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Abstract

Background: It has been reported that some marine cyanophage are temperate and can be
induced from a lysogenic phase to a lytic phase by different agents such as heavy metals. However,
to date no significant reports have focused on the temperate nature of freshwater cyanophage/
cyanobacteria. Previous experiments with cyanophage AS-| and cyanobacteria Anacystis nidulans
have provided some evidence that AS-1 may have a lysogenic life cycle in addition to the
characterized lytic cycle.

Results: In this study, the possible temperate A. nidulans was treated with different concentrations
of heavy metal-copper. CuSO, with concentrations of 3.1 x 103 M, 3.1 x [04M, 3.1 x [0->M and
3.1 x 10-¢ M were used to detect the induction of AS-1 from A. nidulans. The population of the host,
unicellular cyanobacteria Anacystis nidulans, was monitored by direct count and turbidity while the
amount of virus produced was derived from plaque forming units (PFU) by a direct plating method.
The ratio of AS-I release from A. nidulans was also determined. From these results it appears that
AS-1 lysogenic phage can be induced by copper at concentrations from 3.1 x [06M to 3.1 x 104
M. Maximal phage induction occurred at 6 hours after addition of copper, with an optimal
concentration of 3.1 x [0-¢ M.

Conclusion: Cu?* s a significant inducer for lysogenic cyanobacterial cells and consequently would
be a potential control agent in the cyanobacteria population in fresh water ecosystems.

Background

Anacystis nidulans is a rod-shaped, unicellular prokaryotic
cyanobacterium and plays an important role in aquatic
ecosystems as a primary producer. It is often used as an
indicator for studying the toxic metabolic levels of heavy
metals. Many heavy metal studies have been done using
A. nidulans as the model system for the reaction of organ-
isms to heavy metal stresses [1-10]. In freshwater environ-

ments, dense algal blooms of cyanobacteria are usually
caused by nutrient enrichment (i.e., nitrogen and phos-
phorus) from sewage, agricultural fertilizers and indus-
trial run-off into waterways [11]. Algal blooms are
considered threat to the water system [11,12]. Cyano-
phage are viruses that infect cyanobacteria and are ubiqui-
tous in both freshwater and marine environments. These
phages play important roles in modulating cyanobacterial
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The growth curve of AN-T and CuSO, treated AN-T. The AN-T growth curves with addition of different concentra-
tions of CuSO, at day 4, and no CuSO, added as the control. A. Control and CuSO, 3.1 x 10-3 M; B. Control and 3.1 x 104 M;
C. Control and 3.1 x 10->M; D. Control and 3.1 x 10-¢ M. 0 O.D. (Control); B Cell no./ml x 107 (Control); O O.D. (Treated);

@ Cell no./ml x 107 (Treated).

populations, affecting primary productivity, increasing
water quality and may have a profound influence on glo-
bal biogeochemical cycles [13,14]. Although the interac-
tion between a cyanophage and its host organism is
important in maintaining water quality in freshwater sys-
tems, little is known about how viruses regulate microbial
mortality in natural waters. Recently, it was found that lys-
ogenic infection was common in marine Synechococcus sp.
[15]. Cyanophage infecting a single strain of marine Syne-
chococcus sp. can reach 103 to 105 per ml in seawater
[14,16-18]. Suttle and Chan [17] have estimated that
between 5-15 % of marine Synechococcus cells were lysed
by cyanophage daily. The discovery of a high abundance
of viral particles (ca. 107 per ml) in natural waters [19,20]
initiated the research on the ecological impact of the viral
infection and lysis of marine microbes. They also pro-

vided evidence that viruses can affect microbial popula-
tions by either going through a lytic cycle, causing
destruction of the host cell, or maintaining a lysogenic
stage, in which the viral genome is inserted and main-
tained as the prophage in its host cell [18]. There was also
evidence to suggest that seasonal changes can cause the
prophage to enter a lytic cycle thus leading to the disap-
pearance of algae blooms [21-23]. Lysogeny can also be
induced to a lytic cycle by pollutants [24].

