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Abstract

Background: The Bacillus subtilis glucokinase operon was predicted to be comprised of the genes,
yqgP (now named gluP), yqgQ, and glcK. We have previously established a role for glcK in glucose
metabolism. In the absence of enzymes that phosphorylate glucose, such as GlcK and/or enzyme
[IGle, accumulated cytoplasmic glucose can be transported out of the cell. Genes within the
glucokinase operon were not previously known to play a role in glucose transport. Here we
describe the expression of gluP and its function in glucose transport.

Results: We found that transcription of the glucokinase operon was regulated, putatively, by two
promoters: 6” and cH. Putative 6* and cH-recognition sites were located upstream of and within
gluP, respectively. Transcriptional glucokinase operon — lacZ fusions and Northern blotting were
used to analyze the expression of gluP. GIuP was predicted to be an integral membrane protein.
Moreover, the prediction of GluP structure revealed interesting signatures: a rhomboid domain and
two tetracopeptide repeat (TPR) motifs. Microscopic analysis showed that GIuP minus cells were
unable to divide completely, resulting in a filamentous phenotype. The cells were grown in either
rich or minimal medium. We found GIluP may be involved in glucose transport. ['4C]-glucose
uptake by the GIuP minus strain was slightly less than in the wild type. On the other hand,
trehalose-derived glucose in the growth medium of the GluP minus strain was detected in very low
amounts. Experimental controls comprised of single or multiple genes mutations within the glucose
transporting phosphotransferase system.

Conclusions: gluP seems to be regulated only by a putative cA-dependent promoter. The glucose
uptake and export assays suggest that GluP is important for glucose export and may act as an
exporter. This also supports the role of the glucokinase operon in glucose utilization.

Background Depending upon the physiological state of the cells,
Bacteria can utilize a variety of sugars for growth. How-  assimilated glucose is utilized for cell division, converted
ever, glucose, which is one of the most ubiquitous mon-  into storage compounds, or used for the production of
osaccharides, is used preferentially as a carbon source [1].  secondary metabolites. Bacteria may exploit glucose
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availability ranging from sub-micromolar to millimolar
concentrations, by developing and dedicating several
transporters composed of multiple protein subunits [2,3].
For example, Escherichia coli is known to possess at least
seven transporters capable of acquiring glucose and may
have additional transporters that have not yet been iden-
tified [4]. Bacteria, such as Bacillus subtilis, utilize glucose
via at least two discrete pathways. The first pathway is the
phosphoenolpyruvate-dependent (PEP) phosphotrans-
ferase system (PTS) [5,6]. The PTS comprises enzymes
such as enzyme I (EI), enzyme II (EII), and histidine-con-
taining phosphocarrier protein of the PTS (HPr). Enzyme
II phosphorylates glucose into glucose 6-phosphate upon
uptake [6]. In contrast, the phosphorylation will not occur
in non-PTS transported glucose. The key molecule
involved in the non-PTS pathway is a glucose:H+* sym-
porter (GIcP) [7]. Consequently, phosphorylation of glu-
cose is carried out by a cytoplasmic enzyme glucose
kinase/glucokinase. B. subtilis glucokinase (GlcK) has
been elucidated by us, and is found within the glucoki-
nase operon [8-10]. The operon was predicted to consist
of the genes, yqgP, yqgQ, and glcK, respectively [8]. In con-
trast to glcK, the function of other genes belonging to the
operon are not known. Here we report, for the first time,
the expression of the upstream gene within the B. subtilis
glucokinase operon, yqgP. Structural prediction of YqgP
protein and the role of the protein in glucose transport are
also discussed. Based on our findings, described below,
we have now named YqgP protein as the glucose trans-
porter protein or GluP.

