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Abstract

Background: Coagulase-negative Staphylococcus epidermidis has become a major frequent cause of
infections in relation to the use of implanted medical devices. The pathogenicity of S. epidermidis
has been attributed to its capacity to form biofilms on surfaces of medical devices, which greatly
increases its resistance to many conventional antibiotics and often results in chronic infection. It
has an urgent need to design novel antibiotics against staphylococci infections, especially those can
kill cells embedded in biofilm.

Results: In this report, a series of novel inhibitors of the histidine kinase (HK) YycG protein of S.
epidermidis were discovered first using structure-based virtual screening (SBVS) from a small
molecular lead-compound library, followed by experimental validation. Of the 76 candidates
derived by SBVS targeting of the homolog model of the YycG HATPase_c domain of S. epidermidis,
seven compounds displayed significant activity in inhibiting S. epidermidis growth. Furthermore, five
of them displayed bactericidal effects on both planktonic and biofilm cells of S. epidermidis. Except
for one, the compounds were found to bind to the YycG protein and to inhibit its auto-
phosphorylation in vitro, indicating that they are potential inhibitors of the YycG/YycF two-
component system (TCS), which is essential in S. epidermidis. Importantly, all these compounds did
not affect the stability of mammalian cells nor hemolytic activities at the concentrations used in our
study.

Conclusion: These novel inhibitors of YycG histidine kinase thus are of potential value as leads
for developing new antibiotics against infecting staphylococci. The structure-based virtual screening
(SBVS) technology can be widely used in screening potential inhibitors of other bacterial TCSs,
since it is more rapid and efficacious than traditional screening technology.
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Background

In recent years, coagulase-negative strains of Staphylococcus
epidermidis have become frequent causes of infections in
connection with surgically implanted medical devices
[1,2]. In parallel, the appearance of multi-resistant and
vancomycin-resistant S. epidermidis strains has increased
quickly due to the increasing use of antibiotics in hospi-
tals [3]. The primary pathogenicity trait of S. epidermidis
has been associated with its ability to form biofilms on
surfaces of medical devices, limiting severely the efficacy
of many conventional antibiotics, and biofilms may also
protect the bacteria against attacks from the host defence
system [4,5]. It has also been observed that aminoglyco-
side antibiotics may trigger biofilm formation in some
bacteria [6]. There is therefore an urgent need to design
novel antibiotics against staphylococcus infections, espe-
cially in relation to biofilm development. Recently, the
complete genome sequences of two S. epidermidis strains,
viz. the non-biofilm-forming strain ATCC12228 and the
biofilm-forming strain RP62A, have been published [7,8],
bringing about new opportunities to discover potential
antimicrobial targets using in silico genome analyses.

Two-component system (TCS) control proteins, harbor-
ing histidine kinase (HK) and response transcription reg-
ulator activities, have been uncovered in most bacteria.
Recently, the TCSs have attracted attention due to their
potential as novel antibacterial targets, especially those
required for regulation of bacterial growth and virulence
in pathogenic microorganisms [9,10]. One TCS, YycG/
YycF, highly conserved and specific to low G+C Gram-
positive bacteria has been shown to be essential for Bacil-
lus subtilis and Staphylococcus aureus survival [11,12].
Inhibitors of the YycG HK, such as synthetic imidazole
and zerumbone derivatives, or aranorosinol B, obtained
by screening acetone extracts from 4000 microbes, have
been documented to be effective antibacterial agents
against B. subtilis [13,14]. Identification of this limited
number of YycG inhibitors required laborious biological
and chemical experiments, and the side-effects of these
compounds on mammalian cells remain unclear. Moreo-
ver, B. subtilis may not be an optimal model organism to
investigate biofilm formation, a process of major impor-
tance for the virulence of staphylococci. This prompted us
to demonstrate that S. epidermidis possesses a homolo-
gous YycG/YycF TCS, and to investigate whether it would
be an appropriate target for the design of novel antibacte-
rial agents. As a prerequisite we set up a rapid and conven-
ient procedure for screening novel inhibitors of the YycG/
YycF TCS, testing the possible effects of these inhibitors on
both planktonic and sessile bacteria, while using the
extreme sensitivity of mammalian cells as a control to put
aside compounds that would display a non-specific effect
on membranes.

http://www.biomedcentral.com/1471-2180/6/96

Upon binding, many small molecules may affect the func-
tions of proteins. Functional analysis has been the basis of
a variety of experiments, in which synthetic or purified
small molecules have been used to probe the molecular
mechanisms underlying the biological processes in which
target proteins are involved. This chemistry-based
approach has been coined "chemical biology" [15]. Com-
binatorial chemistry and in vivo or in vitro High Through-
put Screening (HTS) constitute preferred approaches for
discovering active compounds against particular protein
targets [16]. A complementary approach is to use compu-
tational methods to identify active compounds (binders
or hits) targeting the three-dimensional (3D) structure of
the substrate binding pocket of a protein. This in silico
approach is called Structure-Based Virtual Screening
(SBVS) [16-19].

In the present study, we first identified the homologous
YycG/YycF TCS in the genomes of the S. epidermidis
ATCC12228 and RP62A strains. Next, a 3D structural
model of the conserved HATPase_c domain of S. epider-
midis YycG HK was constructed by using the homologous
modeling approach. Subsequently, the SBVS method was
used to search for potential YycG inhibitors from the
SPECS chemical lead-compound database. Of the 76 can-
didates selected from the database by SBVS, seven com-
pounds were active in inhibiting growth of S. epidermidis
on plates or in liquid media. Five of these compounds dis-
played bactericidal effects on both planktonic and biofilm
cells of S. epidermidis. Except for one, the compounds
bound to the YycG protein and inhibited its auto-phos-
phorylation in vitro. These compounds displayed low
cytotoxicity on mammalian cells and were not hemolytic,
indicating that they may be good leads to develop new
antibiotics against staphylococci infection.

