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Abstract

Background: Phospholipid biosynthesis commences with the acylation of glycerol-3-phosphate
(G3P) to form I|-acyl-G3P. This step is catalyzed by the PlsB protein in Escherichia coli. The gene
encoding this protein has not been identified, however, in the majority of bacterial genome
sequences, including that of Bacillus subtilis. Recently, a new two-step pathway catalyzed by PlsX and
PIsY proteins for the initiation of phospholipid formation in Streptococcus pneumoniae has been
reported.

Results: In B. subtilis, 271 genes have been reported to be indispensable, when inactivated singly,
for growth in LB medium. Among these, | | genes encode proteins with unknown functions. As part
of a genetic study to identify the functions of these genes, we show here that the B. subtilis ortholog
of S. pneumoniae PIsY, YneS, is required for G3P acyltransferase activity, together with PIsX. The
B. subtilis genome lacks plsB, and we show in vivo that the PIsX/Y pathway is indeed essential for
the growth of bacteria lacking plsB. Interestingly, in addition to plsB, E. coli possesses plsX and the
plsY ortholog, ygiH. We therefore explored the functional relationship between PlsB, PIsX and YgiH
in E. coli, and found that plsB is essential for E. coli growth, indicating that PIsB plays an important
role in |-acyl-G3P synthesis in E. coli. We also found, however, that the simultaneous inactivation
of plsX and ygiH was impossible, revealing important roles for PlsX and YgiH in E. coli growth.

Conclusion: Both plsX and yne$ are essential for |-acyl-G3P synthesis in B. subtilis, in agreement
with recent reports on their biochemical functions. In E. coli, PIsB plays a principal role in |-acyl-
G3P synthesis and is also essential for bacterial growth. PIsX and YgiH also, however, play
important roles in E. coli growth, possibly by regulating the intracellular concentration of acyl-ACP.
These proteins are therefore important targets for development of new antibacterial agents.

Background

Phospholipids are major components of the cell mem-
brane. Glycerol-3-phosphate (G3P) forms the backbone
of all phospholipid molecules [1]. Phospholipid biosyn-
thesis begins with two steps of G3P acylation, leading to
the formation of phosphatidic acid (PA). In bacteria, PA is
converted to CDP-diacylglycerol, the precursor of the

three major phospholipids, phosphatidylethanolamine
(PE), phosphatidylglycerol (PG), and cardiolipin (CA) [2]
(Figure 1). Earlier biochemical and genetic analyses dis-
closed that G3P and 1-acylglycerol-phosphate (1-acyl-
G3P) acyltransferase are encoded by the pisB and plsC
genes, respectively, in Escherichia coli [3-5]. Interestingly,
while plsC is universally conserved in eubacteria, plsB has
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been identified in only a limited number of species,
mainly belonging to the gamma proteobacterial group.
Another gene homologous to E. coli plsC, possibly encod-
ing G3P acyltransferase, plsD, has been cloned from the
Clostridium butyricum genome, based on its ability to com-
plement pisB defects in E. coli. However, the role of plsD in
C. butyricum cells is currently unclear [6].

E. coli PlsB utilizes acyl-ACP (Acyl Carrier Protein) and
acyl-CoA as acyl donors to synthesize 1-acyl-G3P [7].
Recently, Lu et al. [8,9] have reported a new two-step
pathway that utilizes a novel fatty acid intermediate for
the initiation of phospholipid formation in Streptococcus
pneumoniae. They demonstrated biochemically that PlsX
produced a unique activated fatty acid by catalyzing the
synthesis of fatty acyl-phosphate from acyl-ACP, and then
showed that PIsY transferred the fatty acid moiety from
acyl-phosphate (acyl-PO,) to G3P. The pisX gene is widely
conserved in eubacteria and it had been suggested that
this gene was involved in fatty acid and/or phospholipid
synthesis in E. coli, although the exact role of the gene
remained unknown [3]. In B. subtilis, PlsX is essential for
growth [10] and PlsX expression is controlled by FapR, a
protein that regulates fatty acid and phospholipid biosyn-
thesis genes [11]. Although the pisY gene, encoding a
membrane protein around 200 amino acids long, is also
widely conserved in eubacteria [8,9], the plsY gene func-
tion had been completely unknown.

In the gram-positive spore-forming bacterium, Bacillus sub-
tilis, we showed that 271 genes, including plsC (yhdO) and
plsX, when inactivated singly, were indispensable for
growth in LB medium [10]. Among these genes, 11
encoded proteins with unknown functions, and these pro-
teins are therefore targets for development of new antibac-
terial agents. As part of a genetic study to identify the
functions of these genes, here we show that the B. subtilis
ortholog of S. pneumoniae PlsY, YneS, is required for G3P
acyltransferase activity, together with PlsX. The B. subtilis
genome lacks plsB, and our results demonstrate in vivo
that the PIsX/Y pathway is essential for the growth of bac-
teria lacking plsB. Interestingly, in addition to pisB, E. coli
possesses plsX and the plsY ortholog, ygiH. Thus, we
explored the functional relationship between PlsB, PlsX
and YgiH in E. coli, and found that, although PIsB plays
the principal role in 1-acyl-G3P synthesis, PlsX and YgiH
are also important for optimal E. coli growth.