Although extensive research has been done on the interac-
tion between cyanophage and cyanbacteria in marine sys-
tems, there are no significant reports that have focused on
freshwater cyanophage/cyanobacteria interactions. The
possibility of temperate AS-1 and lysogenic A. nidulans
was suggested by Bisen et al [25], but there was no direct
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Figure 2
PFU from CuSO, induction. Plaque Forming Unit (PFU) from AN-T after the CuSO, induction; a) no plaques, b) proper
numbers of PFUs for counting.

evidence provided. It has been reported that UV, mitomy-
cin C and heavy metals such as copper, cadmium can
induce the release of cyanophage in marine water [22,26].
In this study, different concentrations of copper sulfate
were used to study a possible AS-1 lysogenic life cycle in
addition to the previously characterized lytic cycle. Addi-
tion of copper sulfate led to a significant increase in phage
production, a characteristic of an organism with a lys-
ogenic life cycle. The study of lytic induction from temper-
ate A. nidulans can provide a good model for studying the
interaction between cyanophage and cyanobacteria in
freshwater ecosystems.

Results and discussion

In order to determine if heavy metals could cause induc-
tion of AS-1 from temperate A. nidulans (AN-T), CuSO,
was added at concentrations of 3.1 x 103 M, 3.1 x 104 M,
3.1 x 10°>M and 3.1 x 10-° M at day 4 post innoculation,
the exponential growth stage of the culture. Growth of
AN-T was severely inhibited at concentrations of 3.1 x 10-
3M and 3.1 x 104 M. Growth was affected to a certain
extent in 3.1 x 10> M of CuSO,; growth rate in 3.1 x 10-¢
M CuSO, was very similar to the control (Figure 1).

As results seen in marine cyanobacteria, there is consistent
release of virus through out the lysogenic cycle in the nor-
mal AS-1/A. nidulans infective system. The viral release
was monitored by plaque forming units (PFUs). The rep-

resentative pictures of the plaque forming units (PFU)
after CuSO, induction were obtained from different
treated conditions and illustrated as no plaques and the
proper number of plaques as showed in Figure 2. The
results of AS-1 PFU study, showed that 6 hours after cop-
per induction, 353.00 + 32.57 PFUs were observed from
the control, 483.00 + 18.39 PFUs were observed from 3.1
x 10*M of CuSO,; 416.00 + 8.49 PFUs were formed from
3.1 x 105M of CuSO,, 480.00 + 25.46 PFUs were formed
from 3.1 x 10 M of CuSO,. 24 hours after induction,
372.00 + 16.97, 160.00 + 11.31, 345.00 + 18.39 and
526.00 + 19.80 PFUs were formed compared to the con-
trol, 3.1 x 104 M, 3.1 x 10°M and 3.1 x 10 M of CuSO,
respectively. 48 hours after induction, 479.00 + 36.77,
57.00 £ 9.90, 483.00 + 9.90 and 614.00 + 5.66 PFUs were
formed for the control, 3.1 x 104 M, 3.1 x 10°M and 3.1
x 10-° M of CuSO, induction respectively.

PFUs per 10 A. nidulans was also calculated, 6 hours after
induction, they were 13.57 + 0.23, 27.44 + 1.16, 24.83 +
1.58, and 39.18 + 0.41 respectively for the control, 3.1 x
104 M, 3.1 x 105M and 3.1 x 10-° M of CuSO,. 24 hours
after induction, they were 18.37 + 2.47, 14.29 + 0.44,
21.30 + 1.24 and 29.06 + 0.50 respectively for the control,
3.1 x 104M, 3.1 x 105M and 3.1 x 10°M of CuSO,.. 48
hours after induction, they were 13.42 + 0.65, 4.67 + 0.70,
25.76 + 0.93 and 24.14 + 0.21 respectively for the control,
3.1 x10*M, 3.1 x 10°M and 3.1 x 10-° M of CuSO,.
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Table I: Summary of heavy metal CuSO, induction. Heavy metal CuSO, induction: Summary of the growth of AN-T; PFU; PFU per

