectors
were able to better separate the two classes because the
values were clustered around -1 and 1.

Regulation of E. coli Multidrug Resistance Pumps

The emergence of pathogenic bacterial strains that are
resistant to available antimicrobial agents is a major issue
in public health. Bacteria strains acquire antibiotic resist-

ance through mutation and selection (vertical evolution),
or through exchanging of genetic material (horizontal
evolution).

To be protected from the action of drugs, bacteria recruit
several efflux pumps that may or may not be specific for a
single substrate. These pumps are frequently associated
with multidrug resistance (also known as MDR pumps).
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Classification results of the feed-forward (FF) and bi-fan (BF) neural network predictors. Error, precision, recall
and f-measure rates were measured for the six different feature vector types, namely Pearson (p), Spearman (s), Kendall (k),
partial correlation (pc), Spearman/Kendall/Pearson (skp), and another type containing all previous measures (all). Hybrid mod-
els (skp and all) outperformed configurations using only one type of correlation (see analysis in the text). All rates represent
the average value over the 100 iterations of the 10 x [0-fold cross-validation procedure.

In prokaryotes, five types of MDR pumps [28,29] have
been identified. These are (i) the major facilitator super-
family (MSF), (ii) the ATP-binding cassette superfamily
(ABC superfamily), (iii) the small multidrug resistance
family (SMR family), (iv) the resistance-nodulation-cell
division superfamily (NDR superfamily), and (v) the
multidrug and toxic compound extrusion family (MATE)
(Table 1). A great interest in how these pumps are regu-
lated has generated substantial research on the regulatory
pathways that govern the expression of MDR genes, result-
ing in the elucidation of transcriptional regulation at both
local and global levels. Most efflux pumps known to be
under regulatory controls belong to either the MFS or to
the RND superfamilies [30] (Table 1). Both families
employ the proton- (or sodium-) motive force to energize
drug efflux and to trigger regulatory controls. These regu-
latory controls act by preventing an excessive production
of nonspecific cation transport, and by preventing lost of
membrane H+ potential, and even cell death. Unlike the
MFS and the RND superfamilies, some drug pumps,

including the SMR superfamily, do not have their synthe-
sis controlled at the transcriptional level (Table 1).

Interestingly, there is increasing evidence that besides con-
ferring resistance to drugs, MDR pumps also play other
physiological roles that are required for bacteria survival
in their ecological niche [29,31]. In addition, recent stud-
ies using microarray have shown that E. coli K-12 that are
grown under either anaerobic, aerobic, alkanine, or acid
conditions express several MDR pumps [17,20,23]. Under
oxygen limitations and acid conditions, the expression of
the mdtEF multidrug resistance efflux increases. When pH
increases to a basic condition, the expression of a different
pump, namely the acridine efflux pump (acrAB),
increases. These findings indicate their physiological roles
in bacteria survival in natural ecosystems.

So far, only 14 (~12%) of E. coli TFs have been described
as modulators of MDR pumps, which correspond to a very
small proportion of the TRNs. Therefore, a better knowl-
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Output histograms of the feed-forward (FF) and bi-fan (BF) neural network predictors. Histogram for each type of
feature vector, and the output of the classification neuron falls in the range [-1, I]. The closer to -1, the higher the chances to
be distinguished as a motif pattern. ANN classifiers were able to better discriminate whether motif samples were represented
using hybrid correlation measures, as shown in BFall, BFskp, FFall and FFskp configurations.

edge about drug transporters and their regulatory net-
works, along with structural analysis of prominent
regulatory proteins, is required for developing drug pump
inhibitors. Such pump inhibitors would be helpful to
restore bacteria sensitivity to a specific drug or to reduce
bacteria ability to colonize and survive in their host.

Investigating MDR Efflux Pumps Regulation

After validation in the learning dataset, we applied the
best ANN motif predictors to investigate E. coli MDR
efflux pumps, with the purpose to find new regulators for
proteins involved in these transportation systems in bac-
teria. To generate the set of testing motif candidates, we
first enumerated a target listing of 16 operons (23 genes),
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Table I: Efflux pumps promoting resistance to drugs described in E. coli*.