Results

Isolation of a B. subtilis yneS-ts mutant

To explore the functions of essential genes of unknown
function, we adopted a strategy to isolate temperature-
sensitive (ts) mutants of these genes and then to seek
extragenic suppressors of the ts genes. To generate a ts
mutation in yneS, we initially introduced a nonfunctional
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chloramphenicol-resistant gene (cat) downstream of yneS,
and transformed cells with the yneS-functional cat frag-
ment mutagenized by PCR in vitro. Chloramphenicol-
resistant transformants were selected at 30°C, and colo-
nies that were unable to grow above 42 °C were analyzed.
In this manner, we isolated a ts mutant of yneS (strain
MY103) that had a one-base substitution altering Val190
to Glu in the C-terminal cytoplasmic region of the pro-
tein.

Mapping of the suppressor mutation site in the yneS-ts
sup-| strain

Next, we isolated a spontaneous extragenic suppressor
mutant of the ts phenotype (strain MY105, yneS-ts sup-1,
Figure 2) by cultivation at the restrictive temperature.
Transformation of wild-type strain 168 cells with chromo-
somal DNA of MY105 led to the ts growth of more than
90% of chloramphenicol-resistant transformants, indicat-
ing that the sup-1 mutation was not linked to the yneS
gene. MY105 cells lost sporulation ability, and the Spo-
phenotype was maintained in MY107 cells (Pspac:yneS
sup-1) in which the yneS-ts gene was replaced with wild-
type yneS under control of the IPTG-dependent Pspac pro-
moter. A DNA fragment (ca. 8 kb) that complemented the
Spo- phenotype of MY107 in trans was isolated from a B.
subtilis genomic DNA library in which an Mbol partial
digest was ligated with the phage vector, ¢CM, as
described previously [12]. The 8 kb fragment was cut into
2.5 kb and 5 kb fragments. The 5 kb fragment with the cat
gene of the phage vector was cloned into pBR322, while
the 2.5 kb fragment was ligated into pCA191 containing
the cat gene [13]. MY107 cells were transformed with
these plasmids for integration into the chromosome via
single crossovers. The results indicated that the 5 kb frag-
ment allowed recovery of the ability to sporulate, while
the 2.5 kb fragment did not. Sequencing of the 5 kb frag-
ment revealed three genes. These were the 3'-terminal
region of glpF, encoding the glycerol uptake facilitator,
and full-length glpK and glpD, encoding glycerol kinase
and glycerol-3-phosphate dehydrogenase, respectively.
Because gIpF and gIpK constitute an operon, and because
the cloned 8 kb fragment did not contain the promoter
sequence [14], glpK was possibly not expressed from the
fragment cloned in $CM. The glpD promoter between glpK
and glpD has, however, been identified [15]. These results
suggested that the mutation(s) responsible for the Spo-
phenotype mapped in the glpD gene. To confirm this the-
ory, full-length wild type glpD (in pCA191glpD-FL), the 5'-
terminal half of the gene (in pCA191glpD-N), and the 3'-
terminal half (in pCA191glpD-C), were separately cloned
into pCA191. The resulting constructs were integrated
into the MY107 chromosome by single crossovers and the
sporulation abilities of transformants were examined. The
5'-terminal region of glpD, and the full-length gene, con-
veyed the ability to sporulate, but the 3'-terminal glpD
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Phospholipid synthesis pathway in B. subtilis. Abbreviations: GpsA, NAD(P)H-dependent glycerol-3-phosphate dehydro-
genase; GIpD, glycerol-3-phosphate dehydrogenase; GIpT, glycerol-3-phosphate permease; GlpF, glycerol uptake facilitator
protein; GlpK, glycerol kinase; PIsC, |-acylglycerol-3-phosphate O-acyltransferase; CdsA, phosphatidate cytidylyltransferase.

region did not. Sequencing of the 1.2 kb 5'-terminal half
of glpD in MY103 (yneS-ts) revealed a single base (G)
insertion between nucleotides C 492 and G 493, which
resulted in inactivation of the gene. This result was con-
sistent with the previous finding that glpD inactivation
impairs sporulation ability [16].

We further confirmed that glpD inactivation suppressed
the yneS-ts phenotype by insertion of a plasmid, pMu-
tinNC [17], carrying an internal segment of the glpD gene,
into the glpD gene of yneS-ts cells (strain MY109, yneS-ts,
AglpD::pMutin NC, Figure 2).

Increases in intracellular G3P concentration suppress the

yneS-ts phenotype

The intracellular G3P concentration is known to be ele-
vated in glpD mutants [16]. We speculated that increases
in the G3P level might suppress the yneS-ts phenotype.
Indeed, we found that supplementation of the growth

medium (LB) with 0.1% (w/v) G3P, or glycerol, comple-
mented the yneS-ts phenotype (Figure 2). Growth of
MY105 (yneS-ts sup-1) and MY109 (yneS-ts, AglpD::pMu-
tinNC) cells was impaired compared to glpD+ cells (wild
type and yneS-ts cells), when glycerol or G3P was supple-
mented in the growth medium. This phenotype was also
observed in MY108 (AglpD::pMutinNC) cells (data not
shown). Given that accumulation of G3P is known to
result in abnormal septation and inhibition of sporula-
tion [18,19], an increase in the intracellular concentration
of G3P would explain the growth impairment of cells
without glpD. It should be noted that G3P and glycerol
did not complement the growth defect resulting from
YneS depletion in the IPTG-dependent yneS mutant cells,
strain YNESp [10] (data not shown). The YneS-ts mutant
protein will retain a reduced activity at high temperature,
although the activity is insufficient to support cell growth.
Residual activity would be enhanced by increases in the
intracellular concentrations of G3P or glycerol.
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Growth properties of B. subtilis yneS-ts and suppressor mutants. B. subtilis wild-type (168), yneS-ts (strain MY 103), yneS-
ts sup-1 (strain MY105), and yneS-ts AglpD::pMutinNC (strain MY 109) cells were grown in LB, LB with 0.1% (v/v) glycerol, and

LB with 0.1% (w/v) glycerol-3-phosphate, at 30°C and 45°C.