Results

gluP is located within the glucokinase operon and is
putatively regulated by a c*-dependent promoter

By examination of the gluP's upstream sequence, we have
identified a consensus promoter sequence, TAG-
GCG(N)17TTATAA, recognized by o4 as proposed by Kunst
et al. [11,12] and Skarlatos and Dahl [8]. In addition to
that we have found a sequence, GAAG-
GAAAG(N)12ACAGAATTG, within gluP, which would fall
into a recently described signature of the ¢! binding site
(RXAGGAWWW(N),,_,,RXXGAATWW) [13]. Based on
these findings, we constructed several transcriptional glu-
cokinase operon - lacZ fusions. The lacZ was placed
downstream of the constructs replacing glcK. We exam-
ined the transcription of the glucokinase operon - lacZ
fusion during exponential (T,), transition (T,), and sta-
tionary (T,) phase. B. subtilis MD195 harboring a vector
containing lacZ only, served as a negative control (Fig.
1A). Cells carrying glucokinase operon - lacZ fusion lack-
ing both putative 64 and o' recognition sequences (B. sub-
tilis MD202 and MD206) displayed similar f-
galactosidase activities to B. subtilis MD195, suggesting
that the corresponding operon fragment was not tran-
scribed (Fig. 1A). In contrast, cells carrying either the puta-
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tive oA-(B. subtilis MD204, MD205, and MD207) or of-
(B. subtilis MD197, MD198, and MD199) recognition
sequences alone, or both (B. subtilis MD196), were able to
transcribe the corresponding operon fragment, resulting
in bluish-green colonies on LB agar medium supple-
mented with X-Gal (Fig. 1A). Based on these transcrip-
tional glucokinase operon fragment - lacZ fusions, our
results clearly indicated that there were two putative pro-
moters, which were located upstream of and within gluP,
respectively. Together with yqgQ and gicK, gluP expression
is likely under the control of a putative oA-dependent pro-
moter. Meanwhile, a putative c'-dependent promoter
may control only the expression of yggQ and gicK.

B. subtilis MD196 containing both oA and of putative
binding sites within the glucokinase operon fragment —
lacZ fusion displayed higher B-galactosidase activity in the
T, than in the T, and the T,. This data suggests that the
operon's peak transcription occurs during T, (Fig. 1A).
However, cells carrying only the putative cH-dependent
promoter region and yqgQ (B. subtilis MD199) displayed
higher B-galactosidase activity during T, and T, than dur-
ing T,. This indicates that the putative ot had higher
activity in T;,. On the contrary, cells carrying only the puta-
tive oA-dependent promoter region and gluP fragment,
without the o™ recognition site, (B. subtilis MD205) had
much higher B-galactosidase activity than the negative
control (B. subtilis MD195) in all growth phases.

We further verified the glucokinase operon transcripts
with Northern blot analysis. An amplified 449-bp DNA
fragment from gicK was used as a probe and labeled. This
analysis showed two bands with sizes of approximately
2900- and 1600-nt, suggesting that two mRNA products
were transcribed from the glucokinase operon (Fig. 1B).
The band sizes, 2900- and 1600-nt, were in agreement
with the distance between the putative cA-dependent pro-
moter and the glcK stop codon (2878 bp) and between the
putative ct-dependent promoter and the glcK stop codon
(1616 bp), respectively. Interestingly, the 2900 nt band
was intense at T, and gradually diminished as the cells
shifted to the subsequent growth phases. In contrast, the
1600 nt band was initially fairly small at T , and peaked at
T,. This result indicates that there was a work-shift
between the putative o4 and cH. All genes within the glu-
cokinase operon seemed to be transcribed during the
exponential phase. When cells entered the transition
phase, yqgQ and glcK were more abundantly transcribed
than gluP. So far, it seems that o is the principal sigma fac-
tor present in vegetatively growing B. subtilis, while o is
essential for the early stages of sporulation [14]. Taken
together, expression of the transcriptional glucokinase
operon - lacZ fusions and Northern blot analysis demon-
strated that there were two putative promoters regulating
the transcription of glucokinase operon.
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Transcription of B. subtilis glucokinase operon. (A) Glucokinase operon is located between chromosomal 2569.795 and
2572.793 kb, as is available in the SubtiList database [12]. -galactosidase assays of the transcriptional glucokinase operon —
lacZ fusions were determined quantitatively as described in materials and methods. Average value of -galactosidase activity
(U/mg protein) is presented from two independent experiments. 3-galactosidase activity (bluish green colour) was also moni-
tored in vivo using LB plates containing X-Gal. (B) Northern blot of glucokinase transcript with a probe localized within glcK.
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GluP consists of a putative rhomboid domain and two
tetracopeptide repeat (TPR) motifs

gluP (1521 bp) encodes a 56 kDa protein (GluP) compris-
ing of 507 amino acid residues. We searched the Prosite
database of protein families and domains http://

ca.expasy.org/prosite/[15], as well as the protein families
database of alignments and HMMs (pfam) http://

www.sanger.ac.uk/Software/Pfam/[16] to find GluP
domain architectures. It seems that GluP may contain very
interesting signatures. These are the rhomboid domain
and tetracopeptide repeat (TPR) motif.

