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Abstract

Background: DING proteins constitute a conserved and broadly distributed set of proteins found
in bacteria, fungi, plants and animals (including humans). Characterization of DING proteins from
animal and plant tissues indicated ligand-binding ability suggesting a role for DING proteins in cell
signaling and biomineralization. Surprisingly, the genes encoding DING proteins in eukaryotes have
not been identified in the eukaryotic genome or EST databases. Recent discovery of a DING
homologue (named Psp here) in the genome of Pseudomonas fluorescens SBW25 provided a unique
opportunity to investigate the physiological roles of DING proteins. P. fluorescens SBW25 is a
model bacterium that can efficiently colonize plant surfaces and enhance plant health. In this report
we genetically characterize Psp with a focus on conditions under which psp is expressed and the
protein exported.

Results: Psp is closely related to the periplasmic P, binding component of the ABC-type phosphate
transporter system (Pst). psp is flanked by a gene cluster predicted to function as a type |l protein
secretion system (Hxc). Deletion analysis combined with chromosomally integrated 'lacZ fusions
showed that both psp and pstC are induced by P, limitation and that pstC is required for competitive
growth of the bacterium in P, limited medium. hxcR is not regulated by P; limitation. Psp was
detected (using anti-DING serum) in the supernatant of wild-type culture but was greatly reduced
in the supernatant of an isogenic strain carrying an hxcR mutation (AhxcR). A promoter fusion
between hxcR and a promoterless copy of a gene (‘dapB) essential for growth in the plant
environment showed that expression of hxcR is elevated during colonization of sugar beet
seedlings. A similar analysis of psp showed that it is not induced in the plant environment.

Conclusion: Psp gene is expressed under conditions of P; limitation. It is an exoprotein secreted
mainly via the Hxc type Il secretion system, whose expression is elevated on plant surfaces. We
propose that Psp is involved in extracellular scavenging of phosphates, which are subsequently
taken up by the cell-bound Pst transport system.

Background nal sequence (DINGGG-), were initially described as pro-
DING proteins, named for the highly-conserved N-termi-  teins from animal and plant tissues with molecular
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weights about 38-40 kDa. The first DING protein was
identified from human rheumatoid arthritis (RA) syno-
vial fluid as a lymphocyte stimulatory protein [1]. Since
then human DING proteins have been identified inde-
pendently from urine and kidney stones as crystal adhe-
sion inhibitors [2]; in skin fibroblasts and cervical
carcinoma cells using hirudin-agarose affinity columns
[3]; and in breast cells by their high affinity for genistein,
an estrogen analog [4]. In these latter two cases, extracel-
lular DING protein is linked to cell growth promotion by
an autocrine or paracrine mechanism [3,4]. DING pro-
teins have also been reported from other animals, e.g., tur-
key (as a lipid-free polysaccharide-binding protein) and
rat (as a cotinine receptor). DING proteins from several
plant and fungal species are characterized by short N-ter-
minal sequences and one has been shown capable of
binding a germin-like protein in tobacco [5]. Together
these studies suggested that DING proteins are wide-
spread in eukaryotes and play important roles in cell sig-
naling and biomineralization.

Although DING proteins have been frequently isolated or
identified from eukaryotes on the basis of ligand-binding
properties, no complete gene or protein sequences have
been found in either the current eukaryotic genomes or
EST databases. Recently, Morales et al. [6] reported the
first complete amino acid sequence of a DING protein iso-
lated from the human plasma high-density lipoprotein
fraction, though no corresponding gene sequence has
been identified. This DING protein was structurally char-
acterized to be a phosphate binding protein, which is
functionally related to solute binding proteins of the Pst
systems, the bacterial ABC (ATP-binding cassette) trans-
porters specific for phosphate [6]. The Pst system is com-
prised of four components [7]: a periplasmic phosphate
binding protein (PstS), two integral membrane domains
(PstC and PstA) and a cytoplasmic ATPase (PstB).

Low-level homology between eukaryotic DING proteins
and bacterial phosphate-binding proteins has been
known for some time [5]. More recently, proteins with a
greater degree of homology have been predicted in the
sequenced genomes of Pseudomonas [8], including P. fluo-
rescens SBW25 [9]. P. fluorescens SBW25 is a Gram-nega-
tive plant growth-promoting rhizobacterium (PGPR)
representative of a group of fluorescent pseudomonads
isolated from the field-grown sugar beets at the University
of Oxford farm, Wytham, Oxford, in 1989 [10]. The DING
homologue of P. fluorescens SBW25, named Psp here for
phosphate scavenging protein, shows 65-75% identity
with the partial eukaryotic DING protein sequences and
contains the highly conserved phosphate-binding site [9].
However, prediction of flanking genes in the psp locus was
inaccurate when the analysis was based on raw SBW25
shotgun genome sequence data available at that time [9].
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The coding region of psp of P. fluorescens SBW25 was pre-
viously cloned and expressed in Escherichia coli and subse-
quent phosphate binding assays showed that the
expressed SBW25 DING protein is able to bind inorganic
phosphate (P;) in vitro [9]. Secondary and tertiary struc-
ture prediction and determination indicated a PstS-like,
"Venus flytrap" structure [9,11,12]. A similar structure has
been found for the human plasma phosphate binding
protein [6]. Previous study also showed that the DING
protein was not detectable in SBW25 cells grown in Luria-
Bertani (LB) medium [9], suggesting that psp was not con-
stitutively expressed.