Phospholipid synthesis in B. subtilis plsC-ts, yneS-ts, and
IPTG-dependent plsX mutants, under restrictive
conditions

G3P is a substrate for G3P acyltransferase, and inhibition
of G3P acyltransferase activity as a result of simultaneous
mutations in plsB and plsX in E. coli led to G3P auxotrophy
[3]. Accordingly, we examined the involvement of YneS in
1-acyl-G3P synthesis by analyzing phospholipid synthesis
in yneS-ts cells at the restrictive temperature. We addition-
ally constructed mutations in genes possibly involved in
phospholipid synthesis. These included a ts mutation in
plsC, in which 7 C-terminal residues were deleted (strain
MY112), and an IPTG-dependent plsX mutation in strain
MY111.

To determine phospholipid biosynthesis rates, B. subtilis
cells were pulse-labeled with 32 [Pi] for 5 min. Phospholi-

pids were extracted using the method of Bligh and Dyer
[20], and separated by two-dimensional thin layer chro-
matography [5]. We detected PA, PG, PE, and CL in wild-
type cells growing at either 30°C or 42°C (Figure 3A).
When plsC-ts cells were labeled at 30°C, a pattern similar
to that of wild-type cells was obtained. At the restrictive
temperature, however, 1-acyl-G3P accumulation was
observed, and phospholipid synthesis did not take place
(Figure 3B). This is consistent with the known 1-acyl-G3P
acyltransferase activity of PIsC. In contract, no phospholi-
pids were detectable in yneS-ts cells following a shift to the
restrictive temperature (Figure 3C). Our data indicate that
YneS inactivation results in blockage of the first step in
phospholipid synthesis in B. subtilis cells. Furthermore,
PlsX depletion in IPTG-dependent mutant cells induces a
similar change in phospholipid composition (Figure 3D).
The results are consistent with the two-step mechanism of
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1-acyl-G3P synthesis reported by Lu et al. [8], and show
that the PlsX/Y pathway is essential for growth of B. subtilis
lacking pisB.

Functional relationship between plsB, plsX and yneS/
ygiH in E. coli

It is generally believed that E. coli plsB is essential for bac-
terial growth, although experimental evidence supporting
this hypothesis has yet to be obtained, and transposon
mutagenesis experiments suggested that plsX is dispensa-
ble in E. coli [21]. The ortholog of S. pneumoniae plsY and
B. subtilis yneS in E. coli, ygiH, is yet another dispensable
gene [21]. Accordingly, we determined the functional rela-
tionship between pisB, plsX, and ygiH, in E. coli.

We initially attempted to systematically inactivate E. coli
genes either singly or in combination. For this purpose,
we replaced the plsX and ygiH genes with a kanamycin-
resistance gene (kan) using the method of Datsenko and
Wanner [22]. Inactivation of pisB was performed in the
presence of plasmid-borne pisB. Phage P1 transduction
frequencies of each allele into cells of various genetic
backgrounds were measured to avoid possible effects of
secondary mutations arising during gene inactivation (the
kan cassette was removed, using FLP recombinase, in
recipient cells for P1 transduction). The results, summa-
rized in Table 1, show that plsB is essential for E. coli
growth, while single deletions of either plsX or ygiH do not
affect cell growth. These results suggested that PlsB plays a
principal role in G3P acyltransferase activity in E. coli.
Additionally, to examine whether plsB function might be
complemented by overexpression of other genes, we
introduced derivatives of plasmid pSTV28 or pSTV29 (12~
15 copies per cell) harboring E. coli plsX and ygiH, and B.
subtilis plsX and yneS into recipient strains for P1 transduc-
tion, without restoration of plsB function. Unexpectedly,
although single deletions of plsX or ygiH did not affect cell
growth, we found that the simultaneous inactivation of
plsX and ygiH was impossible (Table 2), indicating that
plsX and ygiH also have important roles in E. coli growth.
Next, we expressed B. subtilis plsX and yneS genes in E. coli,
and also the corresponding E. coli genes (as controls). The
lethal phenotype of the plsX and ygiH double deletion was
suppressed by B. subtilis plsX or yneS, indicating that these
genes were able to complement the plsX and ygiH E. coli
gene activities. In addition, a plsX and ygiH double dele-
tion was possible when plsB was overexpressed from
pSTV29pisB. To obtain further insights into the functional
relationships between plsB, plsX and ygiH, we next intro-
duced a plasmid harboring a mutated plsB gene (plsB26)
into E. coli, and then attempted to inactivate plsB, plsX or
ygiH (Table 3). The plsB26 gene has a point mutation that
changes Gly1045 to Ala, reducing the affinity of PlsB26
for G3P [23]. In the presence of plasmid-borne plsB26,
genomic plsB could be inactivated, indicating that PlsB26
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protein expressed from the plasmid-borne gene could
support E. coli growth. The plasmid-borne gene could not,
however, complement the lethality of the plsX and ygiH
double deletion. Furthermore, while native plsB could be
inactivated in the presence of pSVT29pisB26 in cells lack-
ing functional ygiH, plsB inactivation became impossible
in cells with inactivated plsX, indicating that PlsX activity
becomes indispensable for the growth of cells when the
plsB activity is supplied by a plasmid copy of plsB26.