(Super)Family  Efflux Components Regulator(s)

Substrates

RND AcrA, AcrB, TolC

AcrR, CRP, Fis, IHF, MarA, MarR, PhoP, Rob, SoxS, SdiA

AC, BL, BS, CM, CV, EB, FA, FQ, ML, NO, OS, RF, SDS, TX

AcrA, AcrD, TolC BaeSR, EvgAS AG, DC, FU, NO
AcrE, AcrF, TolC AcrS, Fnr, ArcA AC, BS, FQ, SDS, TX
MdtA, MdtBC, TolC BaeSR DC, NO
YhiU/MdtE, YhiV/MdtF, TolC  EvgAS, Ydeo CV, DC, NO, Sbs

MFS EmrA, EmrB, TolC EmrR CCC, NA, TCS, TLM
EmrK, EmrY, TolC Fnr, EvgAS, ArcA CM, TC, SC
MdfA/Cmr ? AG, CM, EB, EM, FQ, TC

ABC Yojl, TolC ? MCJ
MdIAB Rob ?
MsbA ? EB, EM
MacA, MacB, TolC ? EM

MATE YdhE/NorM ? AC, FQ, TPP

SMR EmrE ? AC, BK, CV, EB, EM, SF, TC, TPP

For each pump was assigned the family, the set of acting proteins, the set of known regulators, and the toxic compounds extruded from the cell.
* As provided in Kumar and Schweizer [16], UniProtKB/Swiss-Prot [47], Ecocyc Database [46] and RegulonDB [26]. Accessions date: Feb 2007.
AC, acriflavine; AG, aminoglycosides; AP, amplicillin; BL, beta-lactams; BS, bile salts; BK, benzalkonium; CB, carbenicillin; CCC, carbonyl cyanide
chlorophenylhydrazone; CH, cholate; CM, chloramphenicol; CO, coumestrol; CP, cephalosporins; CT, cefotaximine; CV, crystal violet; DC,
deoxycholate; EB, ethidium bromide; EM, erythromycin; FA, fatty acids; FQ, fluoroquinolones; FU, fusidic acid; HL, homoserine lactones; MC,
mitomycin; MCJ, microcin J25; ML, macrolides; NA, nalidixic acid; NO, novobiocin; OS, organic solvents; RD, rhodamine; RF, rifampicin; SC,
salicylate; SDS, sodium dodecyl sulfate; SF, sulfadiazine; TC, tetracycline; TCS, tetrachlorosalicylanilide; TLM, thiolactomycin; TM, trimethoprim;
TPP, tetraphenylphosphonium; TR, triclosan; TX, Triton X-100; ?, unknown or expressed constitutively.

corresponding to all operons coding for transporters and
accessory proteins as illustrated in Table 1: acrAB, acrD,
acrEF, baeRSmdtABCD, c¢cmr, emrABR, emrErenD, emrKY,
macA, macB, mdlAB, mdtEF, mdtK, msbA, tolC, and yojI. The
listing contains a comprehensive review of both well-
known and poorly characterized MDR proteins identified
so far in E. coli. Data was taken from the literature and
from organism databases. The next step in our process
involved creating motif candidates. For each target
operon, large sets of FF and BF candidates were generated
making use of the catalog of experimentally characterized
inducers and repressors in E. coli. This set of 136 TFs (133
operons) selected from the last version of the TRN has
been annotated according to their function and into sev-
eral categories, from a to g, to facilitates the subsequent
analysis of the interactions found by the ANNs (Figure 4,
Additional file 5). These categories describe which cellular
process(es) a particular regulator is/are controlling and
include local and global regulators of MDR efflux pumps
(14 instances). TFs directly related to pumping in general
(regardless of the type of substract), along with other TFs
promoting associated efflux pumps events (categories a to
e), account for 25% of the total; the remaining 75% are
regulatory proteins required to uptake transport and
metabolism. Additionally, TFs were annotated with
respect to a number of stress conditions, in which they
regulate the expression of their target(s) (Figure 5, Addi-
tional file 5). This search revealed that most regulators

showed expression dependence under anaerobiosis
(32.46%), acid (21.93%) and basic (10.50%) growth con-
ditions, while regulators able to function under aerobiosis
(6.14%) and neutral pH (5.26%) are less frequent.