The rhomboid domain belongs to a family of integral
membrane proteins [17]. Similar to the other thomboid
family members, GluP may contain three strongly con-
served histidines at position 232, 237, and 339 (Fig. 2A).
In addition, GluP may also consist of a conserved serine at
position 288 (Fig. 2A). This Ser-288 is part of a serine pro-
tease motif [17,18]. We further checked for the potential
transmembrane domain of GluP employing the
TMHMM?2.0  http://www.cbs.dtu.dk/services/TMHMM/
[19] and SOSUI http://sosui.proteome.bio.tuat.ac.jp/
sosuiframe0.html[20] programs. GluP consists of six
putative membrane-spanning segments, suggesting that
GluP is likely an integral membrane protein (Fig. 2B).
Bacterial and archaeal members of the rhomboid family
contain six transmembrane helices (TMHs), whereas the
eukaryotic members typically have an additional seventh
TMH [21].

The second signature, a TPR motif, is a degenerate 34
amino acid sequence that is often arranged in tandem
arrays, along with eight conserved consensus residues at
position 4(W/L/Y), 7(L/I/M), 8(G/A/S), 11(Y/L/F), 20(A/
S/E), 24(F/Y/L), 27(A/S/L), and 32(P/K/E) [22-24]. GluP
was predicted to have two TPR motifs, which are posi-
tioned at amino acid residues 424-457 and 458-491 (Fig.
3). The prediction of the TPR motif's secondary structure
revealed two a-helical domains, named A and B (Fig. 3).
The Geno3D program was used http://geno3d-
pbil.ibcp.fr/cgi-bin/geno3d automat.pl?page=/
GENO3D/geno3d home.html[25] to predict the three-
dimensional structure of the protein, based on available
crystallized proteins. Geno3D found human PEX5 TPR
motifs [26], especially the TPR1 and TPR2 motifs, to be a
strong template for deducting GluP TPR tertiary structure
(Fig. 3). Geno3D recognized three helical turns represent-
ing domain B of TPR1 and domains A and B of TPR2 (Fig
3). Domain A of the GluP TPR1 could not be distin-
guished due to lower identities to the template. No avail-
able crystallized proteins could be used as a structural
template for the GluP rhomboid domain.

A protein containing combined rhomboid domain - TPR
motifs seemed rare. BLAST searching [27] showed that,
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besides GluP, there were seven other rhomboid-TPR pro-
teins found in Gram-positive bacteria. Their sequences
can be accessed from GenBank with the IDs NP_242287
(B. halodurans), NP_692844 (Oceanobacillus iheyensis),
NP_464862 (Listeria monocytogenes), NP_470710 (L.
innocua), NP_646318 (Staphylococcus aureus), NP_764790
(S. epidermidis), and ZP_00060595 (Clostridium thermocel-
lum). With respect to GluP, their amino acid identities are
33.1%, 29.6%, 26.8%, 27.0%, 17.9%, 18.9%, and 26.8%,
respectively.

GluP is important for sporulation and normal cell division

GluP minus cells were still able to sporulate (Fig 4). How-
ever, the sporulation frequency was two-fold lower (33
%) than the wild type's. Microscopic analysis showed that
GluP minus cells were defective in their ability to separate
during cell division, resulting in a filamentous phenotype.
The GluP minus cells were grown in either rich or mini-
mal medium (Fig. 4). We then visualized the DNA chro-
mosome and the cell membrane of GluP minus cells with
bisbenzimide and FM5-95 dye, respectively. Bisbenzim-
ide would generate blue fluorescence of the chromosomal
DNA and FM5-95 dye would produce red fluorescence of
the cell membrane when visualized using the proper filter
lenses (Fig. 5). Every GluP minus cell still contained chro-
mosomal DNA, although in a filamentous phenotype
(Fig. 5A). Wild type cells used as a comparison are shown
in Fig. 5B. Taken together, the decrease in the GluP minus
strain's ability to sporulate may be due to the inability of
the cells to divide completely and normally. This may
indicate a role for GluP in cell division. The contribution
of the rhomboid domain and/or the two TPR motifs to the
failure of the GluP minus strain to divide normally war-
rants further studies.