The essential nature of plsB, and the lethality of the plsX
and ygiH double deletion, were further confirmed using
inducible forms of these genes. To this end, we placed the
coding sequences of plsB, plsX and ygiH under the control
of an IAA (3p-indoleacrylic acid)-inducible trp promoter
(Pw), integrated the genes into the chromosome as
described in Methods, and then deleted the native copies
of either plsB alone, or both plsX and ygiH. As expected,
strains MEC201 (Pw-plsB, AplsB), MEC306 (Pw-plsX,
AplsX, AygiH) and MEC307 (Pw-ygiH, AplsX, AygiH) cells
displayed IAA-dependent growth (Figure 4A and 4B).

The PlsB and PlsX enzymes utilize acyl-ACP as acyl-donor,
and abnormal accumulation of acyl-ACP has been shown
to result in growth impairment [24]. To examine acyl-ACP
accumulation in cells with inactivated plsX and ygiH
genes, we introduced a derivative of pUC18, harboring
the E. coli tesA gene encoding thioesterase I [25], into cells
of strains MEC306 and MEC307. Interestingly, the growth
defects of these strains in the absence of IAA were sup-
pressed by the additional supply of thioesterase I (TesA
hydrolyses acyl-ACP) (Figure 4C). We have not yet suc-
ceeded in demonstrating the expected TesA-dependent
suppression of the inability to achieve plsX inactivation
when pisB activity is supplied by a plasmid encoding
plsB26. This is because it is difficult to construct an appro-
priate strain in which to examine the hypothesis.

Complementation of the PIsB activity by a combination of
PisX and YneS/YgiH

As we found that the combination of PIsX and YneS con-
ferred the ability to synthesize 1-acyl-G3P upon B. subtilis,
we expected that simultaneous overexpression of these
two proteins would complement a plsB mutation in E. coli.
To test this hypothesis, we introduced various combina-
tions of plasmids harboring plsX and yneS/ygiH into E. coli
cells. In these experiments, we employed derivatives of
plasmid pMW118 (ca. 5 copies per cell), whose replica-
tion is compatible with that of pSTV28/29 derivatives,
when more than one cloned gene was to be expressed. We
successfully complemented the E. coli plsB mutation by
expression of B. subtilis plsX and yneS (Table 4). The com-
plementation of the E. coli PlsB activity by the B. subtilis
PlsX and YneS combination was also demonstrated using
an [IAA-inducible plsB gene (Figure 4A). Other gene com-
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Phospholipid synthesis in B. subtilis yneS-ts, plsC-ts, and IPTG-dependent plsX mutants, under restrictive condi-
tions. Labeling with 32 [Pi] for 5 min, lipid isolation, lipid separation using two-dimensional TLC, and phospholipid detection,
are described in Methods. (A) Wild-type cells labeled at 30°C and 42°C. (B) plsC-ts cells (strain MY |12) labeled at 30°C and
42°C. (C) yneS-ts cells (strain MY 103) labeled at 30°C and 42°C. (D) Pspac-plsX cells (strain MY 1| 1) labeled in the presence
and absence of IPTG. Abbreviations: |-acyl-G3P, |-acylglycerol-phosphate; PA, phosphatidic acid; PE, phosphatidyleth-

anolamine; PG, phosphatidylglycerol; CA, cardiolipin.

binations, including those with E. coli genes, did not com-
plement plsB. Plasmid pMW118ygiH complemented the
growth defect of MEC306 and MEC307 cells in the
absence of IAA (data not shown), indicating that func-
tional YgiH is expressed from pMW118ygiH. Although we
could not determine the expression levels of the various
proteins due to the lack of appropriate antibodies, the spe-
cific activities of E. coli PIsX and YgiH may be lower than
those of their B. subtilis counterparts.

Discussion

Our genetic studies have shown that PlsX and YneS (now
renamed PlsY) are essential for G3P acyltransferase activ-
ity in B. subtilis cells, and that the combination of the two
B. subtilis proteins complements PlsB activity in E. coli
cells. Our findings are consistent with the two-step mech-

anism of 1-acyl-G3P synthesis reported by Lu et al. [8],
and we have shown that the PIsX/Y pathway is essential
for the growth of B. subtilis lacking plsB. The combination
of plsX and plsY is widely conserved in eubacteria, but
most eubacteria lack plsB [8], strongly suggesting that plsX/
Y will be essential genes in these bacteria.