FF candidates were generated by making all 2-combina-

133
tions from TFs: C 5 i.e.,, = 9-103 FF testing candidates
for each target operon. BF candidates were produced by all

2-combinations from TFs along with operons, except a

3
fixed one: C x15, i.e.,, = 130-103 BF candidates for

every target operon.

In the last step, we applied the ANN predictors FFall and
BFall to classify the motif hypotheses. Those are the pre-
dictors that outperformed other configurations in the
curated dataset and which were trained with hybrid fea-
ture vectors. Figure 6 gives an overview of the FFall results
and shows the proportion of candidates classified as true
FF motifs using a cutoff of -0.9 for the motif class. It was
observed that, for half of the operons, the motif class was
assigned to < 4% of the inspected candidates. Figure 7
shows the general functioning of BFall. The true positive
rates were < 3.07%, for all evaluated MDR operons. This
indicates that ANNs are discriminating only a small pro-
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Distribution of E. coli regulators evaluated in this
work according to cellular process they control. TFs
appearing in the TRN were annotated in the following cate-
gories: (a) local regulator of an MDR efflux pump(s), (b) glo-
bal regulator of an MDR efflux pump(s), (c) member of an
MDR efflux pump regulator family, (d) local or global regula-
tor of non-MDR efflux pumps, (e) regulator of proteins
related to efflux pumps or secretion, (f) regulator of an
uptake transport system, and (g) regulator of metabolism.
Bar labelled a-e represent the summed proportion of the cat-
egories (a) to (e) to the whole set of regulators, and are of
special interest in this work because they are associated with
efflux systems in bacteria.

portion of the candidates as a motif, which makes it feasi-
ble to be analyzed.

To assess the quality of the predictions, we annotated the
set of inferred regulatory interactions using the types of
evidence defined for the regulators (see Figure 4 for
description of evidences). Regulatory interactions were
annotated according to the five types of transcription reg-

@ Anaerobiosis

@ Aerobiosis

OAcid

OBasic

EGlobal

ENeutral (pH 7)

O Osmotic Stress

O Oxidative Stress

B Temperature Stress
EUnknown

21,93

Figure 5

E. coli regulators evaluated in this work grouped by
stress conditions in which they were described to be
modulating their targets. Evidences have been extracted
from a number of genome-wide profiling studies [17-25] and
databases [26, 46, 47].
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ulators, namely 4, b, ¢, d, and e (Additional file 5). The
type a transcription regulator was a local regulator of an
MDR efflux pump; type b was a global regulator of an
MDR efflux pump, type c was a member of an MDR family
of efflux pump regulators, type d was either a local or a
global regulator of non-MDR efflux pumps, and type e
was a regulator of proteins related to efflux pumps or
secretion. Figure 8 presents the profile of the transcrip-
tional interactions recovered by the FFall, for each MDR
operon. To construct the chart shown in Figure 8, we con-
sidered that any FF motif has two regulatory connections
(TF,;-target, TF,-target) whereas BF has four, (TF,-target,,
TF,-target,, TF,-target,, TF,-target,). Each slice in the charts
corresponds to the proportion of a given type of interac-
tions x, multiplied by a weighting factor 1/p(x), where p(x)
is the probability of taking a TF of type x in the set of all
TFs. This weighted proportion is necessary because the
number of examples varies between regulators types. For
instance, there are many more candidates involving regu-
lators of type f than regulators of type a. As depicted in the
charts, the inner donut shows the percentage for each
interaction type, whereas in the outer donut there is the
summed a to e and f to g percentages. The proportion of
inferred a-e interactions is larger in all cases, especially in
operons emrErendD (87%), and in baeRSmdtABCD (80%).
Interactions of types a to e are the most promising ones,
because they may represent a DNA-protein interaction
between regulator and target, since those a to e TFs already
have been related to regulation of efflux pumps in a direct
way. The same was observed about the relationships
inferred with BFall, where a to e slices were larger (Figure
9).