The absence of GluP slightly affects glucose uptake

Since gluP is located within the glucokinase operon and
the gene product, GluP, is predicted to be a transmem-
brane protein, we tested whether GluP plays a role in glu-
cose uptake. We performed a time course study to observe
the ability of GluP minus cells to take up [!*C]-glucose.
Several experimental controls were employed, such as the
wild type cells (positive control), enzyme I16Ic (ptsG::cat)
minus cells (negative control), and GluP (gluP::aphA3)-
enzyme IIGlc minus cells (negative control) (Fig. 6).
Enzyme IIClcis a key molecule involved in PTS - depend-
ent glucose uptake. The gene that encodes enzyme IICL,
ptsG, is highly regulated by glucose [28]. Consequently,
cells were initially grown in medium containing 50 mM
glucose, before adding the ['4C]-glucose, in order to
induce the production of enzyme II¢c. Our experiment
showed that the ability of GluP minus cells to take up
[14C]-glucose was generally lower, i.e. ~20% at 120 s, than
the wild type's (Fig. 6). Nevertheless, the increase of [14C]-
glucose uptake for both wild type and GluP minus cells
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HPQPFEEGLRRLQEGDLPNAVLLFEAAVQQDPKH

MEAWQYLGTTQAENEQELLATSALRRCLELKPDN
QTALMALAVSFTNESLQRQACEILRDWLRYTPAY
PDVQCGLGVLENLSGEYDKAVDCFTAALSVRPND
YLLWNKLGATLANGNQSEEAVAAYRRALELQPGY
IRSRYNLGISCINLGAHREAVEHFLEALNMORKS
ADLLKILAVSDIQIGEYDQAVSLLERAVKKEPKD
HASYYNLALLYAEKNELAQAFKAIQTAVKLKPKE

Domain A

-

\ J

TPR 2

Human protein PEX5 [26] based deduction of three-dimensional structure of GIuP TPR motif (Geno3D program [25]). Amino
acid residues that were used to build the GIuP TPR structure are italicized. The conserved residues are underlined.
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Figure 4

GIuP minus cells (1) phenotype as shown by phase contrast microscopy, in comparison with the wild type cells (2). Cells were
grown either in rich (A) or minimal medium (B). The ability of the cells to sporulate is shown in panel C. Magnification used
was 400 x.

was positively correlated with time, although there wasan  This suggests that both wild type and GluP minus cells
expanding gap in their ability to take up [14C|-glucose  rely on the presence of enzyme ISl to take up [14C]-glu-
(Fig. 6). In contrast, the uptake of [!4C]-glucose by  cose. Surprisingly, cells lacking both GluP and enzyme
enzyme IIClc minus cells was nearly abolished (Fig. 6).  IIClc were able to take up [!4C]-glucose, although at a
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Figure 5
GIuP minus cells (A) phenotype as shown by fluorescence microscopy, in comparison with the wild type cells (B). Chromo-

somal DNA (1) was stained with bisbenzimide (blue fluorescence). Septa and cell membrane (2) was stained with FM5-95 (red
fluorescence). Arrows indicate single cell. Magnification used was 1000 x.
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['4C]-glucose uptake by GluP minus cells was slightly lower than the wild type's. Cells were grown in LB contraining 50 mM
glucose. The B. subtilis strains used are indicated. Standard deviation of two independent experiments is indicated.

much lower [14C]-glucose concentration (i.e. ~80% at 120
s) than the wild type cells (Fig. 6). These mutant cells were
importing glucose only at a limited [!4C]-glucose concen-
tration, i.e. ~50 pmol/mg protein, across the time points
started at 30 s (Fig. 6). The phenomenon here may be due
to the role of non-PTS dependent glucose uptake as sug-
gested by Paulsen et al. (1998) [7].