In this report we describe the genetic characterization of
psp (pflu2427) encoding the DING protein of P. fluorescens
SBW25. We focus on the conditions under which psp is
expressed and its role for bacterial growth in laboratory
media and in the plant environment. Our work begins
with the complete but un-annotated whole genome
sequence of SBW25. Based initially on this sequence, we
perform an up-to-date comparison of gene sequences of
the phosphate binding proteins in SBW25 and other
genome-sequenced Pseudomonas. We examine the func-
tionalities of psp, together with the genes located upstream
of psp (hxcRS) and genes in the pst locus, using a combina-
tion of site-directed mutagenesis and chromosomally
integrated 'lacZ fusions. The role of the DING protein in
bacterial phosphate metabolism and plant colonization is
discussed.

Results

Genomic analyses of putative phosphate-binding proteins
in Pseudomonas

The genome of P. fluorescens SBW25 harbors two putative
phosphate-binding proteins, Psp (Pflu2427) and PstS
(Pflu3318), which show 38% amino acid sequence simi-
larity to each other. Both Psp and PstS possess the highly
conserved phosphate-binding sites [5]. However, PstS is
52 amino acids shorter than Psp and it does not contain
the N-terminal DINGGG residue.

pstS is the first of six genes which are organized in the
same orientation, suggesting that they are co-transcribed
as an operon (Figure 1A). Genes encoding the other three
components of the Pst system (PstCAB) are located down-
stream of pstS. The putative pst genes are organized by a
gene order typical for ABC transporters involved in sub-
strate uptake: the periplasmic binding protein (PstS) first
and then the membrane-spanning domains (PstC and
PstA) and the ATP-binding cassette (PstB).

psp is located 1035 Kb away from pstS. ORF pflu2428,
downstream of psp, encodes a predicted protein of 4083
amino acids, which contains a haemagglutination activity
domain (Figure 1B). This domain is typical of haemagglu-

Page 2 of 11

(page number not for citation purposes)



BMC Microbiology 2007, 7:114

A
|-> facZ (pUIC3-62)

D mDT D

pstS pstC pstA pstB 3314 3313

B

R e e

wu P V. T X Y Z Q

1acZ (pUIC3-61)

‘dapBiacZ
dapBlac ‘dapB (pIVETD-13)

psp

’,,,///””/ \‘55\5\5‘““--~,

MFKRNVLAVSMTLAALCSAQAAMADINGGGATL-

CACGTTCATAAAACCGTAACRAGATTGTTGCAG
AGTTGCCGAGCCCGAAATCACAAGGATTTTCCT
TAATGAA - pstS

GCTGTCATCGGAAGCTGCGAAATTTCCTACCC

ATGGCCTCACCCCTCGCCACCCCCGCAAACCG
GCTTGGGACCGAAGCCATGGCGTCATGCAAGA
GCCATCTACCCCAACGTACAAACACGACGAAA

GGAGATTCTTCATGTT - psp

Figure |

Genetic organization of the pst (A) and psp (B) loci in
P. fluorescens SBW25. Regions deleted in mutants PBR827
(ApstC or Apflu3317), PBR828 (AhxcR or Apflu2424) and
PBR826 (Apsp or Apflu2427) are marked by grey. Positions
of the promoterless 'lacZ and 'dapB fusions are shown by
arrowed lines. The predicted signal peptide cleavage site is
indicated by vertical arrow. ORF Pflu2428 is not drawn to
scale and shown by discontinued arrow bar. (C) Promoter
regions of pst and psp operons. The putative translational
start and ribosome-binding sites are indicated by bold type
and underlined letters, respectively. The predicted Pho box
sequences are boxed and nucleotides identified in the E. coli
Pho box consensus [CTGT-
CATA(AT)A(TA)CTGT(CA)A(CT)] [7] are highlighted by
bold type.
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tinins, which are involved in bacterial adhesion to host
cells [13]. Immediately upstream of psp is a cluster of 11
genes that are predicted to encode an alternative type II
secretion system (Hxc) [14]. Type II-dependent exopro-
teins have an N-terminal signal peptide that is cleaved off
during translocation to the periplasm by the Sec or Tat
export system [15]. The folded or mature substrate protein
is subsequently transported across the outer membrane by
the type II secretion apparatus. The discovery of hxc flank-
ing psp led to a signal peptide analysis of the deduced
amino acid sequence of psp by using the SignalP 3.0 Server
[16]. Results showed that Psp does contain a signal pep-
tide and the predicted cleavage site just before the charac-
teristic DINGGG residue (Figure 1B). The fact that a type
11 secretion system is present in the psp locus and that Psp
has a signal peptide led us to predict that Psp is an extra-
cellular protein secreted by the Hxc system. This hypothe-
sis was experimentally tested and described below.