In general, this denotes that designed ANNs are preferably
selecting MDR regulators, which is biologically consistent.
Therefore, we believe that ANNs may infer very plausible
hypotheses to be further inspected. Also, there are a con-
siderable number of f to g interactions recovered by
ANN:s. Ideally, predictors should identify only a to e inter-
actions, because f to g regulators are not responsible for
immediately controlling transcription of MDR operons,
apparently. These suggest that such interactions between f
to g regulators with the MDR operons were identified
because they belong to the same regulatory network of a
given stress condition, and their expression profiles corre-
late likewise real motifs correlate. This also shows that
these correlations are far from being the precise represen-
tations of molecular binding and they are only an approx-
imate representation for quantifying testable interactions.

In-depth analysis of selected predictions

We selected some promising hypothesis for a more careful
analysis. We first analyzed the inferred BF motif MarA and
IscR regulating acrEB and mdIAB (classification =
0.99112), among the top ten predictions of acrEB. Cur-
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Figure 6
Proportion of samples categorized in the motif class (% TP), for each MDR operon, using FFall and a classifica-
tion threshold of -0.9.

rently it is known that upon reaching a high intracellular ~ [30]. The marbox is a 20 basepair (bp) asymmetric con-
level, MarA activates its own transcription and several  sensus sequence found in promoters of the E. coli marA/
other genes from the Mar regulon, including acrAB (actEB  soxS/rob regulon(s), where each of the three activators,
homolog), by binding to the marbox sequence in the pro- ~ MarA, SoxS and Rob binds as a monomer [32]. The mar-
moter region that is upstream of the RNA polymerase site  box degenerate consensus was recently updated to:
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Figure 7
Proportion of samples categorized in the motif class (% TP), for each MDR operon, using BFall and a classifica-
tion threshold of -0.9.
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emrABR
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Od) local or global regulator of non-MOR efflux pumps: Dinteractions {f}- (g}

DOi{e) regulater of proteins ralated 1o effiux pUmps o secration

Figure 8

Outline of the inferred regulatory interactions found employing the FFall predictor. There are seven types of reg-
ulatory interactions, according to the functional classification of the TF. Slice (a)-(e) in the outer donut chart (bold green) rep-
resents the set of relationships where a putative binding of the regulator to the promoter region of the operon exists. Refer to

text for more details.

A#GRGCACRWWNNRYYAAA=#GN (N = any base; R = A/
G, W =A/T; Y = C/T) [33]. Although AcrEF is homologous
to AcrAB, both efflux pumps can function in combination
with TolC and acrEF upregulation, which might compen-
sate for an acrAB deletion [34]. The acrEF operon has not
been identified yet as a member of the mar regulon and its
expression is known to be activated only by Fnr and
repressed by AcrS (EnvR) [35]. However, investigation of
the promoter of acrEF has revealed a sequence of AAG-
GCACATAAACACAAAAA that is in the backward orienta-
tion and which extends from position 142 to position

acrtEF baeRS mdtABCD

161, upstream of the first acrEF codon (class I promoter
[33]). This sequence matches the mar binding site consen-
sus in precisly 14 positions, as defined in the acrAB pro-
moter region (underlined), and in 15 out of the 17 most
important positions (in bold) according to the most
recent marbox consensus [32,33]. Thus, it seems that the
acrEF promoter region could be a false negative for the
marbox consensus sequence containing only two posi-
tions, that are inverted compared with marbox acrAB (in
italic), in disagreement with latest consensus [33]. As a
result, we suggest that the acrEF promoter region contains

emrABR emrE renD emrKY

B Evidence (a) 0 Evidenca (¢) MEvidence () M Evidence (g)
B Evidence (b) [ Evidence (d) B Evidence (f}