GluP plays a role in the export of glucose

Once we had found out that GluP was affecting glucose
uptake, we wondered whether GluP might contribute to
glucose export. In order to understand this mechanism,
we set up a more complex experiment involving multiple
mutations in the PTS pathway and glucose metabolism.
We added trehalose in all culture media, so that we could

measure the glucose content in the growth medium if
there was some export of cytoplasmic glucose.

As we reported previously, trehalose was imported via
enzyme 1T of the PTS and was phosphorylated into tre-
halose 6-phosphate [29-31] (Fig 7A). Phosphorylation of
trehalose was subsequently followed by hydrolysis of tre-
halose 6-phosphate into glucose and glucose 6-phosphate
[29-31]. The hydrolysis of trehalose 6-phosphate was cat-
alyzed by a cytoplasmic phospho-a-1, 1-glucosidase
(TreA) [29-31]. The glucose was then phosphorylated by
glucokinase (GIcK) [8,10]. Interestingly, we observed that
there was some glucose detected in the growth medium
[9]. This glucose could be transported back into the cyto-
plasm and phosphorylated by ptsG-encoded enzyme I16k
or via non-PTS' GlcP. A summary of the glucose
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Figure 7

GIuP contributes to glucose export. (A) A model of import-export of glucose by B. subtilis depicts the role of GluP as glucose
exporter, as shown by right panel. Left panel indicates single or multiple eliminations (red or green cross) of proteins used in
this study. Green crosses were part ptsGHI::erm mutation. (B) Glucose content in 50 mM trehalose supplemented LB medium
of the wild type cells or various genotypes of B. subtilis. Standard deviation of two independent experiments is indicated.
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metabolism and transport is depicted on the right panel of
Fig. 7A.

Cells were grown for six hours on trehalose supplemented
medium, before we were able to detect a considerable
amount of glucose in the growth media of wild type, GIcK
(glcK::spc) minus, and enzyme I16I¢ (ptsG::cat) minus cells
(Fig. 7B). The latter mutant cells exported about the same
amount of glucose as the wild type, suggesting a balance
between phosphorylation of glucose and hydrolysis of tre-
halose 6-phosphate. The glucose content was even greater,
i.e. ~7 mM, in the growth medium of cells lacking both
GlcK and enzyme 116k (Fig. 7B). This was probably due to
the accumulation of the glucose byproduct from trehalose
6-phosphate hydrolysis plus the recycling of glucose that
was imported by GlcP (Fig. 7A, left panel). These observa-
tions hinted us to hypothesize that GluP probably carried
out the export of glucose. This was likely to be the case,
since the abrogation of GluP resulted in a very low
amount of glucose in the growth medium of GluP minus
cells (Fig. 7B). As a negative control, we used B. subtilis
QB6020, which lacked enzyme IICIc (encoded by ptsG),
enzyme [ (ptsI), and HPr (ptsH). Cells carrying the pts-
GHI::erm mutation or PTS minus cells were unable to take
up trehalose, and therefore their growth medium con-
tained very little glucose (Fig. 7B). Cells carrying multiple
mutations, i.e. glcK::spc-gluP::aphA3, ptsG::cat-gluP::aphA3,
ptsGHI::erm-gluP::aphA3, glcK::spc-ptsGHI::erm, glcK::spc-
ptsGHI::erm-gluP::aphA3, or glcK::spc-ptsG::cat-gluP::aphA3,
had only very small amounts of glucose in their growth
media (Fig. 7B). These results are strong evidence for the
contribution of GluP in the export of glucose. It is possible
that GluP may act as a glucose exporter.