10¢ A. nidulans; PFUs change rate for treated/control; PFU per 106 A. nidulans treated/control and PIR with different concentrations of
CuSO, at 6 hours, 24 hours, and 48 hours after addition of different concentrations of CuSO, at day 4 and non-CuSO,added as a

control.
CuSO, Control (No CuSO, added)
Time after induction (hrs) 0 24 48
OD 750 1m 0.32 £ 0.03 0.39 + 0.06 0.45 + 0.03 0.56 + 0.08
Cell numbers (107) 3.60 + 0.28 2.60 £ 0.27 2.06 £ 0.36 3.57£0.10
Plaque Forming Unit (PFU) ND 353.00 £ 32.57 372.00 £ 16.97 479.00 + 36.77
PFU per 108 A. nidulans ND 13.57 +0.23 18.37 + 2.47 13.42 + 0.65
CuSO, 3.1 x 10*M CuSO,
Time after induction (hrs) 0 24 48
OD 750 nm 0.32 £0.03 0.44 £ 0.05 0.34 £ 0.0l 0.36 £ 0.03
Cell numbers (107) 3.60 £ 0.29 1.76 £ 0.14 1.12£0.11 1.22 £ 0.03
Plaque Forming Unit (PFU) ND 483.00 + 18.39 160.00 + 11.31 57.00 £ 9.90
PFU per 108 A. nidulans ND 2744 £ 1.16 14.29 + 0.44 4.67 £0.70
PFUs change rate for ND 1.37 £ 0.08 0.43 £ 0.0l 0.12 £ 0.0l
treatment/control
PFU per 108 A. nidulans ND 0.78 0.35
treated/control
PIR (%) ND 102.20 £ 5.19 -22.20 + 12.60 -65.20 + 3.65
CuSO, 3.1 x 10-M CuSO,
Time after induction (hrs) 0 24 48
OD 750 1m 0.32£0.03 0.36 £ 0.03 0.41 £ 0.04 0.49 £ 0.01
Cell numbers (107) 3.60 + 0.28 1.68 £ 0.14 1.62 £ 0.01 1.875+0.11
Plaque Forming Unit (PFU) ND 416.00 + 8.49 345.00 £ 18.39 483.00 + 9.90
PFU per 108 A. nidulans ND 24.83 + 1.58 21.30 £ 1.24 25.76 £ 0.93
PFUs change rate for ND 1.18 £ 0.09 0.93 £ 0.0l 1.0l £0.06
treatment/control
PFU per 108 A. nidulans ND 1.20 2.00
treated/control
PIR (%) ND 82.98 + 8.6l 15.95 £ 879 91.95 +17.32
CuSO, 3.1 x 10¢M CuSO,
Time after induction (hrs) 0 24 48
OD 750 nm 0.32 £0.03 0.38 £ 0.09 0.44 £ 0.04 0.56 + 0.01
Cell numbers (107) 3.60 + 0.28 1.23 £ 0.08 1.81 £0.10 2.66 £0.13
Plaque Forming Unit (PFU) ND 480.00 + 25.46 526.00 + 19.80 614.00 £ 5.66
PFU per 108 A. nidulans ND 39.18 £ 041 29.06 £+ 0.50 24.14 £ 0.21
PFUs change rate for ND 1.40 £ 0.06 1.41 £ 0.01 1.28 + 0.09
treatment/control
PFU per 10¢A. nidulans ND 1.60 1.80
treated/control
PIR (%) ND 188.37 + 1.80 58.19 + 14.00 79.88 £ 10.68

PIR — Percentage of Increase of Release. ND — Not Detectable.

The comparison of the treated AN-T with the control was
summarized in Table 1. In the concentration of 3.1 x 104
M, the PFUs were obvious at 6 hours after addition of cop-
per; it induced 1.37 + 0.08 (483.00 + 18.39 / 353.00 +
32.57) times the control. At 24 hours and 48 hours after
addition of copper, the PFUs were significantly reduced,
with only 0.43 + 0.01 (160.00 + 11.31 / 372.00 + 16.97)
times and 0.12 + 0.01 (57.00 + 9.90 / 479.00 + 36.77)
times of the control. The PFU per 106 A. nidulans with cop-
per of 3.1 x 104 M was 2.00 (27.44/13.57), 0.78 (14.29/
18.37) and 0.35 (4.67/13.42) times of the control at 6, 24
and 48 hours respectively. With concentrations of 3.1 x