Figure 9

Outline of the inferred regulatory interactions found employing the BFall predictor. The color scheme is the same

as in the one in Figure 8.
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a putative mar/sox/rob activator binding site at -142 to -
161. As such, the feature predicted here, that MarA regu-
lates transcription of acrEF operon, is feasible for experi-
mental testing. This BF motif also predicts that the
regulation of mdIAB is MarA-dependent. The mdIA expres-
sion was shown to be enhanced by the MarA homolog
Rob, which binds to the mdIA marbox promoter DNA
[36]. As mentioned above, the highly overlapping marA/
soxS/rob regulon(s) contain promoters whose expression
can be activated by the homologous transcriptional acti-
vators MarA, SoxS and Rob. Beacuse mdIA is known to be
activated by Rob, its expression might also be marA-
dependent, but that remains to be shown. At last, IscR
(regulator 2) was identified by this hypothesis in combi-
nation with mdIA and acrEF. Presently, it is not known if
the IscR regulation of the transcription of these targets are
done directly or indirectly. In any way, IscR is a member
of the Mar/Sox/Rob family of transcriptional regulators
and therefore its effect on acrEF and mdIA can be tested in
vitro.

Other worth-mentioning case involves the cmr (or mdfA)
operon. The top 20 FF predictions (sorted by classification
results) identified EmrR as a regulator of c¢mr, which
belongs to the MarR family of transcriptional repressors.
EmrR negatively regulates the emrRAB operon by directly
binding to its regulatory region [37]. This binding is
antagonized by some EmrAB pump inducers (CCC, NA
and TCS, Table 1) that interact with EmrR and prevent it
from binding to this region [37,38]. Besides, there is evi-
dence showing that EmrR might play a regulatory role at
the transcriptional level of the expression of several E. coli
genes [39]. At this point, we suggest that under a given
condition of growth and without antibiotics that can
antagonize the EmrR function, this regulator acts as a
repressor of emrRAB and of potential target genes as well.
Interestingly, emrA shows basic and anaerobic or acid and
aerobic dependent expression [17], and thus provide pos-
sible evidence that under these conditions some metabo-
lites can act as emrAB inducers that antagonize its
repression by EmrR. Regarding the several hypotheses
associating emrR and mdfA expressions, we argue that
these associations might be representing a repression of
EmrR to its targets under acid conditions because the
MdfA function is at extreme alkaline pH growth. Both
EmrAB and MdfA pumps act as drug/proton antiporters;
also MdfA couples proton influx movement to antiport of
Na or K ions under extreme alkaline conditions [20]. For
example, in an acid/anaerobic growth condition, emrAB
can be turned off and this repression is mediated directly
by EmrR. In a similar condition (acid), this repressor acts
directly on the control of other functionally related
pumps, such as mdfA. We found several other FF high-
rated hypotheses and one BF motif that suggest this prop-
osition (see Additional files 2 and 3). Finally, the second

http://www.biomedcentral.com/1471-2180/8/101

regulators that were identified in these predictions could
regulate mdfA indirectly (positively or negatively),
because they have been previously described to have an
expression dependence (Additional file 5) on acid (note
that the regulator FadR is off when referring to a repressor
under a basic condition) neutral (IdnR), stress oxidative
(IscR), anaerobiosis (PdhR, Fnr, TorR), and osmotic stress
(KdpE).

Conclusion

ANNs presented here successfully recovered structural
motifs available in E. coli TRN, reaching high precision
and recall rates in this curated dataset. Therefore, the
novel TFs predicted to be regulating the expression of
MDR pumps proteins are likely candidates to be detected
through DNA-protein binding experiments. Enriching the
description of FF and BF motifs by using other depend-
ence measures between variables, as mutual information
[40,41], could be a future improvement to increase relia-
bility of the classifier. The Matlab source code and all
accompanying data are available for downloading at the
project website [42].