A number of bacteria, belonging mainly to the gamma
group of proteobacteria, possess both pisB and plsX/plsY,
however. Another important finding reported here is that,
in such cases, the relationship between the two 1-acyl-
G3P synthesis pathways may be variable and complex.
Although pisB has been reported to be dispensable in Pseu-
domonas aeruginosa [26], we found that the gene is indis-
pensable in E. coli, indicating that PlsB is principally
responsible for 1-acyl-G3P synthesis in E. coli. On the
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Table I: Frequency of Pl transduction of plsB::kan, pisX::kan, and ygiH::kan mutations into W31 10 cells harboring various plasmids

Recipient strain

Relative transduction frequency*

Chromosomal gene

Harboring plasmids

Pl donor strain

Strain plsX ygiH pSTV29 pSTV29 pSTV28 pSTV29 pSTV28 pSTV29  AplsB:kan  AplsX:ka  AygiH:ka
plsB EcplsX ygiH BsplsX yneS n n

W3110 + + - - - - - - 0 100 100
MEC104 + + + - - - - - 0 50 64.3
MECI105 + + + - - - 100 65.5 58.9
MEC106 + + - - + - - - 0 80 50.9
MECI107 + + - - - + - - 0 100 78

MECI108 + + - - - - + - 0 63.6 100
MECI09 + + - - - - + 0 8l1.8 70.6

*Transduction frequencies are expressed as percentages of the highest number of Kmr colonies recorded in each experiment, and are depicted as

blocks.

other hand, we found that simultaneous inactivation of
both PIsX and PIsY is impossible, and that this lethality
was complemented by overexpression of PlsB. As single
deletions in either pisX or ygiH did not affect cell growth,
the lethality of the plsX and ygiH double deletion cannot
be because of inactivation of a minor pathway (using acyl-
PO,) for 1-acyl-G3P synthesis.

Interestingly, PlsX activity becomes indispensable for
growth of E. coli cells in which PIsB activity is supplied
from a plasmid copy of plsB26. Growth, in minimal
medium, of E. coli SJ22 cells harboring the pisB mutation
on the chromosome is dependent on a supply of exoge-

nous G3P. Depletion of G3P in the growth medium has
been found to result in accumulation of acyl-ACP due to
the blockage of 1-acyl-G3P synthesis, leading to a severe
reduction in fatty acid biosynthesis because accumulated
acyl-ACP causes feedback inhibition of enzymes in the
biosynthetic pathway [27,28]. G3P-acyltransferase activ-
ity expressed from a plasmid-borne copy of pisB26 may be
less than that in wild type cells, and acyl-ACP may there-
fore accumulate in such cells. PIsX may be able to suppress
the deleterious accumulation of acyl-ACP by converting
acyl-ACP to acyl-PO,. PIsY may also be involved in con-
trol of the intracellular acyl-ACP concentration. E. coli
PlsB has been shown to utilize both acyl-ACP and acyl-

Table 2: Frequency of PI transduction of plsB::kan, pisX::kan, and ygiH::kan mutations into strains MEC102 and MECI103 harboring

various plasmids

Recipient strain

Relative transduction frequency*

Chromosomal gene

Harboring plasmids

P1 donor strain

Strain plsX ygiH pSTV29 pSTV29 pSTV28 pSTV29 pSTV28 pSTV29  AplsB:kan  AplsX:kan  AygiH:kan
plsB EcplsX ygiH BsplsX yneS

MEC102 + - - - - - - 0 100 0

MECI103 + - - - - - - - 0 0 100
MECI 10 - + + - - - - - 0 55.9 0

MECI | | - + - + - - - - 100 53.5 59.8
MECI12 - + - - + - - - 0 56.3 75.3
MECI 13 - + - - + - - 0 83.1 100
MECI 14 - + - - - - + 0 45.1 84.2
MECI 15 - + - - - - - + 0 100 927
MECI 16 + - + - - - - - 0 0 69.8
MECI 17 + - - + - - - - 100 63.7 85.9
MECI18 + - - - + - - - 0 99.5 100
MECI19 + - - - + - - 0 85.1 738
MECI20 + - - - - - + - 0 363 60.5
MECI21 + - - - - - - + 0 100 96

*Transduction frequencies are expressed as percentages of the highest number of Kmr colonies recorded in each experiment, and are depicted as

blocks.
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Table 3: Frequency of P transduction of plsB::kan, plsX::kan, and ygiH::kan mutations into W31 10, strain MEC102, and strain MEC103,

harboring pSTV29 -pisB and plsB26

Recipient strain

Relative transduction frequency™*

Chromosomal gene

Harboring plasmids

Pl donor strain

Strain plsX ygiH pSTV29 pSTV29 pisB pSTV29 plsB26 AplsB::kan AplsX::kan AygiH::kan
MECI104 + + + - - 0 66.4 76.9
MECI105 + + - + - 100 100 100
MEC288 + + - - + 61.9 67.7 55.1
MECI 10 - + + - - 0 98.2 0
MECI |1 - + - + - 100 75 100
MEC289 - + - + 0 100 0
MECI 16 + - + - - 0 0 100
MECI17 + - + - - 100 100 89
MEC290 + - - - + 59.3 0 61.7

*Transduction frequencies are expressed as percentages of the highest number of Kmr colonies recorded in each experiment, and are depicted as

blocks.

CoA as acyl donors in the synthesis of 1-acyl-G3P [7], but
does not use these donors to make acyl-PO, [8]. On the
other hand, S. pneumoniae PIsY has been shown to synthe-
size 1-acyl-G3P using both acyl-ACP and acyl-PO,. These
results suggest that E. coli PIsY, in the absence of PlsX, may
synthesize 1-acyl-G3P using acyl-ACP, and this activity
would then contribute to consumption of acyl-ACP. It is
therefore possible that both PlsX and PlsY contribute
independently to the maintenance of an appropriate
intracellular acyl-ACP concentration, and simultaneous
inactivation of both proteins therefore results in deleteri-
ous accumulation of acyl-ACP. Overexpression of PlsB
increases 1-acyl-G3P synthesis activity and may suppress
the accumulation of acyl-ACP resulting from the plsX and
ygiH double deletion. Suppression of growth defects due
to the plsX and ygiH double deletion by overexpression of
thioesterase I strongly supports our hypothesis.