10-> M, PFUs were 1.18 + 0.09 times (416.00 + 8.49 /
353.00 + 32.57), 0.93 + 0.01 times (345.00 + 18.39 /
372.00 £ 16.97) and 1.01 + 0.06 times (483.00 + 9.90 /
479.00 + 36.77) of the control at 6, 24 and 48 hours
respectively after the addition of copper. The PFU per 10°
A. nidulans with copper of 3.1 x 10->M was 1.80 (24.83/
13.57), 1.20 (21.30/18.33) and 2.00 (225.76/13.42)
times of the control at 6, 24 and 48 hours respectively
after the addition of copper. With a concentration of 3.1 x
10-°M, the number of PFUs was 1.40 + 0.06 times (480.00
+ 25.46 / 353.00 + 32.57), 1.40 + 0.01 times (526.00 +
19.80 / 372.00 = 16.67) and 1.28 + 0.09 times (614.00 =
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Figure 3

Percentage of Increase of Release (PIR) from CuSO,
induction. Heavy metal CuSO, induction: PIR at 6 hours, 24
hours, and 48 hours after addition of different concentrations
of CuSO, at day 4 and non-CuSO, added as a control.

5.66/479.00 + 36.77) of the control at 6, 24 and 48 hours
respectively after the addition of copper. The PFU per 10°
A. nidulans with copper of 3.1 x 10° M was 3.00 (39.18/
13.57), 1.60 (29.06/18.37) and 1.80 (24.14/13.42) times
of the control at 6, 24 and 48 hours respectively after the
addition of copper. Concentrations of 3.1 x 10-3 M may be
too high to be inducers for releasing of temperate cyano-
phage AS-1 (Figure 1). This concentration of copper may
be toxic for the growth of the cells and induce lethality
through different mechanisms (4).

From this study, the Percentage of Increase of Release
(PIR) was also calculated for different conditions. The
results indicated that 6 hours after addition of copper,
102.20 + 5.19 %, 82.98 + 8.61 % and 188.37 + 1.80 % of
increase of release were observed at 3.1 x 104M, 3.1 x 10
5Mand 3.1 x 10-° M of CuSO, respectively. 24 hours after
the addition of copper, the induction efficiency was not of
major consequence with 3.1 x 104 M of CuSO,. The PIR
was negative with a value of -22.20 + 12.60 %. The PIR
was 15.95 + 8.79 % and 58.19 + 14.00 % at 3.1 x 10°M
and 3.1 x 10® M of CuSO, respectively. 48 hours after
addition of copper, the PIR for 3.1 x 104 M of CuSO, was
-65.20 + 3.65 %. The PIR was 91.95 + 17.32 % and 79.88
+ 10.68 % at 3.1 x 10°M and 3.1 x 10° M of CuSO,
respectively (Figure 3).

While there is no clear evidence to explain why induction
decreases over time, it is possible that either the phage/
host interaction stabilizes after the initial stress or the
toxic effect of heavy metal on the host causes a disruption
in phage production.

http://www.biomedcentral.com/1471-2180/6/17

Although the heavy metal induction rates varied depend-
ing on the concentrations of the heavy metal, the overall
induction of copper compared to control is clear. The
results suggest that Cu2+ is a significant inducer for tem-
perate AS-1 released from AN-T. The results correlated
well with the study of induction for marine cyanobacterial
lysogen although AS-1 release rate and induction rate by
copper were much lower than the marine cyanophage/
cyanobacterial lysogen studies [14,21,26]. Further study
with other reported inducers mitomycin C and UV was
also carried out to compare the PIR of both mitomycin C
and UV with copper studies. The maximum PIR for differ-
ent factors are showed in table 2. It is indicated that cop-
per, UV and mitomycin C are able to induce the release of
phage with PIR of 188.37 + 1.80, 154.38 + 15.00, and
162.86 + 4.00 respectively.

Conclusion

These results suggest that AS-1 lysogenic phage can be
induced by copper with a concentration range from 3.1 x
10-°M to 3.1 x 104 M. The best condition for phage induc-
tion occurred at 6 hours after addition of all these concen-
trations. Copper concentrations of 3.1 x 10 M showed
the highest level of viral induction. Cu2+is an important
inducer for lysogenic cyanobacterial cells and conse-
quently could be a potential trigger in the cyanobacteria
population in freshwater aquatic environments.