Discussion

B. subtilis GluP is clearly an interesting molecule. Firstly,
the protein consists of a putative rhomboid domain
(probably located within transmembrane helices) and
two C-terminus TPR motifs. Based on protein structure-
function relationships, the thomboid family may control
many aspects of growth and development [32-35]. Rhom-
boids are thought to have evolved in bacteria and were
later acquired by archaea and eukaryotes through several
independent horizontal gene transfers [21]. Subsequent
evolution of the rhomboid family in eukaryotes took
place through multiple duplications and functional diver-
sification, i.e. by addition of extra transmembrane helices
[21]. It is intriguing that eukaryotic thomboid protein,
evolved from the bacterial membrane transporter, gained
intracellular membrane protease properties. The first
rhomboid family domain was actually identified in Dro-
sophila melanogaster roughoid (Rho), and is involved in
the epidermal growth factor (EGF)-dependent signaling
pathways [18,36,37]. Inactivation of both Rho-1 and
Rho-3 was lethal due to loss of the EGF receptor [32]. The
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loss of EGFR caused the absence of MAP Kinase pathway,
which led to failure in cell differentiation [32]. In simpler
organisms such as bacteria, the inactivation of rhomboid
protein AarA of Providencia stuartii resulted in abnormal
cell division [34]. Here we also provide evidence that
GluP minus cells were defective in their ability to separate
during cell division, resulting in a filamentous phenotype
on both rich and minimal medium (Fig. 4, Fig. 5).
Therefore, it is thought that this phenotype may be related
to the role of the rhomboid domain.

On the other hand, the TPR motif was originally identified
as a protein interaction module in yeast cell cycle proteins
[38,39]. However, TPR motifs have since been shown to
occur in proteins with diverse functions mediating a vari-
ety of different protein-protein interactions [24]. Four
major complexes involving TPR proteins have been iden-
tified: (a) molecular chaperone complex, (b) anaphase
promoting complex, (c) transcription repression complex,
and (d) protein import complex [24]. Based on this func-
tional deduction, the C-terminus containing TPR motif of
GluP may interact with other unknown proteins.

As we have mentioned earlier, GluP is among the first
combined rhomboid-TPR proteins reported. Interestingly,
the seven other bacterial thomboid-TPR proteins are
restricted to Gram-positives. Although we have shown the
possible function of GluP in glucose export, the implica-
tion of combined rhomboid domain and TPR motifs
toward a protein function is still not understood.

The second interesting aspect of GluP is its role in glucose
transport, particularly as an exporter. We now know that
at least two genes, gluP and glcK, within glucokinase
operon contribute to glucose utilization. Whether GluP
and GIcK are able to have direct interaction remains
unclear. The balance of transport reactions involves the
export of metabolic end products and the import of exog-
enous substrates [4]. Glucose can re-enter the cell via the
glucose PTS' enzyme II€lc, which in turn triggers a regula-
tory cascade involving CcpA, HPr, and the HPr kinase
leading to carbon catabolite repression [9]. The glucose-
transporting PTS, which is bacterial specific, plays impor-
tant roles in transport (import), metabolism, and tran-
scriptional regulation [2]. Another method of re-
importing glucose into the cytoplasm is via a non-PTS
pathway, which involves GlcP (Fig. 7A). The expression of
glcP may be induced by the presence of glucose 6-phos-
phate as a result of glucose phosphorylation either by
enzyme II6k or GlcK [5,7,8]. However, the GlcP minus
cells imported only about 30 % less glucose than the wild
type [7]. There was no obvious detectable effect on the
glucose uptake between cells harboring the ptsGHI muta-
tion and cells carrying double mutations in ptsGHI and
glcP [7]. This suggests that the major player in glucose
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uptake was the PTS rather than the non-PTS. Therefore it
is not surprising that glucose was found in much higher
concentrations in the growth medium of enzyme IIClc-
GIcK minus B. subtilis cells than in enzyme IS¢ minus,
GIcK minus, or the wild type cells alone (Fig. 7B). Single
or multiple mutations in the glucose metabolism and
transport pathways provided strong evidence for the pos-
sible role of GluP in exporting glucose. Since GluP itself
may acts as an exporter, we therefore, would like to pro-
pose GluP as a new member of the sugar transporter
family.