Comparative genomic analysis of putative phosphate-
binding proteins between P. fluorescens SBW25 and other
genome-sequenced Pseudomonas showed that PstS is ubig-
uitous whereas the DING protein is only present in two
other species or strains (P. fluorescens Pf-5 and P. aerugi-
nosa PA14). P. aeruginosa PAO1 contains two DING-like
proteins (LapA and LapB), of which the N-termini (-
VTGGG) show partial similarity to the DINGGG residues.
The lapAB genes were previously shown to encode low-
molecular-weight alkaline phosphatases [14,17]. A phylo-
genetic tree based on the deduced amino acid sequences
is shown in Figure 2. Clearly, the DING proteins form a
separate group from the DING-like (LAP) and the PstS
proteins, as already reported [8], but they are much more
diverse than previously anticipated.

The psp and pst operons are induced by P, limitation

To determine the conditions under which Psp is
expressed, a transcriptional 'lacZ fusion was constructed
to psp and the resulting fusion plasmid (pUIC3-61) was
integrated into the genome of SBW25 by a single event of
homologous recombination. The resulting psp-'lacZ
fusion strain (PBR829) was subjected to a B-galactosidase
assay using cells grown in both phosphate-rich (PR) and
phosphate-limited (PL) medium. Results (Table 1)
showed that psp expression was elevated 3.85-fold at 4
hours and 64.72-fold at 26 hours, in cells grown in PL
compared to cells grown in PR medium.

Previous studies on transcription of pst genes from P. aer-
uginosa PAO1 and E. coli showed that the pst operon is
expressed under P; limitation [7,18]. To test whether the
predicted pst operon of SBW25 is induced by P; limitation,
a pstC-'lacZ fusion strain (PBR830) was constructed and
its expression was tested in a similar way as the psp-'lacZ
fusion strain. Results (Table 1) showed that pstC expres-
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Figure 2

The neighbor-joining tree showing phylogenetic rela-
tionships of putative phosphate-binding proteins
from Pseudomonas. The deduced amino acid sequences
are derived from the Pseudomonas genome databases: P. aeru-
ginosa PA14 (PA14_55410, PA14_70860 and PA14_31620); P.
aeruginosa PAO| [PA0688 (LapA), PA0689 (LapB) and
PA5369 (it is identical to PA14_70860 thus not shown in the
tree); P. putida KT2440 (PP_5329, PP_2656); P. fluorescens Pf-
5 (PFL_2759, PFL_2760 and PFL_6119); P. fluorescens PfO-|
(Pfl_3172 and Pfl_5615); P. syringae pv. tomato DC3000
(PSPTO_3269 and PSPTO_5487); P. entomophila L48
(PSEEN3182 and PSEEN5473). Percentage bootstrap values
obtained from 1000 trials are shown on branches. The scale
bar refers to the number of substitutions per site.

sion was significantly higher for cells grown in PL
medium compared with cells grown in PR medium. Com-
pared to the levels of psp expression, the basic pstC expres-
sion and P; limitation-induced expression are very low
(Table 1).

Table I: Expression of the Psp and Pst genes in P. fluorescens
SBW25

lacZ fusion ~ Medium B-galactosidase (amol 4 MU/min/cell)?
4 hours 26 hours
psp-'lacZ PR 0.22 £ 0.03 0.22 + 0.07
PL 0.83 + 0.35 (3.85) 14.47 £ 3.53 (64.72)
pstC-'lacZ PR 0.1 £0.01 0.16 £ 0.02
PL 0.14 +0.02 (1.48)  0.58 £ 0.06 (3.61)

aFold of increase for cells grown in PL medium versus PR medium is
shown in parenthesis.
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Next we carefully examined the promoter regions of psp
and pst to search for putative Pho box sequences. As
shown in Figure 1C, sequence motifs similar to the E. coli
Pho box consensus were identified upstream of the trans-
lational start site of pstS and psp, suggesting that psp and pst
operons are subjected to control by the conserved Pho reg-
ulon [7,19].

Mutagenesis analysis of psp and pstC

Having demonstrated that psp and pstC are induced by P;
limitation, we next asked whether they are required for
bacteria to grow in laboratory medium with limited P;and
in the plant environment. To do this, two in-frame dele-
tion mutants PBR826 (Apsp) and PBR827 (ApstC) were
constructed by a standard procedure of allelic exchange.
The two mutant strains showed similar growth curves
with the wild-type when growing in complete medium
(LB), minimal medium (M9) and phosphate media PR
and PL (data not shown).

To assess the growth more rigorously, we determined the
competitive ability of each mutant relative to the wild type
ancestor in two laboratory media (PR and PL). The
mutant strain was mixed 1:1 with a lacZ-marked "wild
type" strain (SBW25-lacZ) and the bacterial mixture was
inoculated into the tested media. After growing in compe-
tition for ~20 generations in the laboratory media, the
ratio of the mutant to the wild type competitor was deter-
mined on LB plus X-gal agar plates. Results are shown in
Figure 3. Growth of PBR827 (ApstC) was comparable to
the wild-type in PR medium but was significantly
impaired in PL medium. No fitness effect was observed
with PBR826 (Apsp).