Results

In silico identification of the YycG/YycF TCS in
S.epidermidis

Based on sequence homology, we identified likely coun-
terparts of the YycG/YycF TCS (GenBank accession
number: AY864800/AY864801) in the genomes of S. epi-
dermidis ATCC12228 and RP62A. The sequence of the
YycG protein in S. epidermidis is highly homologous to
those of S. aureus and B. subtilis (92% and 46% identity,
respectively). The same is true for the YycF protein (97%
and 76% identity, respectively). As YycG and YycF are
"persistent" proteins in Firmicutes [20] we can be confi-
dent that their function is preserved in the clade. More
importantly, attempts to inactivate the orthologous yycG/
yycF genes identified in S. epidermidis (this work) also
failed with homologous recombination technology, indi-
cating that this TCS is required for bacterial growth of S.
epidermidis (data not shown). Domain analysis indicates
that the YycG protein of S. epidermidis contains one trans-
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membrane segment, and several domains identified in
other proteins: HAMP (a domain present in Histidine
kinases, Adenylyl cyclases, Methyl-accepting proteins and
Phosphatases), PAS (a domain initially found to be com-
mon to Period circadian protein, Ah receptor nuclear
translocator protein, and Single-minded protein), HisKA,
and HATPase_c, all common to bacterial HKs [21]. More-
over, the YycF protein of S. epidermidis possesses a con-
served REC domain containing a phosphoacceptor site
that may be phosphorylated by YycG, and a Trans_reg_C
domain, belonging to the OmpR-like winged helix-turn-
helix DNA-binding domains (Figure 1A). Interestingly,
multi-alignment of HATPase_c domain sequences with
counterparts of Bacteria from the structural Protein Data
Bank (PDB) showed that the sequences around the ATP
binding site in most bacteria were similar, showing four
conserved important motifs — the N box, G1 box, F box
and G2 box [22]. This demonstrated that the ATP binding
domain of HKs is highly conserved in bacteria, suggesting
that it may be used as a potential target for antibacterial
agents screening [23]. Comparison of the YycG
HATPase_c domain of S. epidermidis with similar domains
in the database showed that the most homologous
sequence was the similar domain of the E. coli osmosen-
sor EnvZ, a TCS molecule, with 30% sequence identity
and 49% conservative replacements (Figure 1B). EnvZ was
therefore used as a template for modeling the 3D structure
of the YycG HATPase_c domain of S. epidermidis.

A 3D model of the YycG HATPase_c domain of S.
epidermidis

To search for potential inhibitors of YycG HK by virtual
screening, we constructed a 3D model for the YycG
HATPase_c domain of S. epidermidis based on the NMR
structure of the homologous domain of the E. coli osmo-
sensor EnvZ (PDB entry 1BXD) [24]. The resulting model
3D structure is shown in Figure 2. The final structure was
checked and validated using several programs such as Pro-
stat and Profile-3D [25]. This model superposed well with
the NMR structure of the homologous domain of EnvZ,
the root-mean-square deviation (RMSD) for the Co atoms
being about 1.708 (Figure 2A). The HATPase_c domain of
YycG is thus predicted to fold in a similar way to that in
EnvZ, containing five stranded B-sheets and four a-heli-
ces, which form a two-layered o/ sandwich structure
(Figure 2B). The surface shape and the general features of
the HATPase_c domain of YycG were further investigated
by using the MOLCAD module of Sybyl 6.8 [26]. The ATP
binding site consists of two different cavities connected by
a gorge-like channel (Figure 3). This structural prediction
was used for virtual drug screening, bearing in mind that
only further experimental evidence would validate the
model.

http://www.biomedcentral.com/1471-2180/6/96

Discovery of potential inhibitors of the S. epidermidis
YycG HK by Virtual Screening

The ATP-binding pocket formed by residues within a
radius of 5 A around the ATP site of the YycG HATPase_c
model of S. epidermidis was used as the target site for high
throughput virtual screening (HTVS). In a first step,
85,000 potential drug-like molecules, constituting an in-
house database (named SPECS_1), were selected from the
SPECS database using the drug-selection filter developed
by Zheng et al. [27]. The SPECS_1 database was searched
for potential binding molecule structures using the pro-
gram DOCK4.0 [28,29] in a primary screening. The most
optimal 10,000 structures were subsequently re-scored
using the FlexX program [30] and CSCORE [31], a consen-
sus scoring method that integrates five popular scoring
functions. Two hundred molecules passed this highly
selective filter. Finally, 100 molecules were manually
selected from the latter sample as inhibitor candidates,
according to their molecular diversity, their shape com-
plementarity, and their potential for forming hydrogen
bonds in the binding pocket of the YycG HATPase_c
domain. Of those 100 candidates, 76 compound samples
could be purchased from the SPECS Company for further
experimental assays.

Antimicrobial activities of potential YycG inhibitors in
vitro

Since the YycG/YycF TCS is essential for growth and sur-
vival in B. subtilis and S. aureus [11,12], its conservation in
sequence and in genome organization in S. epidermidis
strongly suggests that it is essential in this organism as
well. To test this possibility, we explored whether the
potential YycG inhibitor candidates obtained by virtual
screening could inhibit bacterial growth. At a concentra-
tion of 200 uM in liquid culture in a first screening proce-
dure, seven out of the 76 candidates completely inhibited
growth of S. epidermidis. The seven inhibitors belong to
four different classes of chemical structures: three thiazo-
lidinone analogs (compounds 2, 5, and 7), two benza-
mide analogs (compounds 1 and 3), one furan derivative
(compound 4) and one derivative of pyrimidinone (com-
pound 6), as shown in Figure 4.

Subsequently, the Minimal Inhibitory Concentration
(MIC) values of these 7 compounds were determined,
using the standard tube-dilution assay (Table 1). These 7
compounds were further shown to have similar MIC val-
ues when tested against 4 clinical isolates of S. epidermidis
from different patients in the Zhongshan Hospital of
Shanghai, China (data not shown). Compounds 1-6
showed similar MIC values (see Table 1) on the S. epider-
midis non-biofilm-forming strain ATCC12228 and on the
biofilm-forming strain RP62A, whereas compound 7 was
only effective against the non-biofilm-forming strain
ATCC12228. We also investigated their inhibitory effect
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Figure |