Acyl-ACP has been shown to be not only a central cofactor
for fatty acid and phospholipid synthesis, but also a regu-
latory molecule, coordinating the synthesis of these lipids
with cell growth. Our results strongly suggest that PlsX,
PlsY and PIsB form a complex network functioning to sup-
ply appropriate levels of lipid biosynthetic precursors,
especially acyl-ACP. In turn, this controls the synthesis of
1-acyl-G3P in E. coli cells, resulting in appropriate levels of
1-acyl-G3P under various growth conditions. Further
studies are needed to reveal the precise roles of PlsX, PlsY
and PIsB.

Conclusion

Both plsX and yneS are essential for 1-acyl-G3P synthesis
in B. subtilis cells lacking plsB, in agreement with recent
reports on the biochemical functions of these genes. Both
genes will be essential for bacterial growth lacking plsB. In

Table 4: Frequency of Pl transduction of plsB::kan, plsX::kan, and ygiH::kan mutations into W31 10 cells harboring various pairs of

plasmids.
Recipient strain Relative transduction frequency™*
Chromosomal gene Harboring plasmids Pl donor strain
Strain plsX ygiH pSTV29 pSTV28 pSTV28 pMWI18 pMWII8 PpMWII8 ApisB:ikan AplsX:kan — AygiH:kan
EcplsX BsplsX ygiH yneS
MEC130 + + + - - + - - 0 56.1 394
MEC134 + + + - - - + - 0 537 41.3
MECI136 + + + - - - - + 0 100 81.7
MECI137 + + - + - + - - 0 87.8 69.2
MECI139 + + - + - - + - 0 732 100
MEC140 + + - - + + - - 0 90.2 46.2
MEC142 + + - - + - - + 100 97.6 90.4

*Transduction frequencies are expressed as percentages of the highest number of Kmr colonies recorded in each experiment, and are depicted as

blocks.
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LB+Spec+IA

S

Growth properties of E. coli strains harboring IAA-inducible genes. E. coli strains harboring |AA-inducible genes were
grown in LB medium containing 50 pg/ml ampicillin, with or without IAA (100 pg/ml), at 37°C. (A) a; MEC199 (Pw-pisB), b;
MEC201 (Pw-plsB ApisB), c; MEC212 (Pw-plsB AplsB pSTV29 pMWI 18), d; MEC214 (Pw-pisB AplsB pSTV29 pMW 1 18yneS), e;
MEC218 (Pw-plsB AplsB pSTV29BsplsX pMWI 18), and f; MEC220 (Pw-plsB AplsB pSTV29BsplsX pMW 1 |8yneS). (B) a; MEC308
(Pw-EcplsX), b; MEC309 (Pw-ygiH), c; MEC306 (Pw-EcplsX AplsX AygiH), and d; MEC307 (Pw-ygiH AplsX AygiH). (C) E. coli
strains harboring pUCI8S or pUCI8S tesA were grown in LB medium containing 50 pg/ml spectinomycin, with or without IAA
(50 pg/ml), at 30°C. a; MEC323 (Pw-pisB AplsB AygiH pUCI8S), b; MEC324 (Pw-plsB AplsB AygiH pUCI 8S tesA), c; MEC325
(Pw-EcplsX AplsX AygiH pUCI8S), d; MEC326 (Pw-EcplsX AplsX AygiH pUCI 8S tesA), e; MEC327 (Pw-ygiH AplsX AygiH

pUCI8S), e; MEC328 (Pw-ygiH AplsX AygiH pUCI 8S tesA).

E. coli, PlsB plays a principal role in 1-acyl-G3P synthesis
and is also essential for bacterial growth. PlIsX and YgiH
also, however, play important roles in E. coli growth,
probably by regulating the intracellular concentrations of
acyl-ACP at appropriate levels. These proteins are there-
fore important targets for the development of new anti-
bacterial reagents.

Methods

Materials and strains

The B. subtilis and E. coli strains used in this study are listed
in Tables S1 [see Additional file 1] and S2 [see Additional
file 2], respectively. Primers and plasmids are specified in

Tables S3 [see Additional file 3] and S4 [see Additional file
4], respectively. B. subtilis cells were transformed as
described previously [29]. E. coli strains DH50 (Takara)
and JM105 (Takara), were used throughout as cloning
hosts.

Full-length sequences of E. coli plsB, plsX (EcplsX), and
ygiH, and B. subtilis plsX (BsplsX) and yneS, were ampli-
fied and cloned into plasmids pSTV28 or pSTV29 (Takara,
12-15 copies per cell) as summarized in Table S3 [see
Additional file 3]. A DNA fragment containing a mutated
plsB sequence, plsB26, was PCR-amplified from genomic
DNA of E. coli strain TL84 [3], and cloned into pSTV29.
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Inserts of pSTV29ygiH and pSTV29yneS were transferred
into pMW118 (Nippon Gene, ca. 5 copies per cell),
because the replication of pMW118 is compatible with
that of pSTV28 and pSTV29.