The competitive ability of each mutant (Apsp and ApstC)
relative to the lacZ-marked "wild type" strain was also
determined during a course of colonization of sugar beet
seedlings. Each mutant strain was inoculated, with the
wild type in a 1:1 ratio, onto sugar beet seeds and recov-
ered in two weeks from the shoots and rhizosphere on M9
plates supplemented with X-gal. Results showed that the
fitness of PBR826 (Apsp) and PBR827 (ApstC) was not sig-
nificantly impaired in either the shoots or the rhizosphere
(data not shown).

Psp is secreted by the Hxc system

Armed with knowledge that psp is expressed in P; limited
medium, we next asked whether Psp is an extracellular
protein and furthermore whether it is secreted via the Hxc
system. An immunodiffusion experiment was performed
between anti-DING antiserum and concentrated superna-
tants of SBW25 (wild-type) cultures in PL and also in PR
and LB broths (as controls). Results showed that a precip-
itin line was formed only between anti-DING serum and
PL supernatant (data not shown). From this experiment
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Fitness of P. fluorescens SBW25 and derived mutants.
Fitness of SBW25 (wt) and mutants PBR826 (Apsp, psp) and
PBR827 (ApstC, pst) relative to SBW25-lacZ was measured
with cells grown in P-rich (PR) and P;-limited (PL) media.
Data are means and standard errors of ~8 independent cul-
tures. A fitness of zero indicates that the fitness of the
mutant is identical to wild type (a negative value indicates a
reduction in fitness relative to wild type). Bars identified by
different letters are significantly different (P < 0.05) by
Tukey's HSD.

we conclude that Psp is an exoprotein, and its expression
is induced by P, limitation, which is consistent with the -
galactosidase activity data described above and is further
confirmed by the Western blotting analysis described
below.

To test whether Psp secretion is dependent on the Hxc sys-
tem, an in-frame hxcR (pflu2424) deletion mutant was
constructed by allelic exchange. hxcR encodes an essential
component of the type II secretion system (ATPase),
which provides energy for substrate translocation. Con-
centrated supernatants and cell lysates of the mutant
strain PBR828 (AhxcR) grown in PL medium were sub-
jected to immunodiffusion analysis with an anti-DING
antibody. Wild-type SBW25 and PBR826 (Apsp) were
included and tested in parallel as the positive and negative
control, respectively. Figure 4A shows that Psp is present
in both supernatant and lysate of wild-type cells, but is
not present in the lysate or supernatant from PBR826
(Apsp). In PBR828 (AhxcR), Psp is detectable at normal
concentrations in the lysate, but is present at much lower
concentrations in the supernatant, indicating that secre-
tion is significantly reduced by the AhxcR mutation.

This result was confirmed by Western blot analysis of the
same bacterial supernatants: only in PL medium was a 40
kDa protein detectable with anti-DING antibodies (Figure
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4B). Figure 4C showed that DING was detected as a strong
band in the supernatant of the wild-type culture, but was
totally absent in mutant PBR826 (Apsp), and greatly
reduced (< 15%) in the PBR828 (AhxcR) supernatant. This
Western blot result indicates that the Psp secretion is pre-
dominantly via the Hxc system.

HxcR is not induced by P, limitation but shows elevated
level of expression in planta

The in vivo expression technology (IVET) has been
employed to identify SBW25 genes showing elevated lev-
els of expression on the plant surfaces [20,21]. These plant
inducible genes are of particular interest because they are
predicted to play a role in the maximization of ecological
performance in planta - a prediction confirmed for a locus
encoding an acetylated cellulose polymer [20] and cueA, a
gene encoding the copper-transporting P-type ATPase
[22].

Central to this technique is a dapB deletion mutant strain
(SBW25AdapB), which is unable to grow in the absence of
an exogenous source of DAP (diaminopimelic acid) and
lysine and, as a result, is unable to colonize sugar beet
seedlings [20]. By fusing random fragments of the SBW25
genome to a promoterless copy of dapB it is possible to
identify plant-inducible loci. Arising from a genome-wide
screen for plant-inducible loci from SBW25 was strain
PIL082, which contains a fusion between hxcR and 'dapB
(Figure 1B) suggesting that the hxc locus is plant-induced.