Domain analysis of the YycG/YycF TCS of S. epidermidis. (A) Domain analysis of the two-component system (TCS)
YycG/YycF of S. epidermidis ATCC12228. The analysis was performed based on the SMART database and the descriptions of
putative functions of domains were also from SMART. HAMP: dimerization; PAS: FAD, heme, and cinnamic acid binding;
HisKA: Phosphoacceptor, dimerization; HATPase_c: ATP-binding, Phosphorylation of HisKA domain, REC: phosphoacceptor,
Trans_reg_C: DNA binding. The columns represent the transmembrane segment predicted by the TMHMM?2 program, and
the arrows indicate the start and end sites of the YycG protein fragment — YycG', as described in EXPERIMENTAL PROCE-
DUES. (B) The sequence alignment of the HATPase_c domain of YycG in S. epidermidis and that of EnvZ in E. coli. The height of
columns below the alignment represents the similarity between two proteins. "*" denotes identical residues between two
sequences, ":" means similar residues, "." means a bit different, and blank means completely different. Schematic alignment dia-
gram was made by the program CIustaIX
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Figure 2

The modeled structure of the YycG HATPase_c domain of S. epidermidis. (A) Structure superposition of the mod-
eled structure of YycG HATPase_c domain of S. epidermidis (blue) with the NMR structure of the homologous domain of EnvZ
in E. coli (yellow). Only backbones are shown in this picture. (B) The solid ribbon representation of the structure model of the
YycG HATPase_c domain. The YycG HATPase_c domain of S. epidermidis folds into a two-layer sandwich structure. Four high
conserved motifs, N-box (Asn499~Tyr507), GI-box (lle53~lle538), F-box (Asp544~Phe547), G2-box (Gly563~Gly567),
around the catalytic domain of the HPK encompasses the active ATP-binding pocket and a long loop from Asp548 to Ala574
drifts outside the pocket. The substrate-binding site is located at the deep cleft among N, G1, F, G2 boxes. Schematic diagrams

were made by the program Molscript.

against other Gram-positive pathogenic cocci which pos-
sess the homologous YycG/YycF TCS. This experiment
showed that compounds 2 and 5 were effective against S.
aureus, Streptococcus pyogenes and Streptococcus mutans,
compound 1 and 3 inhibited the growth of S. aureus and
S. pyogenes, and compound 4 was only active against S.
pyogenes. In contrast, none of these compounds were
active against Gram-negative bacteria, such as Escherichia
coli or Pseudomonas aeruginosa at the concentration of 200
UM. This is consistent with the absence of a YycG/YycF
TCS counterpart in these genomes and, taken together,
this is a first observation suggesting that these compounds
are not likely to act by trivial interaction with membrane
structures. Subsequently, we investigated the bactericidal
activity of these compounds against S. epidermidis using a
standard Minimal Bactericidal Concentration (MBC)
assay. Five compounds (1-5) had their MBC values
(about 4 times MIC) below the threshold (200 uM), and
no obvious differences were observed between the bio-
film-forming strain and non-biofilm-forming strain of S.
epidermidis (Table 1).

Killing biofilm cells of S. epidermidis by potential YycG
inhibitors

Standard MIC/MBC assays measure anti-microbial activi-
ties on planktonic bacteria, whereas antibiotic resistance
is reported to be enhanced up to 1000-fold in the same

cells when they develop in biofilms [32]. We therefore
measured the bactericidal effect of compound (1-7) on
sessile cells of S. epidermidis. Vancomycin, one of the anti-
biotics usually used in multidrug-resistant staphylococci
associated infections [33], was as a comparison (MBC/
MIC = 4 pg/ml/1 ug/ml in S. epidermidis RP62A strain).
Compared with vancomycin, the potential YycG inhibi-
tors (compounds 1-5) showed better killing efficiencies
against 24-hour-old biofilm cells of S. epidermidis at their
MBC values, respectively (Figure 5). The best chemical
(compound 5) reduced the CFU of the biofilm cells more
than 100-fold (relative to an untreated control). In con-
trast, vancomycin caused no increased killing of the bio-
film cells even when the concentration was increased to
128 pg/ml, relative to that of its MBC value of 4 ug/ml
(data not shown). In addition, recent data by using confo-
cal laser scanning microscope (CLSM) also confirmed that
these compounds exhibited much better killing effects
than vancomycin on cells embedded in mature biofilms
of S. epidermidis clinical isolates (data not shown.

Binding dffinity of potential YycG inhibitors to the YycG'
protein

The in vivo effects of the inhibitors extracted from the in sil-
ico screening procedure are consistent with YycG being
their target. However, there is no straightforward extrapo-
lation from in silico design to accurate identification of a
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Figure 3

Shape and surface features of the ATP-binding pocket of the YycG HATPase_c domain in S. epidermidis. (A).
View from the front of the pocket of the HATPase_c domain. (B) View from the top of the pocket of the HATPase_c domain.
To display the bottom of the pocket clearly, some residues which cover the top of the pocket were taken off from the surface.
The ATP binding pocket is fairly large and deep. Two cavities joined by a gorge-like channel construct the whole binding
pocket. The inner small cavity of the pocket is hydrophobic, composed of residues Phe498, Val501, Phe56, lle53, and the ade-
nine ring of natural ligand ATP may interact with this area just as in the NMR structure of EnvZ[24]. The space compressed by
Asn503 and Lys542 in the middle of the pocket form the narrow channel. The outer large cavity of pocket divides into two
parts (I and Il) in terms of its surface property. Area | composed of residues Phe46, Thr483, lle484, Phe485, Met493, and
Leu598, exhibits hydrophobic character; Area |l locates near entrance of the binding pocket and show hydrophilic character.
Schematic diagrams were made with the MOLCAD program in Sybyl (see Methods).

target in vivo. In order to confirm the interaction of the
potential YycG inhibitors with their putative target pro-
tein, recombinant His-tagged YycG' protein (the fragment
of YycG protein used in the in silico approach, approxi-
mately 34 kDa as indicated in Methods) was overpro-
duced by using the pET28a plasmid, and purified using
the ProBond™ Purification System (see Additional File 1,
the protein purity is above 95%). The binding affinities of
the seven putative YycG inhibitors to the YycG' protein
were determined by using Surface Plasmon Resonance
(SPR) in vitro. Six compounds (1-5 and 7) displayed high
binding affinities to the YycG' protein (Table 2), whereas
compound 6 only bound very poorly to the YycG' protein.
All the 6 positive compounds displayed a significant and
dose-dependent binding pattern in the SPR response. Five
compounds (1-5) showed characteristic square-wave
binding curves, indicating that these compounds form
unstable complexes with the YycG' protein in a process of
fast association and fast dissociation (only compound 1
was shown in Figure 6A). Compound 7 displayed a slow

association and slow dissociation reaction, forming a rel-
atively stable complex with the YycG' protein (Figure 6B).
The data were fitted to a steady-state affinity model for
compounds 1-5 and a kinetic-state model for compound
7 using the Biacore 3000 software to evaluate the corre-
sponding binding affinities (K, values), as shown in Table
2. The K, value of compound 6 can not be calculated
because of its very poor binding affinity to the YycG' pro-
tein.