Methods

Assembling of the Expression Dataset

The microarray data comprises 58 E. coli Antisense
Genome Array chips from Affymetrix with RNA from bac-
teria grown under different experimental conditions such
as aerobic knock-out, anaerobic knock-out, changes of
global gene expression during an oxygen shift, and pH
changes, was retrieved under the accession code GPL199
from the GEO database [43]. Quantification of probesets
and normalization using MASS5 algorithm were per-
formed with the R Bioconductor software package [44].
Probesets annotation was done using the NetAffx tool
[45]. In the case of several probesets for the same gene, the
mean expression was assigned as the transcript quantity.
After computing gene expressions, the last step was to
group the genes in operons and compute the expression
level of the operon. Considering that an operon is a set of
genes that transcribe together, it was reasonable to con-
sider the mRNA levels of the operon as the mean expres-
sion of its constitutive genes. The final transcriptome
dataset encompasses 784 operons and 2324 individual
genes, summing up 4249 genes, or 95.36% of the genome
(see Additional file 4).

ANNs Implementation Details

The entire design of the ANN classifiers was done in Mat-
lab® 7.0, using the Neural Network Toolbox v. 4.0.2.
Building the learning datasets, including computing of
Pearson, Spearman, and Kendall correlations to assemble
feature vectors, as well as principal component analysis
(PCA), was done using functions of the Statistics Toolbox
v. 5.0. The multi-layer perceptron ANNs were designed to
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have an input layer, a hidden layer with 3 neurons, and an
output layer with the classification neuron. The adopted
activation function of the perceptrons was the tangent sig-
moid. Optimization of the weights was done using the
Levenberg-Marquardt algorithm implemented in Matlab
(trainlm function). The over-fitting was prevented by
using the early stopping criterion. Thus, in each cross-val-
idation, one partition of the data was set apart as valida-
tion dataset, and the training stopped when the error in
the validation dataset started to increase (defined as the
ability of the extrapolation of the network to get worse.
Pre-processing of data was performed to scale inputs in
therange [-1, 1]. The training parameters learning rate and
momentum, were empirically adjusted to 0.5 and 0.1,
through minimizing sum squared error (SSE). The size of
the the hidden layer was set to 3 based on empirical sim-
ulations. The performance of the classification was
assessed with the following measures: Error = FP/(TP +
FN), Precision = TP/(TP + FP), Recall (sensitivity) = TP/
(TP + FN) and F - measure = 2-(Precision-Recall)/
(Precision - Recall), where TP is a motif correctly classified,
FP is a non-motif classified in the opposite class, and FN
is a motif classified in the non-motif group.

Abbreviations

ABC: ATP-Binding Cassette; ANN(s): Artificial Neural Net-
work(s); BF: Bi-Fan; FF: Feed-Forward; TF(s): Transcrip-
tion Factor(s); TRN(s): Transcriptional Regulatory
Network(s); MATE: Multidrug and Toxic compound
Extrusion; MDR: Multidrug Resistance; MFS: Major Facili-
tator Superfamily; RND: Resistance-Nodulation-cell Divi-
sion; SMR: Small Multidrug Resistance; PCA: Principal
Component Analysis.
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Additional material

Additional file 1

Error, precision, recall, and f-measure rates for the ANN classifiers in
the learning dataset. Classification statistics were measured using a 10
x 10-fold cross-validation procedure for the six different feature vector
types available: Pearson (p), Spearman (s), Kendall (k), partial correla-
tion (pc), Spearman/Kendall/Pearson (skp), and the last type containing
all previous measures (all). Confidence intervals were estimated with o =
0.05 (probability = 95%).

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2180-8-101-S1.xls]

Additional file 2

Complete list of predicted FF motifs involving interactions of types (a)-(e),
which were classified by FFall using a threshold of -0.9.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2180-8-101-52 xls]

Additional file 3

Complete list of predicted BF motifs involving interactions of types (a)-
(e), which were classified by BFall using a threshold of -0.9.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2180-8-101-S3.xls]

Additional file 4

Microarray dataset used in this study (see Methods for detail on pre-
processing routines used to generate this data).

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2180-8-101-84.txt]

Additional file 5

Functional classification and stress condition-dependent regulatory
patterns for transcriptional regulators investigated in the study*. Each
E. coli regulator was annotated according to its functional characteristics
such as whether a gene or a controlling target operon, whether a global or
local level of transcription, and whether an activator, a repressor, or both.
* As found in expression studies [17-25] and E. coli databases
[26,46,47] (accessions date: Feb 2007).

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2180-8-101-S5.doc]
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