Experimental evidence described above showed that psp is
induced by P;limitation, but the precise location of the psp
promoter was unclear. hxcR and psp are organized in the
same orientation. Thus it is possible that psp is cotran-
scribed with hxcRS and induced also in the plant environ-
ment. To test this hypothesis, an IVET fusion (psp-'dapB)
was constructed by cloning an 800 nt DNA fragment from
hxcS to psp into pIVETD, and integrated into the genome
by homogenous recombination. The resultant IVET
fusion (PIL082-1) was subjected to a plant colonization
assay, together with the hxcR IVET fusion strain (PIL082).
About 1000 cells were inoculated onto each sugar beet
seed and bacteria were recovered from the shoots and
rhizosphere, two weeks after plant sowing. Results
showed that the psp IVET fusion strain was not detected
(under the detection limit of 30 cells per shoot, 300 cells
per rhizosphere), whereas the hxcR fusion strains reach a
cell density of 6.7 + 3.4 x 102 cells per shoot and 5.46 +
2.30 x 10 per rthizosphere. Both PIL082 and PIL082-1 are
unable to grow in minimal medium (M9) in the absence
of lysine and DAP. The ability of PIL082 to grow on sugar
beet seedlings but not on M9 medium confirmed that the
promoter driving hxcR expression is active in the plant
environment. The inability of PIL082-1 to grow in planta
indicates that psp is not induced in the plant environment.
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Figure 4

Immunochemical analysis of Psp in P. fluorescens SBW25 and derived mutants. (A) Double immunodiffusion of cell
supernatants and lysates. The central well in a 1.5% agarose plate contained rabbit anti-DING (Psp from SBW25) antiserum.
The peripheral wells contained (clockwise, from the top) PBR826 (Apsp) supernatant (Apsp-sup), PBR828 (AhxcR) supernatant
(AhxcR-sup), Psp standard (DING), SBW?25 lysate (wt-lysate), PBR826 (Apsp) lysate (Apsp-lysate), PBR828 (AhxcR) lysate
(AhxcR-lysate), SBW25 supernatant (wt-sup). (B) Western blotting of supernatants for SBW25 grown in different media. Con-
centrated cell supernatants were separated on a 12% SDS-PAGE gel, and Psp was detected with anti-human DING antiserum.
Lane A, protein ladder; B, PBR826 (Apsp) in LB broth (negative control); C, SBW25 in PL broth; D, E, SBW25 in PR broth; F,
SBW?25 in LB broth; G, recombinant Psp (positive control). (C) Western blotting of cell supernatants for SBW25 mutants
grown on PL medium. Concentrated cell fractions were separated on a 12% SDS-PAGE gel, and Psp was detected with anti-Psp
antiserum. Lane A and D, wild-type; B and E, PBR826 (Apsp); C and F, PBR828 (AhxcR); G, Psp standard.
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To test whether hxcR is induced by P; limitation, expres-
sion of PIL082 fusion was examined by measuring the p-
galactosidase activities in cells grown in PR and PL media
(the IVET vector pIVETD contains a second marker gene
'lacZ located downstream of 'dapB) [20]. Results showed
that hxcR expression was not elevated in cells grown in PL
medium (0.84 + 0.06 amol 4 MU/min/cell) compared to
cells grown in PR medium (0.97 + 0.02 amol 4 MU/min/
cell). Taken together, the expression data (both in vitro
and in vivo) indicate that hxcR and psp are transcribed by
different promoters. Given that hxcR and hxcS are organ-
ized in a contiguous manner, the psp promoter is likely to
be located in the intergenic region of hxcS and psp (Figure
1B). This is consistent with the tentative identification of
a putative Pho box in this region (Figure 1C).

Discussion

Phosphate is an essential but often limiting nutrient. Mul-
tiple P; transport systems have evolved in bacteria to facil-
itate efficient uptake of P; from the environment. In E. coli,
a constitutively-expressed, low-affinity transporter (Pit
system) is used in cells grown in environments with excess
P;. Under conditions of P;limitation, a high-affinity trans-
port system (Pst) is induced and operates for P; scavenging
[7]. In this report, we identified by in silico analysis genes
encoding the Pst transporter system in the SBW25
genome, whose function we experimentally tested. The
Pst system is an ABC-type transporter that takes up P; from
the periplasmic space of Gram negative bacteria. Psp, a
protein secreted outside of the cell, may act to scavenge P;
to the cell surface, where it can be subsequently taken up
by the Pst system. Therefore, the Psp and Pst systems are
very likely involved in phosphate acquisition in a cooper-
ative manner. Although psp is induced by limiting phos-
phate concentrations, its absence does not limit bacterial
competitive growth under laboratory conditions, unlike
pstC. The DING-like LAP proteins may hydrolyze environ-
mental organophosphates, following secretion, which is
also consistent with a phosphate-scavenging role. It is
noteworthy that PstS sequences which are duplicated in
some Pseudomonas genomes may be significantly differ-
ent, implying that there may also be functional variance
within this sub-family of phosphate-binding proteins.

Bacteria living in complex environments, e.g. plants and
animals, utilize the type II secretion pathway for extracel-
lular release of particular proteins, such as toxins and
hydrolytic enzymes [15]. Two functionally independent
type II secretion systems (Xcp and Hxc) have been
described in P. aeruginosa [14]. Interestingly, in addition
to the Xcp and Hxc homologues, the P. fluorescens SBW25
genome harbors an additional copy of the Type II gene
cluster (Rainey lab, unpublished). Here we showed that
the DING protein secretion was greatly reduced in the
HxcR mutant PBR828 (AhxcR), suggesting that there may
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be some functional redundancy amongst the three type 11
secretion systems.