Inhibition of the YycG' protein ATPase activity in vitro

The common characteristic of HKs is ATP-dependent
auto-phosphorylation, associated with the conserved
HATPase_c domain. We measured the effects of our
potential YycG inhibitors on the protein ATPase activity
by using the Kinase-Glo™ Luminescent Kinase assay.
Firstly, the putative kinase activity of YycG' protein was
measured by quantifying the amount of ATP remained in
solution after reaction. A direct relationship existed
between the luminescence measured with the Kinase-
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The chemical structures of seven antibacterial compounds as potential YycG inhibitors. These compounds include

three derivatives of thiazolidinone (compounds 2, 5, and 7), two derivatives of benzamide (compounds | and 3), one derivative
of furan (compound 4) and one derivative of pyrimidinone (compound 6).
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Table I: Minimal inhibitory concentrations and minimal bactericidal concentrations of seven potential inhibitors of the YycG histidine
kinase

Chemical Minimal inhibitory concentration (MIC, uM) Minimal bactericidal concentration
inhibitor 2 (MBC, uM)

S. epidermidis S. epidermidis S. aureus S. pyogenes S. mutans S. epidermidis S. epidermidis

ATCCI12228 RP62A ATCC29213 144 128 ATCCI12228 RP62A
Compound | 50 50 50 200 >200 200 200
Compound 2 25 25 25 100 100 100 100
Compound 3 12.5 25 100 25 >200 50 100
Compound 4 12.5 12.5 >200 50 >200 50 100
Compound 5 6.25 6.25 6.25 1.56 6.25 25 25
Compound 6 100 100 >200 undone undone undone undone
Compound 7 0.2 >200 >200 >200 >200 >400 >400

a Stock solution of the compounds were prepared in dimethyl sulfoxide (DMSO) at the concentration of 200 LLM. The molecule weights of these
seven compounds are: compound | (652), compound 2 (519), compound 3 (532), compound 4 (440), compound 5 (623), compound 6 (555) and
compound 7 (505).

Glo™ Reagent and the amount of ATP (see Additional File g protein in each reaction system), the luminescence was
2A), indicating the sensitivity of this assay is good. After ~ decreased in all the groups containing different ATP con-
adding purified YycG' protein into the reaction system (4  centrations, compared with parallel groups without YycG'
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Figure 5

Killing biofilm cells of S. epidermidis by potential YycG inhibitors. Mature biofilm of S. epidermidis RP62A strain were
formed in 12-wells polystyrene plates (see Methods). The effect of various compounds (dissolved in DMSO) on biofilm-cov-
ered cells was investigated: TSB medium (control, the first column); TSB medium with an equal volume of DMSO solution
(control, the second column); TSB medium with various compounds at their MIC values (black columns); TSB medium with
various compounds at their MBC values (white columns). This assay was repeated three times and the values represented the
mean and SD from three experiments. The concentrations we used in this assay (MBC/MIC): CI (200 uM/50 uM), C2 (100
uM/25 uM), C3 (100 uM/25 uM), C4 (100 uM/12.5 uM), C5 (25 uM/6.25 uM), and Van (4 ug/ml/1 pg/ml), according to the
results from MBC/MIC assays with planktonic cells of S. epidermidis RP62A strain. C: compound, Van: vancomycin.
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Binding affinities of the potential YycG inhibitors to the YycG' protein determined by using SPR. Real-time meas-
urement of the interactions of compounds | (A) and 7 (B) to the YycG' protein was done by using the Biacore 3000 instru-
ment. The curves represented the interaction of various concentrations of compounds (shown in the figures) with the protein.
The compounds were injected for 120 s, and dissociation was monitored for more than |150s (see Methods).
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Table 2: Biological effects of seven potential inhibitors of the YycG histidine kinase

Chemical inhibitors MICs (uM) 2 Kp value (uM) b ICso (UM) for YycG'c  CCs, (UM) on Vero Hemolysis (%) ©
cell d
Compound | 50 27.8 48 >200 <0.1 (<0.1)
Compound 2 25 .1 29 96 2.3 (6.1)
Compound 3 12.5 40.4 15 152 <0.1 (0.5)
Compound 4 12.5 2.8 135 >200 0.1 (0.4)
Compound 5 6.25 23 14 >200 0.1 (0.3)
Compound 6 100 - >200 >200 I.1(23)
Compound 7 0.2 15.7 6.5 >200 <0.1 (<0.1)

2 The concentrations (M) listed here were equal to those listed in Table 2, as tested on S. epidermidis ATCC 12228.
b K value represents the binding affinity of various inhibitors to the YycG' protein, compound 6 showed a very low binding affinity, and could not

calculate its Kj value with software.

¢1C;, represents the concentration of inhibition of 50% the YycG' protein autophosphorylation. As the highest concentration tested was 50 UM,

compound 6 displayed poor ability of inhibition.

4 CCs, represents the concentration that produce a 50% cytotoxicity effect on Vero cell, as the highest concentration tested corresponding to 200

uM

¢ The healthy human erythrocytes were used for the hemolysis assay, and the hemolytic activity of seven inhibitors were shown at their MICs and 4

% MICs (the numbers in the parenthesis) for S. epidermidis ATCC12228 strain.

treatment (see Additional File 2B), since the kinase can
hydrolyze ATP for its auto-phosphorylation. Keeping the
ATP concentration constant (50 M), the luminescence
was continuously decreased following the amounts of
purified YycG' protein increased (see Additional File 2C).
The results indicated that the purified YycG' protein pos-
sesses the ATPase activity in vitro. At a concentration of 50
UM, compounds 1-5 and 7 decreased the ATPase activity
of 4 ug YycG' protein in the presence of 3 uM ATP by 52%
to 86% (52%, 61%, 70%, 76%, 73% and 86%, respec-
tively), indicating that the binding affinities of these com-
pounds to YycG' correlate well with their inhibitory
activities of auto-phosphorylation of YycG'. In contrast,
compound 6, which binds poorly to the YycG' protein,
showed almost no activity against YycG' ATPase activity
(approximately 7% inhibition at 50 uM). The concentra-
tions needed to decrease YycG' ATPase activity to 50%
(IC5 values) by the 6 active compounds (1-5 and 7) were
calculated by gradual dilution of these compounds with
an invariable concentration of protein (4 pg) and ATP (3
uM), as shown in Table 2. The IC;, value of compound 6
was above 200 UM under the same reaction conditions. As
a comparison, the fragment of another HK protein SrrB'
containing homologous domains with YycG' in S. epider-
midis [45] was also expressed and purified to observed the
inhibitory effect on protein phosphotylation by these 6
potential YycG inhibitors (1-5 and 7) (Supple. Table 1).
At the concentration of 50 UM, only compound 5 displays
much lower inhibitory effect (20%) on SirB' than it does
(73%) on YycG', while the other 5 compounds have
almost no inhibitory effects.