Methods

I. Maintenance of cultures of anacystis nidulans and AS-1
I. Culture and maintenance of anacystis nidulans

Anacystis nidulans was obtained from Dr. R. McGowan,
Brooklyn College, N.Y. The culture was inoculated asepti-
cally in a 250 ml Erlenmeyer flask with 100 ml Mauro's
Modified Medium (3 M medium) at pH 7.9 [27]. The cul-
ture was grown in ambient temperature, with constant flu-
orescent light and continuous agitation at 100 rpm. Cell
growth was monitored by direct cell count using a hema-
cytometer and turbidity studied using a Baush & Lomb
Spectronic 20 at OD,s5; ,, [13]. The cultures of A. nidulans
were checked periodically for bacteria contamination by
plating 100 pl of the culture on nutrient agar plates and
observing after a 2 to 3 day incubation period. The stock
cultures were maintained on 3 M agar plates and slants
that were made with 3 M medium containing 2 % agar.

2. Cultures, maintenance and titering of cyanophage AS-1

AS-1 was cultured aseptically in 250 ml Erlenmeyer flasks
containing exponentially growing Anacystis nidulans. Ster-
ile NaCl was added to the infected culture at a final con-
centration of 0.1 M. The flasks were gently shaken for 1
hour at room temperature to facilitate adsorption of the
virus to the surface of the cell. The infected cultures were
then incubated at room temperature under continuous
cool-white fluorescent light. The growth of AS-1 was mon-
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Table 2: Maximum percentage of increase of release (PIR) of copper, mitomycin C and UV. Comparison of maximum PIR of copper,

mitomycin C and UV at different conditions is shown.

Factor Conditions Percentage of Increase of Release (PIR)
CuSO, 3.1 x 10-¢ M at 6 hours of induction 188.37 + 2.00
uv Exposure for 2.5 minutes 154.38 + 15.00
Mitomycin C 0.5 pg/ml at 6 hours of induction 162.86 + 4.00

itored by checking the lysis of the host cell. Host cell lysis
was determined by turbidity studies using a Baush &
Lomb Spectronic 20 at OD,5 ,, [28]. The lysis curve was
generated by determining a decrease in the turbidity of the
infected culture as well as by direct cell count using a hem-
acytometer as previously described.

The population of AS-1 was also monitored by plaque
forming units (PFU). Pure non-viral infected A. nidulans
(10 ml; AN-P) culture was centrifuged at 5,000 rpm for 10
minutes and the cell pellet was collected. At different time
intervals, 2.5 ml were removed from cultures of temperate
A. nidulans (AN-T) treated with different concentrations of
copper and added into the cell pellet and mixed well.
Melted 1 % 3 M soft agar (1 ml) was added to the mixture
and vortexed. The mixture was then poured onto pre-
warmed 2 % 3 M agar plates. After the soft agar solidified,
the plate was placed under continuous "cool-white" fluo-
rescent light for 5-7 days until the plaques (clear zone)
were formed, and counted.

Il. Copper induction

Five ml of AN-T were inoculated respectively into 5 flasks
containing 95 ml of 3 M medium to achieve a concentra-
tion of 1.0 x 107 cells/ ml. The cultures were grown for 4
days to reach exponential growth stage. Copper was then
added to the cultures respectively using the following con-
centrations: CuSO, 3.1 x 103 M, 3.1 x 10*M, 3.1 x 10
M, and 3.1 x 10° M; a culture with no heavy metal was
used as a control. The growth of AN-T was monitored by
direct cell count using a hemacytometer and turbidity
measured using a Baush & Lomb Spectronic 20 at OD5,
am for an 11 day period. The released AS-1 in the culture
was monitored by the plaque plating method at 6 hours,
24 hours and 48 hours after addition of copper.

PFU per 10° cells of treated — PFU per 10° cells of control

Percentage of Increase of Release (PIR) =

X 100%
PFU per 10° cells of control )
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