Psp is regulated by P; limitation but its expression is not
elevated in the plant environment, indicating that P;is not
depleted in our plant growth system. On the contrary,
hxcR is not induced by P; limitation but shows elevated
levels of expression in sugar beet seedlings. While the
result implicates important roles of the Hxc secretion sys-
tem in bacterium-plant interaction, like most plant-induc-
ible genes [20,21], the signals that induce hxcR expression
in planta are currently unknown.

Conclusion

Proteins belonging to the DING family have very poorly
defined physiological roles. Functional investigation of
eukaryotic DING proteins is hindered by the unavailabil-
ity of full amino acid sequences in most cases and by the
absence of full gene sequences in the eukaryotic genome
and EST databases. Insight into the function and gene reg-
ulation of the prokaryotic members of DING protein fam-
ily may provide valuable cues as to the functions of the
DING proteins in general. A previous study showed that
Psp from P. fluorescens SBW25 is capable of binding P; in
vitro [9]. In this report we demonstrated in P. fluorescens
SBW25 that Psp is expressed under P;limitation and is an
exoprotein, secretion of which is mainly dependent on
the alternative type II secretion system (Hxc). Interest-
ingly, expression of the Hxc system is elevated on plant
surfaces, which is first reported here. Moreover, the Pst P;
transporter system was predicted in the SBW25 genome
and its function was experimentally characterized in par-
allel to Psp. Results show that Pst is induced by phosphate
limitation and it is required for bacterial competitive
growth in phosphate limiting medium. Taken together,
the data implicate functional roles of Psp in bacterial
phosphate metabolism. Psp and Pst could form an effi-
cient phosphate scavenging system, which contributes to
physiological adaptation to phosphate limited environ-
ments.

Methods

Bacterial strains, plasmids and growth conditions

The ancestral strain of P. fluorescens SBW25 is a plasmid-
free, non-pathogenic bacterium belonging to the rRNA
group I of fluorescent Pseudomonas isolated from sugar
beet phytosphere [10]. Escherichia coli DH5aApir [23] was
used as a recipient strain for gene cloning and then a
donor for conjugative transfer into Pseudomonas cells. A
summary of other bacterial strains and plasmids used in
this study is provided in Table 2. P. fluorescens and E. coli
strains were routinely grown in Luria-Bertani (LB)
medium [24] at 28°C and 37°C, respectively. In P;limita-
tion studies, P. fluorescens strains were grown in a defined
citrate medium [25] that contains citric acid (4.0 g/l),
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Table 2: Bacterial strains, plasmids and oligonucleotide primers used in this work

Strain, plasmid or primer Relevant properties Source/reference
P. fluorescens

SBW25 Wild type strain isolated from sugar beet [10]
SBW25-Sm Spontaneous Sm" derivative of SBW25 [20]
SBW25AdapB DAP/lysine auxotroph of SBW25 [20]
PILO82 The hxcR-'dapB'lacZ IVET fusion strain of SBW25AdapB, Tcr This work
PIL082-1 AdapB DUP(hxcS-psp)::pIVETD, the psp-'dapB'lacZ IVET fusion strain, Tcr This work
SBW25-lacZ SBW?25 marked with 'lacZ in a phage locus [28]
PBR826 Apsp or Apflu2427, SBW25 with a nonpolar deletion of psp, Tcs This work
PBR827 ApstC or Apflu3317, SBW25 with a nonpolar deletion of pstC, Tcs This work
PBR828 AhxcR or Apflu2424, SBW25 with a nonpolar deletion of hxcR, Tcs This work
PBR829 DUP(hxcS-psp)::pUIC3, the psp-'lacZ fusion strain of SBW25, Tcr This work
PBR830 DUP(pstS-pstC)::pUIC3, the pstC-'lacZ fusion strain of SBW25, Tcr This work
Plasmid

pRK2013 Helper plasmid, Tra*, Km~ [34]
pUIC3 Integration vector with promoterless 'lacZ, oriR6K, Mob*, Tcr [21]
pIVETD DAP-based IVET vector, pUIC3 with promoterless 'dapB'lacZ, oriR6K, Tcr [20]
pIVETD-13 pIVETD containing 0.8 kb psp fragment fused to 'dapB'lacZ, oriR6K, Tcr This work
pUIC3-61 pUIC3 carrying psp-'lacZ fusion, oriR6K, Tcr This work
pUIC3-62 pUIC3 carrying pstC-'lacZ fusion, oriR6K, Tcr This work
pUIC3-4| pUIC3 containing 1.6 kb psp deletion fragment, oriR6K, Tc" This work
pUIC3-63 pUIC3 containing 1.6 kb pstC deletion fragment, oriR6K, Tc" This work
pUIC3-64 pUIC3 containing 1.9 kb hxcR deletion fragment, oriR6K, Tcr This work
Primer2