Cytotoxicity and hemolysis of the antimicrobial
compounds in vitro

While several of the compounds we identified could be
used as excellent drug leads, acting on targets that are

absent from eukaryotic cells, they still may display toxicity
by interfering with unexpected targets. As a step to rule out
this possibility we analyzed the cytotoxicity of com-
pounds 1-7 on a Vero cell line (Vero 76, African Green-
monkey) by using the traditional 3-(4,5-dimethylthiazol-
2-yl)-2,5-diphenyl tetrazolium bromide (MTT) method
(the Cell Proliferation Kit I, Roche, see Methods). This
approach would also provide us a very sensitive assay to
draw aside a trivial action of these products on membrane
lipid bilayers. Remarkably, as shown in Table 2, most
CC;, values were higher than the highest inhibitor con-
centration used (200 uM), except in the case of two inhib-
itors (compounds 2 and 3) which had CCy, values below
200 uM (CCs is the concentration that induces a 50%
cytotoxicity effect on Vero cells). Furthermore, at the con-
centration of their respective MIC values, all these com-
pounds displayed very low (< 10%) or almost no
cytotoxicity (data not shown). It has been reported that
some TCS inhibitors induce hemolysis of mammalian
erythrocytes, which has hindered the further development
and application of these inhibitors [34]. This prompted us
to analyze the possible membrane damage caused by our
potential YycG inhibitors by examining hemolysis of
healthy human erythrocytes possibly induced by these
compounds. At their MIC concentrations, compounds 1-
7 displayed no apparent hemolysis (< 5% of the zero con-
trol). This compares well with the effect of conventional
antibiotics such as tetracycline and ciprofloxacin (Table 2
and Figure 7). At their 4 times MIC concentrations, only
compound 2 showed a little hemolysis (~6% of the zero
control), and at the highest concentration (200 uM), the
hemolytic activity of compound 2 was increased to ~16%
of the zero control.
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Hemolytic activities on healthy human erythrocytes of 7 potential YycG inhibitors. The MICs of 7 inhibitors are
compound | (50 uM), compound 2 (25 uM), compound 3 (12.5 uM), compound 4 (12.5 uM), compound 5 (6.25 uM), com-
pound 6 (100 uM), and compound 7 (0.2 uM), respectively. The MICs of Tet and Cip are both 0.25 pg/ml. Each assay was per-
formed in quadruplicate and repeated twice. The values represented the mean and SD from one separate experiment. Cells
with no compounds treatment and with 1% Triton-100 treatment were for the zero and 100% hemolysis controls, respec-
tively. Black and white columns represented the concentrations of 4xMICs and MICs of 7 inhibitors and two conventional anti-

biotics, respectively. Tet: tetracycline, Cip: ciprofloxacin.

Interaction models of potential YycG inhibitors to the
target protein

As potential YycG inhibitors, six compounds (1-5 and 7)
selected by in silico screening bound with high affinity to
the YycG' protein and inhibited its ATPase activity in vitro.
To further investigate the sites of interaction between the
compounds and the YycG protein, and to develop a strat-
egy for designing novel inhibitors, models of the interac-
tion of the compounds with the YycG protein were
analyzed based on docking simulations.

The surface of the YycG HATPase_c domain shows two
significant hydrophobic areas located in the ATP-binding
pocket. One is placed in the inner small cavity and is com-
posed of residues Phe498, Val501, Phe56 and Ile53; the
other is positioned in the front of the outer larger cavity,
consisting of residues Phe46, Thr483, Ile484, Phe485,
Met493, and Leu598 (Figure 3). Most of these residues are

conserved in bacterial HKs. The binding conformations of
the inhibitors designed in the present study in the ATP-
binding pocket of the YycG HATPase_c domain are shown
in Figure 8. Although their structures are diverse, they
adopt similar interactions with the conserved domain.
According to the interaction models, a four-point phar-
macophore can be figured out for describing the binding
of the inhibitors (Figure 9): the middle part of each inhib-
itor has two hydrogen bond acceptors, hydrogen bonding
to Asn503 and Lys542, which stabilize each one of the six
inhibitor candidates in the binding pocket; the hydropho-
bic moieties of the inhibitors fit well into the two hydro-
phobic cavities. Noticeably, the binding model revealed
that Asn503 is of prime importance for stabilizing the
interactions between the inhibitors and the YycG protein.
This is well in agreement with previous biological func-
tion studies which demonstrated that the conserved
Asn503 in the N box was necessary for ligand binding in
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both classes I and II TCS [35,36]. In contrast, Lys542 is a
residue specific to YycG. Our binding models have pro-
vided new possibilities for studies of the biological func-
tion of Lys542 in ligand binding and catalysis of YycG
(Figure 9). Besides those interactions, the hydrophobic
area (mainly constructed by residues Val500, Ile536,
Ile538, Pro539, Thr592 and Ile594) may bind hydropho-
bic parts of different compounds and stabilize these in the
inner hollow of the pocket. Most of these residues are con-
served in homologous HKs (data not shown).

Discussion

The YycG/YycF TCS is conserved and specific for low G+C
Gram-positive bacteria such as B. subtilis, S. aureus, Strepto-
coccus pneumoniae and Listeria monocytogenes [11,12,37,38].
This TCS has been shown to be essential in B. subtilis [39]
and could not be inactivated by direct mutation in S.
aureus [12], and which also occurs in S. epidermidis (this

http://www.biomedcentral.com/1471-2180/6/96

work). Moreover, several genes involved in cell-wall bio-
synthesis and metabolism, such as teichoic acid biosyn-
thesis protein F [40], and cell wall synthesis protein YpfP
[41] were predicted to be regulated by this TCS in S. epi-
dermidis based on the presence of a potential YycF consen-
sus DNA binding recognition sequence similar to the one
described in B. subtilis and S. aureus [42,43], although this
predicted result needs to be further verified (Qin et al,
unpublished data). We have therefore explored the possi-
bility of using the YycG HK as a potential target in a
screening for new antibiotics.