The IAA (3B-indoleacrylic acid, Sigma)-inducible trp pro-
moter fragment was PCR amplified from W3110 chromo-
somal DNA. The PCR product was digested with the
restriction enzymes Munl and EcoRI, and cloned into the
EcoRI site of pMC1403 [30], generating pMC1403Pw.
Full-length sequences of E. coli plsB, plsX, and ygiH were
amplified and cloned into the EcoRl/BamHI, BamHI, or
EcoRI/BamHI sites of pMC1403-Pw, respectively, to
obtain pMC1403Pw-plsB, pMC1403Pw-plsX  and
pMC1403Pw-ygiH.

The full-length sequence of E. coli tesA was amplified and
cloned into plasmid pUC18S. Plasmid pUC18S was cre-
ated by replacing the Aatll/Eam1105] fragment (contain-
ing the ampicillin-resistance gene) of pUC18 (Takara)
with an Aatll/Eam1105I fragment (containing the spectin-
omycin-resistance gene) amplified, by PCR, from
PAPNC213 [17].

B. subtilis strains were grown in Luria-Bertani (LB)
medium, or DSM, supplemented with chloramphenicol
(5 pg/ml), kanamycin (5 pg/ml), or erythromycin (0.5 pg/
ml), as appropriate.E. coli strains were grown in LB or M9
minimal media, supplemented with ampicillin (50 pg/
ml), chloramphenicol (5 pg/ml), spectinomycin (50 pg/
ml), or kanamycin (25 pg/ml), as appropriate.

Isolation of the B. subtilis yneS-ts mutant

The yneS-ts mutant was isolated according to the proce-
dure of F. Kawamura (personal communication). The B.
subtilis strain MY101, in which the sequence 45-103 bp
downstream of the termination codon of yneS (in the cod-
ing sequence of yneR, which is downstream of yneS) was
replaced with a cat gene, was generated as follows. The
regions upstream and downstream of the insertion site
were amplified by PCR using a yneS-F1 and yneS-R1
primer pair, and a yneS-F2 and yneS-R2 primer pair,
respectively. The cat gene of pCBB31 [31] was amplified
using primers cat-F and cat-R. The primer pairs yneS-R1
and cat-R, and cat-F and yneS-F2, contain overlapping
sequences, and the three fragments obtained were ligated
by recombinant PCR using yneS-F1 and yneS-R2 primers.
B. subtilis strain 168 was transformed with the resulting
fragment, and chloramphenicol-resistant transformants
were selected (MY101, AyneR::cat*). Next, the pCH11 plas-
mid containing an inactive cat gene (a nonsense mutation
is located in the gene), a kanamycin-resistance gene, and
a ts origin of replication, was introduced into MY101. We
selected for kanamycin resistance and chloramphenicol
sensitivity in order to isolate cells with the inactive cat

http://www.biomedcentral.com/1471-2180/7/69

gene on the chromosome, which occurred when gene
conversion from the plasmid copy was successful [32].
The introduced plasmid was removed by cultivation at the
temperature restrictive for pCH11 replication, to generate
strain MY102 (AyneR::cat’). PCR mutagenesis of the yneS-
cat fragment was performed using rTaq polymerase
(Takara) with MY101 chromosomal DNA as template.
The mutated yneS-cat fragment was used to transform
strain MY102. Chloramphenicol-resistant transformants
were selected at 30°C, and colonies that were unable to
grow above 42°C were screened to isolate strain MY103
(yneS-ts).

Construction of the B. subtilis plsC-ts mutant

As the growth of cells in which gfp (encoding green fluo-
rescent protein) was translationally fused to the C-termi-
nus of PIsC became temperature-sensitive (data not
shown), we predicted that the required pisC-ts mutant
could be obtained by modification of the C-terminal
region of the plsC gene. We therefore created a series of
mutants with deletions of different numbers of amino
acids from the C-terminus of PlsC and found that deletion
of the 7 end residues resulted in a ts phenotype (strain
MY112). To generate strain MY112, the 3' end of the pisC
coding region (with the 7 codons deleted) was amplified,
and a termination codon was added by PCR using the
primers plsC-F1 and plsC-CA7-R1. The region down-
stream of plsC was amplified with the oligonucleotides
plsC-F2 and plsC-R2. The two fragments were ligated to
the 5' and 3' ends of the cat gene (amplified from pCBB31
using plsC-cat-F and plsC-cat-R primers) by recombinant
PCR with overlapping sequences contained within the
plsC-CA7-R1 and plsC-cat-F primer pair, and the plsC-F2
and plsC-cat-R primer pair. The resulting fragment was
used to transform B. subtilis strain 168 with selection for
chloramphenicol resistance.

Construction of an IPTG-dependent mutant of B. subtilis
plsX

The pisX gene is located in the fatty acid biosynthesis
operon composed of fapR, pisX, fabD, fabG, and acpA. To
generate cells in which plsX expression was under the con-
trol of the IPTG-inducible Pspac promoter, we initially
integrated Pspac-plsX into the aprE locus of the bacterial
chromosome. The plsX gene was amplified by PCR using
the pAP-plsX-F and pAP-plsX-R primers, and inserted
between the Pspac promoter and the kanamycin-resist-
ance gene (kan) on pAPNCK, that contains sequences
upstream and downstream of aprE, flanking Pspac and
kan. Plasmid pAPNCK was created by replacing the Hin-
dlll fragment (containing the spectinomycin-resistance
gene) of pAPNC213 [17] with the HindIII fragment (con-
taining the kan gene) of pDG780 [33]. The resulting plas-
mid was transformed into B. subtilis cells and selection of
a double crossover using kanamycin resistance yielded

Page 10 of 13

(page number not for citation purposes)