psp-| GAAGATCTGTTGCGTGCCCTGGAAG

psp-2 cagcatgcggatccgttgacggaAGCGAGGGTCATGGATACCG

psp-3 tccgtcaacggatccgeatgctgCGGCAACACCAACGTCTGC

psp-4 GAAGATCTGCTGCTGGAAATCCACGGT

hxcR-1 GAGATCTGCGGTAATGGCCACCTATG

hxcR-2 cagcatgcggatccgttgacggaCGCTGCACCTCGCTGATCGA

hxcR-3 tccgtcaacggatccgeatgetgTCGACGACGATGTGCGCAGC

hxcR-4 GAGATCTATGCCAATTCAAACGCGCCA

pstC-1 GAGATCTTCACCAAGCACCTGGCGG

pstC-2 cagcatgcggatccgttgacggaAGCCGTGCTTTTCCATGCCT

pstC-3 tecgtcaacggatcegeatgetgTCGCTGTTTGCACCGGCCAAC

pstC-4 GAGATCTGCCGGTGGGCAAGACGATTTTC

a Restriction sites incorporated into the primers are underlined. Complementary sequence designed for the SOE-PCR is indicated by small letters.

(NH,),SO, (1.0 g/1) and MgSO,-7H,0O (0.2 g/l). Addi-
tionally, Na,HPO, and KH,PO, were added at the concen-
tration of 6.0 g/l and 3.0 g/l, respectively in phosphate
rich medium (PR), whereas in phosphate-limited (PL)
medium they are added at 2.4 mg/l and 1.2 mg/l, respec-
tively. IVET fusion strains of SBW25AdapB were cultivated
in minimal M9 medium [24] supplemented with diami-
nopimelate (DAP) and lysine at the concentration of 800
pg/ml and 60 pg/ml, respectively. A Pseudomonas selective
CFC (Cetrimide, Fucidin, and Cephalosporin) from
Oxoid (Hampshire, UK) was supplemented in the LB agar
plates to select for P. fluorescens recovered from plant.
When necessary, antibiotics were added to the following
concentrations (pug/ml): tetracycline (Tc), 15; kanamycin
(Km), 50; Streptomycin (Sm), 100; nitrofurantoin (NF),
100. Nutritional supplements of diaminopimelate (DAP)

and lysine were added at the final concentration of 800
pg/ml and 60 pg/ml, respectively.

DNA manipulations

General DNA recombination techniques were used
according to standard protocols [24]. Plasmids and DNA
fragments from agarose gels were extracted and purified
using kits from Qiagen (Biolab Ltd., Auckland, NZ). DNA
restriction and modification enzymes and T4 DNA ligase
were purchased from Roche (Auckland, NZ) and used as
recommended by the manufacturer. P. fluorescens SBW25
genes were amplified from genomic DNA by polymerase
chain reactions (PCR) using Tag DNA polymerase from
Invitrogen (Auckland, NZ). DNA was sequenced using the
BigDye Terminator Sequencing kit (Applied Biosystems,
Auckland, NZ) on an automated DNA Sequencer, model
310 (Perkin Elmer).
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Construction of lacZ fusions and assays for (-
galactosidase activity

To construct lacZ fusions to psp and pstC, DNA fragments
(~800 bp) were amplified from P. fluorescens SBW25 by
using primer pairs "psp-1/-2" and "pstC-1/-2", respec-
tively. The PCR products were first cloned into pCR8/GW/
TOPO (Invitrogen, Auckland, NZ) and sequence identity
was confirmed by DNA sequencing. The DNA was
retrieved by BglIl and BamHI digestion and cloned into
the BgIII site of pUIC3 (Mob+, Tra"). Gene orientation was
then determined by restriction analysis of BgllI and EcoRI.
The resulting plasmid (pUIC3-61 or pUIC3-62) was
mobilized into P. fluorescens SBW25 by a general proce-
dure of plasmid conjugation with the help of pRK2013
(Mob+, Tra+). Transconjugants were selected on LB plates
supplemented with nitrofurantoin (to counter-select E.
coli) and Tc. The recombinant plasmid integrated into the
genome by a single event of insertion-duplication. Correct
integration was confirmed by PCR.

B-galactosidase activities were assayed by using 4 MUG (4-
methylumbelliferyl-B-D-galactoside) as the enzymatic
substrate. The product (7-hydroxy-4-methylcoumarin, 4
MU) was detected using a Hoefer DyNA Quant 200 fluor-
ometer (Pharmacia Biotech, Auckland, NZ) with an emis-
sion and excitation wavelength of 460 nM and 365 nM,
respectively. Cell density was determined by measuring
the absorbance of the culture at 600 nm. The enzyme
activity was expressed as "amol 4 MU/min/cell".