Compared with biological and chemical screening for
new antibiotics, the advantage of SBVS technology is the
rapid, economical and efficient throughput. Furthermore,
lead-compound databases provide ample sources for
screening, whereas chemical synthesis is time consuming
and expensive. As a case in point, the use of lead-com-

Figure 8

Interaction models of the six potential YycG inhibitors to the HATPase_c domain of YycG protein. Six potential
YycG inhibitors (compounds 1-5 and 7) were docked into the ATP-binding pocket of YycG protein. Surface of the pocket was
made by the MOLCAD program in Sybyl. They interact with residues in the binding site by a rather similar mode. Inhibitors

were figured using stick mode with different colors: compound | (white), compound 2 (purple), compound 3 (red), compound

4 (yellow), compound 5 (green), and compound 7 (blue).
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Figure 9
Four-point pharmacophores model for the six potential inhibitors binding to the YycG protein. Four-point phar-
macophores models of inhibitors compose of two hydrogen bond acceptors, which interact with Asn503 and Lys542, and two
hydrophobic centers (orange spheres) on the both side of gorge of the binding site, which interact with hydrophobic residues,
it was constructed by DISCO in Sybyl based on the six inhibitors and could provide useful information for novel inhibitor
design and structural modification. A (compound I); B (compound 2); C (compound 3); D (compound 4); E (compound 5); F
(compound 7).

pound databases has already led to the discovery of the
diarylquinoline lead-compound against Mycobacterium
tuberculosis [44].

Screening 80,000 possible compounds in silico we finally
retained 7, among which 6 were promising candidates as
potential YycG HK inhibitors. These 6 compounds bound
to the YycG protein in vitro and inhibited its ATPase activ-
ity, while they were also active antimicrobials against S.
epidermidis. This does not prove, however, that YycG is the
only target when compounds interact with bacteria. In
fact, we have found a total of 16 putative TCSs in the
genome of S. epidermidis, including YycG/YycF. Because
they have many core features in common, we cannot

exclude that some of the compounds may also bind to
other HKs. This would in fact enhance the antibiotic effect
of the compounds. To investigate this possibility, we
expressed and purified the fragment of another HK of S.
epidermidis — SrrB (designated as SrrB' containing similar
domains with YycG' described in Methods), which is
involved in the TCS SrrB/SrrA [45]. We analyzed the
effects of the 6 active compounds (1-5 and 7) on the
auto-phosphorylation of this purified protein. We
observed that only compound 5 (at 50 uM) inhibited the
auto-phosphorylation of SrrB'. The inhibition was
approximately 20% lower than that demonstrated here on
YycG' (73%) under the same reaction conditions (see
Additional File 3). This suggests that the compounds dis-
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play a certain degree of specificity dependent on the char-
acteristics of the HATPase_c domain structure in the
different HKs.

One of the interesting and challenging goals of new
searches for anti-microbial compounds is to identify
potential drugs which are equally active against plank-
tonic and sessile bacteria (biofilms). The YycG inhibitor
compounds described here were found to have somewhat
reduced bactericidal effect on mature biofilms of S. epider-
midis. These compounds were, however, much more effi-
cient against sessile bacteria than the commonly used
staphylococcus antibiotic, vancomycin. In fact, vancomy-
cin was almost without effect against biofilm cells (even at
128 ug/ml), as also reported by others [46]. This was
accounted for in S. aureus by reduced penetration of van-
comycin and delay of the exposure of the bacteria in the
biofilm deeper layers [47]. However, it remains unknown
whether the situation is the same with our compounds in
S. epidermidis biofilms. Interestingly, seventeen com-
pounds among the 76 candidates we retained for further
studies were active in inhibiting biofilm formation with-
out interfering with bacterial growth. Most of them did
not bind to the YycG' protein nor inhibit its auto-phos-
phorylation in vitro, indicating that these compounds are
not potential inhibitors of the YycG HK (data not shown).
Their targets in S. epidermidis and the mechanisms of
inhibiting biofilm formation are still under investigation.

In previous studies, some potential inhibitors of histidine
kinase appeared to display trivial side effects, such as
membrane disruption, excessive protein binding or lim-
ited bioavailability. This prevented their further develop-
ment [34]. In this study, the potential YycG inhibitors
displayed low cytotoxicity and low hemolysis to mamma-
lian cells at the effective concentrations we used in vitro.
We are now in the process of finding out the more effec-
tive derivatives, using those as leads. In future work, an
appropriate animal model also needs to be established to
investigate the effect of these compounds in vivo.

Conclusion

In our study, these novel inhibitors of YycG histidine
kinase are considered as promising lead-compounds for
developing new reagents against staphylococci infections.
Furthermore, the structure-based virtual screening (SBVS)
technology can be widely used for discovery of potential
bacterial TCSs inhibitors in both Gram-positive and
Gram-negative species, even on other "drug target" pro-
teins. And it is more rapid and efficacious than traditional
screening technology.

The abbreviations used are
TCS, two-component system; HK, histidine kinase; SBVS,
structure-based virtual screening; HTS, high throughput
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screening; MIC, minimal inhibitory concentration; 3D,
three-dimensional; SPR, surface plasmon resonance.

Methods

Bacterial strains, media and reagents

Staphylococcus epidermidis ATCC12228 and RP62A strains
were purchased from the American Type Culture Collec-
tion (ATCC, Manassas, USA). Staphylococcus aureus
ATCC29213, Escherichia coli ATCC25922 and Pseudomonas
aeruginosa ATCC27853 were kindly provided by Dr. Bijie
Hu at Zhongshan Hospital (Shanghai, China). S. epider-
midis strains se527, se886, se847, seG203, Streptococcus
pyogenes strain 144, and Streptococcus mutans strain 128
were all clinical isolates from Zhongshan Hospital and
Huashan Hospital (Shanghai, China). If not stated other-
wise, S. epidermidis and S. aureus strains were grown at
37°C in tryptic soy broth (TSB, Oxoid) containing 0.25%
glucose, E. coli and P. aeruginosa strains were grown at
37°C in Luria-Bertani (LB, Oxoid).