Conclusions

Our results confirmed that GluP is located within B. subti-
lis glucokinase operon and is putatively regulated by cA-
dependent promoter. Together with two other genes
within the operon, yggQ and gicK, the transcription of gluP
was prominent during the exponential growth phase (T,)
of B. subtilis. In the course of transition into stationary
growth phase (T, - T,), the transcription of gluP was down
regulated. However, another putative transcription factor,
o, may bind its recognition site within gluP, and there-
fore, maintain the transcript levels of yqgQ and glcK dur-
ing the transition growth phase (T,). Transcription of the
glucokinase operon seems to be completely down regu-
lated once the cells enter the stationary growth phase (T,).
The importance of gluP expression during the exponential
growth phase may be linked to the role of the product,
GluP, in cell division. GluP may contain very interesting
structural signatures: rthomboid domain and two TPR
motifs. It would be intriguing to elucidate the role of these
signatures in the bacterial cell cycle. Nevertheless, this is
among the first reports of a protein with combined
rhomboid-TPR signatures. Microscopic analysis showed
that GluP minus cells were unable to divide normally and
had lower sporulation frequencies than the wild type.
GluP, which is likely located within the transmembrane
helices, may be important for normal cell division.
Another possible role of GluP is in glucose transport. We
obtained evidence that the import of glucose was slightly
reduced in the absence of GluP. However, whether this
was due to incomplete cell division is yet to be confirmed.
More striking evidence of GluP function was a direct cor-
relation with glucose export. Cells lacking GluP were una-
ble to export glucose. Therefore, GluP can be categorized
as one of the glucose transporters. Our results also showed
that gluP is the second gene within the glucokinase
operon, besides glcK, which has a possible role in glucose
utilization.

Methods

Bacterial strains and growth conditions

Bacterial strains used in this work are listed in Table 1. B.
subtilis and E. coli strains were grown at 37°C on LB
medium (1% tryptone, 0.5% yeast extract, and 1% NaCl)
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and supplemented with antibiotics whenever required,
e.g. 5 pg ml-! chloramphenicol, 100 pg ml-! ampicilin, 6
pg ml-! phleomycin, 50 pg ml-! spectinomycin, 25 pg ml-
I kanamycin, 1 pg ml-! erythromycin, 25 pg ml-! lincomy-
cin or 10 pg ml! tetracycline. Minimal medium C [40]
containing 50 pg ml-! tryptophan, 11 pg ml-! ferric citrate,
2 mM magnesium chloride, 1 mM calcium chloride, and
20 mM potassium glutamate was used. Sporulation was
observed in NB medium (Oxoid, England, UK) which
contained 0.1 % Lab-Lemco powder, 0.2 % yeast extract
and 0.5 % NacCl.

Construction of transcriptional glucokinase operon — lacZ
fusions

Primers used to clone different glucokinase operon frag-
ments for transcriptional lacZ fusions are listed in Table 2.
We replaced glcK with lacZ. B. subtilis chromosomal DNA
was used as a PCR template. The amplified DNA was
digested with EcoRI and BamHI and ligated into the corre-
sponding cloning site of plasmid pAC6, which is flanked
by partial amyE gene fragments [41]. The resulting plas-
mid construct was linearized and then transformed into B.
subtilis using the method as described by Kunst et al.
(1994) [42]. Chromosomal integration of the linearized
plasmid containing gene fusion into amyE of B. subtilis
was achieved by homologous recombination. Therefore,
transformants selected on the appropriate antibiotic were
tested for the loss of a-amylase activity on LB starch (1%)
plates (Table 1).

[-galactosidase assay

B-galactosidase activity was assayed qualitatively on LB
plates containing 200 pg ml! of 5-bromo-4-chloro-3-
indolyl-B-D-galactopyranoside (X-Gal). pB-galactosidase
activity was also determined as described by Miller (1972)
[43] with modification as described by Msadek (1990)
[44]. This quantitative assay used o-nitrophenyl-f-D-
galactopyranoside (ONPG) as a substrate. The enzyme
activity is described as units per milligram total protein.

Northern blotting

Total RNA of B. subtilis 168 was isolated and purified
using RNeasy total RNA kit (Qiagen, Hilden, Germany).
The hybridization probe was obtained by amplifying a
449-bp DNA fragment of glcK, using plasmid pMD496 as
DNA template. The following set of primers used was 5'-
gctgegetcggggaaatgtg and 5'-gatacgecgecgecaagaac. An 11
pg denatured total RNA sample was run in 1.3 % agarose-
formaldehyde gel and was transferred to nylon mem-
brane. The membrane was pre-hybridized for 2 h. After-
ward, the membrane was incubated in hybridization
solution containing denatured 32P-labeled DNA probe for
24 h at 42°C [45]. The membrane was then washed once
in washing buffer I for 15 min at RT, twice in washing
buffer II for 45 min at 65°C, and finally in washing buffer
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Table I: Bacterial strains used in this study
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Strain Relevant genotype/phenotype Reference/source