Site-directed mutagenesis of P. fluorescens SBW25 and
fitness assays

The psp, pstC and hxcR deletion mutants were constructed
by a previously described protocol of SOE-PCR (splicing
by overlapping extension using the polymerase chain
reaction) [26] in conjunction with a two-step allelic
exchange strategy. Two DNA fragments flanking the
deleted region of a gene were amplified by two primer
pairs, e.g. psp-1/psp-2 and psp-3/psp-4 in the case of psp
deletion. The two DNA fragments were then joined
together by PCR reaction using primers psp-1 and psp-4
(this was possible because of the complementary
sequences incorporated into primers psp-2 and psp-3).
The resulting ~1.6 kb DNA fragment was cloned into
pCR8/GW/TOPO and sequenced to ensure that it was
error-free. The DNA fragment was retrieved by BgIII then
cloned into the delivery vector pUIC3 to generate pUIC3-
41 (for Apsp), pUIC3-63 (for ApstC) and pUIC3-64 (for
AhxcR).

To delete psp (or pstC or hxcR) from the genome of SBW25,
pUIC3-41 (or pUIC3-63 or pUIC3-64) was mobilized
into SBW25 by conjugation with the help of pRK2013
(Tra*). Integration by homologous recombination was
selected on LB plates supplemented with nitrofurantoin,

http://www.biomedcentral.com/1471-2180/7/114

tetracycline and X-gal. To select for allelic exchange
mutants, purified single blue-colored transconjugants
were subjected to cycloserine enrichment as previously
described [27]. Allelic exchange mutants (white-colored
and Tc-sensitive) were examined by PCR to distinguish
the mutants from wild type.

Fitness of the mutant strains in laboratory media and in
planta was assessed by direct competition with a lacZ-
marked "wild-type" strain of P. fluorescens SBW25
(SBW25-lacZ) as previously described [28]. The mutant
and the wild-type competitor were counted on LB agar
plates supplemented with X-gal. Population densities (N;)
determined at time ¢ = 0 and at t = T were used to calcu-
lated the Malthusian parameter [29], which is the average
rate of increase and was calculated for both competitors:
m; = In [N;(T)/N;(0)]. Relative fitness is expressed here as
the selection rate constant (SRC): r; = m; - m;, resulting in
a fitness of zero when competing organisms are equally
fit.

In vivo expression technology analysis and plant
experiments

Isolation process of the PIL082 fusion was previously
described [20]. To construct the psp IVET fusion, the ~800
bp DNA fragment used for the construction of psp-lacZ
fusion (pUIC3-61) was cloned into the BgIII site of the
DAP-based IVET vector pIVETD to generate pIVETD-13,
which has psp fused to the promoterless 'dapB reporter.
PIVETD-13 was then integrated into the psp locus of
SBW25 by conjugation with the help of pRK2013. The
obtained psp IVET fusion strain was named PIL082-1.

Ability of the IVET strains to grow in planta was assessed
by a competitive colonization assay in sugar beet seed-
lings [22]. The fusion strain was mixed 1:1 with a compet-
itor strain (SBW25-Sm) and inoculated onto coated sugar
beet (Beta vulgaris var. Amethyst) seeds, which were germi-
nated and cultivated in 15 ml plastic tubes filled with
non-sterile vermiculite. About 1000 cells were inoculated
and two weeks after plant sowing bacteria from the shoot
and rhizosphere (roots with attached vermiculite) were
counted on LB plates supplemented with lysine, DAP,
CFC and X-gal. The competitor strain SBW25-Sm was
counted in LB plates with CFC and streptomycin and
present in all treatments at the similar levels (~104 per
shoot and ~106 per rhizosphere).

Immunochemical analysis

Two antisera were used in these experiments. A rabbit
antiserum to a conjugated, synthetic peptide correspond-
ing to the N-terminus of the human DING protein, was
prepared and used as previously described [3]. The second
antiserum (anti-Psp) was made in NZ White rabbits, with
recombinant DING protein from P. fluorescens SBW25 [9]
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as the antigen, using standard methods. Double immun-
odiffusion was carried out in 1.5% (w/v) agarose gels.
Western blotting was carried out as previously described
[3], using 12% precast SDS-PAGE gels (Bio-Rad, Auck-
land, NZ). The wild-type SBW25 and mutant strains Apsp
and AhxcR were grown to the same cell density in 5 ml cul-
tures. Supernatants were freeze-dried, and resuspended in
0.1 ml 30 mM Tris-HCI buffer (pH 7.5). Cell pellets were
similarly resuspended, sonicated and re-centrifuged. For
immunodiffusion, 0.025 ml samples were used, and for
electrophoresis, 0.015 ml, in each case. Triplicate cultures
were analyzed, and a typical result is shown in each case.

Computational analysis

PstS was identified by BLAST (basic local alignment search
tool) search of the complete SBW25 genome sequence
using the deduced amino acid sequence of psp (pflu2427).
The SBW25 Psp and PstS sequences were then used in
BLAST searches for homologues in other Pseudomonas spe-
cies or strains deposited in the Pseudomonas genome data-
base v2 [30]. Amino acid sequences were aligned using
ClustalX program [31] and a phylogenetic tree con-
structed using the neighbor-joining method [32]. The tree
was displayed in TreeView [33].

Abbreviations
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