All compounds used as inhibitor candidates were pur-
chased from the SPECS Company in the Netherlands.
Stock solutions of the compounds were prepared in dime-
thyl sulfoxide (DMSO). All other chemicals were of rea-
gent grade or ultra-pure quality and purchased from
Sigma.

Bioinformatics analysis

Domain analysis was performed based on the SMART
database [48]. The complete genome sequences of the two
S. epidermidis strains, ATCC12228 (NC_004461) and
RP62A (NC_002976) were accessed from the National
Center for Biotechnology Information (NCBI) genome
database [49]. The homologous sequences with the YycG
HATPase_c domain of S. epidermidis were searched from
the Protein Data Bank (PDB) [50], using the BLASTp pro-
gram [51]. ClustalX was used to align the protein
sequences [52].

3D structure modeling of the YycG HATPase_c domain

The sequence of S. epidermidis HK YycG was retrieved from
GenBank (accession number AY864800). The Align123
module encoded in Insightll [53] was used in the pair-
wise sequence alignment. Using the secondary structure
information of EnvZ (PDB entry 1BXD) [24], the
sequence alignment was adjusted manually to obtain a
fine alignment for 3D structure construction. The 3D
model of the YycG HATPase_c domain was generated by
using the MODELLER program [54] encoded in InsightII.
Finally, the whole structural models were optimized using
the Discover_3 module of InsightIl with CVFF force field.
Several structural analysis softwares such as Prostat and
Profile-3D [25] were used to check the structure quality.
The Prostat module of Insightll was used to analyze the
properties of bonds, angles, and torsions. The Profile-3D

Page 14 of 18

(page number not for citation purposes)


http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NC_004461
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NC_002976
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY864800

BMC Microbiology 2006, 6:96

program was used to check the structure and sequence
compatibility.

Structure-based virtual screening

Before docking the small molecules of interest on the
model structure, we delineated the general features that
the binding pocket should have. Major residues possibly
composing the ATP-binding site of YycG HATPase_c
domain were identified by the sequence alignment with
the osmolarity sensor protein EnvZ of E. coli, and the ATP-
binding pocket was probed on the optimized 3D model of
YycG HATPase_c domain using the SiteID program
encoded in Sybyl6.8 [26]. The surface (electrostatic,
hydrophobic and hydrogen bonding) properties of the
binding pocket of the YycG HATPase_c domain were cal-
culated using the MOLCAD program encoded in Sybyl6.8.
The ATP-binding pocket of the YycG HATPase_c domain
was used as a target for screening the SPECS database
using the docking approach [55]. The SPECS database
contains the structural information of 280,000 small mol-
ecules. The SPECS Company supplies all the compound
samples collected from different sources. As a first step,
the SPECS database was submitted to our own filter of
drug-ability [27], non-drug-able molecules were elimi-
nated from the database, and finally 85,000 potential
drug-able molecules were selected out for docking screen-
ing. The program DOCK 4.0 [28,29] was used for primary
screening. Residues within a radius of 5 A around the ATP-
binding pocket of the YycG HATPase_c domain were used
for constructing the grids for the docking screening. Dur-
ing the docking calculations, Kollman-all-atom charges
[56] were assigned to the protein, and Gasterger-Hiickel
charges [57,58] were assigned to the small molecules.
Conformational flexibility of the compounds from the
database was implemented in the docking search. During
DOCK simulation, the ligand-receptor binding energy
was approximated by the sum of the van der Waals and
electrostatic interaction energies. After an initial evalua-
tion of orientation and scoring, a grid-based minimiza-
tion was carried out for the ligand to locate the nearest
local energy minimum within the receptor binding site.
Position and conformation of each docked molecule were
optimized using the single anchor search and torsion
minimization method of DOCK 4.0. The 10,000 com-
pounds with the highest score as obtained by DOCK
search were selected for a second round docking using the
FlexX program [30], and CSCORE [31] was used to re-
score the compounds. The virtual screening was per-
formed on a 392-processor Sunway-1 supercomputer at
the Shanghai Supercomputer Center.

Minimal inhibitory concentration (MIC) and minimal
bactericidal concentration (MBC) assays

MIC assays for the antibacterial activities of the com-
pounds were performed according to the broth micro-
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dilution (in tubes) method of the Clinical and Laboratory
Standards Institute (CLSI) of America [59]. The Minimal
Bactericidal Concentration (MBC) was obtained by sub-
culturing 100 pl from each negative (no visible bacterial
growth) tube from the MIC assay, onto substance-free
Mueller-Hinton agar plates. The plates were incubated at
37°C for 24 hours, and the MBC was defined as the lowest
concentration of substance which produced subcultures
growing no more than five colonies on each plate.

Killing biofilm cells of S. epidermidis by potential YycG
inhibitors

An overnight culture of S. epidermidis strain RP62A was
diluted 1:100 in TSB containing 0.25% glucose, then 1 ml
bacterial suspension was inoculated into the wells of ster-
ile 12-well polystyrene microtiter plates (Falcon) incu-
bated at 37°C for 24 h. The plates with mature biofilm
were washed gently four times with sterile PBS before add-
ing fresh TSB containing the various compounds at their
MBC values, and incubated at 37°C for 24 h. The plates
were washed again four times with sterile PBS, then the
biofilm cells were scraped from the plate and resuspended
in 1 ml PBS, and violently vortexed to disintegrate clumps
of cells. Next, the suspension was diluted gradually with
sterile PBS and subcultured onto substance-free Mueller-
Hinton agar plates, incubated at 37°C for 24 h, and the
colonies were counted. The fresh medium containing van-
comycin at the MBC value and substance-free fresh
medium served as the controls. The experiment was
repeated three times.

Cloning, expression and purification of the YycG' protein
The YycG' fragment containing the cytoplasmic signal
domains (the HATPase_c and HisKA domain, see Figure
1A) of YycG (370aa to 610aa) was amplified by PCR (with
the chromosomal DNA of S. epidermidis ATCC12228 as
the template, and (5' GCGGATCCACAACAACAAGTC-
GAACGTGAAC 3') and (5' GCCICGAGITATTCATC-
CCAATCACCGTCT 3') as the primers. Subsequently, the
fragment was digested with BamHI and Xholl (TAKARA,
Japan) and ligated into the corresponding sites of pET28a
(Promega, Madison, USA) to obtain pETYycG'. The
expressed YycG' protein was purified with the ProBond™
Purification System (Invitrogen, California, USA), accord-
ing to the manufacturer's protocol.