BMC Microbiology 2007, 7:69

strain MY110 (AaprE::Pspac-plsX-kan). Next, the native
plsX gene was replaced with the cat gene, without the pro-
moter and terminator sequences, to ensure the correct
expression of downstream essential genes. To achieve this,
upstream and downstream regions of plsX were amplified
using the plsX-Fland plsX-R1 primer pair, and the plsX-F2
and plsX-R2 primer pair, respectively. Fragments were
ligated to the 5' and 3' ends of the cat gene (amplified
from pCBB31 using primers cat-F-p and cat-R-t) by recom-
binant PCR using overlapping sequences in the plsX-R1
and cat-F-p primer pair, and the cat-R-t and plsX-F2
primer pair. The resulting fragment was used to transform
strain MY110, and chloramphenicol-resistant transform-
ants were selected to generate strain MY111 (AaprE:
Pspac-plsX-kan AplsX::cat-p-t).

Analysis of phospholipid composition

Cells of B. subtilis strains 168, yneS-ts (MY103), and plsC-
ts (MY112) were cultured in LB medium at 30°C until an
ODgq, of 0.4 was attained, and the temperature was then
shifted to 42°C. Cells were pulse-labeled with 32 [Pi] (50
pCi/ml, Amersham Biosciences) for 5 min after 1 h of cul-
tivation at 42°C. Incorporation of the label was termi-
nated by the addition of 0.8 ml of culture to 3.0 ml of
chloroform:methanol (1:2, v/v). Lipids were extracted
using the method of Bligh and Dyer [20]. The phospholi-
pids produced were examined by two-dimensional thin-
layer chromatography on Silica Gel 60 plates (Merck)
developed with chloroform:methanol:water (65:25:4) in
the first dimension and chloroform:methanol:acetic acid
(65:25:10) in the second dimension [5]. The incorpora-
tion of label into lysophosphatidic acid and other lipids
was determined and quantitated using the BAS2500
image analyzer (Fuji).

Pspac-plsX (MY111) cells were cultured in LB medium
containing 50 pM IPTG at 37°C until an ODy, value of
0.4 was attained. Cells were harvested, washed twice with
LB medium, and suspended in 5 mL LB medium with or
without 1 mM IPTG at final densities (ODg, values) of
0.06 or 0.1, respectively. Next, cells were pulse-labeled
with 32 [Pi] (50 pCi/ml) for 5 min after 1 h of cultivation
at 37°C. Lipid extraction and analysis were performed as
described above.

Gene disruption in E. coli

Deletions of the plsB, plsX, and ygiH genes were achieved
using a one-step chromosomal gene inactivation method
involving the phage A Red recombination system, as
developed by Datsenko and Wanner [22,34]. The E. coli
strain, BW25113, was used. The primers used for target
gene disruptions are listed in Table S4 [see Additional file
4]. The 5' end of each primer contained 60-70 bp of
sequences upstream or downstream of the target gene,
while the 3' end contained specific 20-nucleotide

http://www.biomedcentral.com/1471-2180/7/69

sequences from the template, pKD13. The primer pairs
plsBdelup and plsBdeldown, plsXdelup and plsXdel-
down, and ygiHdelup and ygiHdeldown, were used to
generate AplsB::kan (in strain MEC001), AplsX::kan (in
strain MECO002), and AygiH:kan (in strain MECO003)
mutations, respectively. Because E. coli plsB was essential
for growth, inactivation of plsB was performed in the pres-
ence of a plasmid harboring the gene (pSTV28pisB-p).
Deletion mutations were confirmed using colony PCR
with a kan-specific primer (k1 or k2) [22] and the locus-
specific primers listed in Table S4 [see Additional file 4].
The deletion mutations, AplsX::kan and AygiH::kan, were
transferred into prototrophic strain W3110 by P1vir trans-
duction to obtain strains MEC005 and MECO006, respec-
tively. The kan cassettes in strains MEC005 and MEC006
were removed with FLP recombinase, expressed by plas-
mid pCP20, as described previously [22], to obtain strains
MEC102 and MEC103, respectively.

Construction of E. coli strains harboring IAA-inducible
genes

To introduce pilsB,plsX and ygiH genes, under the control
of IAA-inducible trp promoters, into the E. coli chromo-
some, cloned gene fragments in pMC1403-based plas-
mids were transferred into the ARZ5 phage by recA-
mediated homologous recombination as previously
described [35]. The technique involves double crossovers
between common upstream ampicillin-resistance genes
and downstream lac operon sequences. The resulting
APw-plsB, APw-plsX, and APw-ygiH phages were lys-
ogenized into the W3110 chromosome, to obtain strains
MEC199, MEC308, and MEC309, respectively. The
AplsB::kan mutation was transferred into strain MEC199
by Plvir transduction, and the kan cassette was then
removed with FLP recombinase, expressed from plasmid
pCP20, to obtain strain MEC201. The APw-plsX and APw-
ygiH phages were also lysogenized into the strain MEC102
chromosome, to generate strains MEC303 and MEC304,
respectively. The AygiH::kan mutation was then trans-
ferred into strains MEC303 and MEC304 by P1lvir trans-
duction.

Abbreviations

G3P, Glycerol-3-phosphate; 1-acyl-G3P, 1-acyl-glycerol-
phosphate; PA, phosphatidic acid; PG, phosphatidylglyc-
erol; PE, phosphatidylethanolamine; CL, cardiolipin; IAA,
3B-indoleacrylic acid.
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