Compound-YycG' protein binding assay

The in vitro binding affinities of the inhibitor compounds
to the YycG' protein was determined using surface plas-
mon resonance (SPR) biosensor technology on the dual
flow cell Biacore 3000 instrument (Biacore AB, Uppsala,
Sweden) with a similar method as described in our previ-
ous study [60]. Immobilization of the YycG' protein to the
hydrophilic carboxymethylated dextran matrix of the sen-
sor chip CM5 (Biacore) was carried out by the standard
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primary amine coupling reaction. The protein to be cova-
lently bound to the matrix was diluted in 10 mM sodium
acetate buffer (pH 4.2) to a final concentration of 0.3 mg/
ml. Equilibration of the baseline was completed by a con-
tinuous flow of HBS-EP running buffer (10 mM HEPES,
150 mM NacCl, 3.4 mM EDTA and 0.005% (v/v) sur-
factant P20, pH 7.4) through the chip for 1-2 hours.
Biacore data were collected at 25°C with HBS-EP as run-
ning buffer at a constant flow of 20 ml/min. Sensorgrams
were processed by using automatic corrections for non-
specific bulk refractive index effects. The equilibrium con-
stants (Kp,) evaluating the protein-ligand binding affinity
were determined by the steady state or the kinetic state
affinity fitting model encoded in the Biacore analysis soft-
ware.

Inhibition assay for the ATPase activity

The inhibitory activities of the compounds for the ATPase
activity of the YycG' protein was measured using the
Kinase-Glo™ Luminescent Kinase Assay (Promega, Madi-
son, USA). Briefly, 4 pug YycG' protein was pre-incubated
with a series of dilution of compounds in the reaction
buffer (40 mM Tris [pH 7.5], 20 mM MgCl,, and 0.1 mg/
ml BSA), at 25°C for 30 min. Then 3 pM ATP was added
for another incubation of 30 min at 25°C, and Kinase-
Glo™ Reagent was added to detect the rest amount of ATP,
as recorded from luminescence measurements (RLU). In
parallel, theYycG' protein with no addition of compounds
was used as the control. The rate of inhibiting protein
phosphorylation (R;)) by the compounds was calculated
from equation 1:

_ RLU(YycG’ + compound + ATP + Reagent) — RLU(YycG’ + ATP + Reagent)

R
P RLU(ATP + Reagent) — RLU(YycG’ + ATP + Reagent)

x100% (1)

IC;, (the concentration of inhibition of 50% YycG' pro-
tein autophosphorylation) was obtained by using the Ori-
gin v7.0 software (OriginLab, Northampton, USA).

Cytotoxicity and erythrocyte hemolysis assays

Cytotoxicity of the antibacterial compounds on cultured
Vero cell was measured by using the Cell Proliferation Kit
I (MIT) (Roche, Indianapolis, USA) according to the
manufacturer's protocol. Addition of DMSO (1%) in the
medium produced a slight cytotoxicity on Vero cell, which
could easily be corrected for. Each assay was performed in
quadruplicate and repeated three times. The results were
converted to percentage of the control (cells only treated
with 1% DMSO) and CCs, (concentrations that produce a
50% cytotoxicity effect on Vero cell) was calculated by the
Origin v7.0 software (OriginLab, Northampton, USA).
Hemolytic activities of the compounds were determined
by using healthy human erythrocytes [61]. The erythro-
cytes were washed three times in sterile saline and resus-
pended to 5% prior to the assay. Then a volume of 200 pl
cell suspension containing MIC or 4xMIC concentrations
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of the compounds was added in quadruplicate to the
wells of 96-well microtiter plates (Falcon). Cells without
compound treatment and cells with 1% Triton-100 treat-
ment were used as 0% and 100% hemolysis controls,
respectively. The cell suspensions were incubated for 1
hour at 37°C and centrifuged at 1000xg for 10 min. Vol-
umes of 100 pl supernatants were transferred to another
sterile plate and hemoglobin release from the cells was
determined at 570 nm. Addition of DMSO (1%) in the
medium did not affect the integrity of erythrocyte mem-
brane. The hemolysis assays were repeated twice.

Pharmacophore model building

The best conformations of the six inhibitor outputs from
Dock4.0 were superimposed using the DISCO program
[62] encoded in Sybyl6.8. Multi-conformations were gen-
erated for the Flex Searches using Multisearch and REJECT
features. The REJECT feature removes duplicates to leave a
set of unique low energy conformers. DISCO produces a
number of possible pharmacophores. The hypotheses
were grouped on the basis of the assignment of atoms to
features. Four features containing two hydrogen donor
and two hydrophobic centers were detected by DISCO.
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Additional material

Additional File 1

Expression and purification of the recombinant YycG' protein. SDS-
PAGE analysis of crude extracts from E. coli BL21 carrying pET28a (lane
2, prior to IPTG induction; lane 3, IPTG induction), pETYycG' (lane 4,
prior to IPTG induction; lane 5, IPTG induction), purified YycG' (lane 6,
approximately 34 kDa), and molecular weight standards were loaded in
lane 1.

Click here for file
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Additional File 2

Measurement of kinase activity of YycG' protein in vitro. Luminescent
output correlates with amount of ATP (A). A direct relationship exists
between the luminescence measured with the Kinase-Glo™ Reagent and
the amount of ATP. A constant amount of YycG' protein (4 g) was added
into reaction systems containing variant ATP concentrations (B). The
respective reaction system without YycG' treatment was used as control.
Variant amounts of YycG' protein was added into reaction systems con-
taining a constant ATP concentration (50 uM). Each assay was per-
formed in quadruplicate and repeated three times. The values represented
the mean and SD of one separate experiment.

Click here for file

|http://www.biomedcentral.com/content/supplementary/1471-
2180-6-96-S2.tiff]

Additional File 3

Comparison of inhibiting protein autophosphorylation of YycG' and
SrrB' by 6 potential YycG inhibitors. All the compounds were used at the
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protein and 3 uM ATP (see Methods).
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