B. subtilis

168 trpC2 (wild type) BGSCs, 1Al

MDI153 trpC2 ptsG::cat [40]

MD186 trpC2 glcK::spc [9]

MD189 trpC2 glcK::spc ptsGHI::erm [9]

MDI191 trpC2 glcK::spe ptsG::cat [9]

MD195 trpC2 amykE::(cat-lacZ) pACS6 tf> | 68>

MD196 trpC2 amyE::(2112 bp EcoRI-BamHI fragment-lacZ, cat) pLR-POI tf> 168>

MD197 trpC2 amyE::(1994 bp EcoRI-Bam HI fragment-lacZ, cat) pLR-POI | tf> 168

MD198 trpC2 amyE::(1673 bp EcoRI-BamHI fragment-lacZ, cat) pLR-POI2 tf> 168

MD199 trpC2 amyE::(974 bp EcoRI-BamHlI fragment-lacZ, cat) pLR-PO13 tf> 1680

MD202 trpC2 amyE::(659 bp EcoRI-BamHI fragment-lacZ, cat) pLR-PO14 tf> 1680

MD204 trpC2 amyE::(464 bp EcoRI-BamHI fragment-lacZ, cat) pLR-PO21 tf> 168

MD205 trpC2 amyE::(1163 bp EcoRI-BamHI fragment-lacZ, cat) pLR-PO31 tf> 168

MD206 trpC2 amyE::(1046 bp EcoRI-BamHI fragment-lacZ, cat) pLR-P032 tf> |68

MD207 trpC2 amyE::(1308 bp EcoRI-BamHI fragment-lacZ, cat) pLR-POI5 tf> 168

MD229 trpC2 gluP::aphA3 pLM-YqgP-Km1 tf> 1680
MD230 trpC2 glcK::spc gluP::aphA3 pLM-YqgP-Km| tf> MD186b
MD231 trpC2 glcK::spc ptsGHI::erm gluP::aphA3 pLM-YqgP-Km| tf> MD 189>
MD232 trpC2 ptsG:cat gluP::aphA3 pLM-YqgP-Km| tf> MD153b
MD233 trpC2 glcK::spc ptsG:cat gluP::aphA3 pLM-YqgP-Km| tf> MDI191b
MD234 trpC2 ptsGHI::erm gluP::aphA3 Chr. DNA QB6020 tf> MD229b
QB6020 trpC2 ptsGHI::erm [51]

E. coli

TGl supE hsd/A 5 thiA (lac-proAB) F'(traD36 proAB* lacld lacZA M15  [52]

aBGSC, Bacillus Genetic Stock Center, Ohio State University, Columbus, Ohio btf> denotes transformation of linear plasmid DNA in indicated

strain.

IIT for 15 min at RT [45]. Autoradiograph was captured on
Phosphoimager BAS-1500 (Raytest, Straubenhardt, Ger-
many), after exposing the membrane for 1 h on a film
image plate BAS-IIIS (Fuji, Japan).

Construction of B. subtilis gluP minus cells

Cloning of the complete gluP gene was only successful
when a low copy number plasmid, pRK415, was used in
E. coli. B. subtilis chromosomal DNA was used as a PCR
amplification template. The primers used were 5'-cgcg-
gatcgegeggtttctgecgtcatgt and 5'-cggggtacctttcctcaccatttcttg.
These primers recognized sequences between 235-bp
upstream and 109-bp downstream of the gluP open read-
ing frame. The amplified 1877-bp DNA fragment was
then ligated into BamHI and Kpnl sites of pRK415, result-
ing in plasmid pLR-YqgP [46]. A suicide plasmid carrying
gluP mutation (pLM-YqgP-Km1) was created by inserting
a 1497-bp aphA3 cassette, obtained from Smal-Stul diges-
tion of plasmid pDG792 [47], into the Bst11071 site of
gluP. Using the same set of primers and the pLM-YqgP-
Km1 as template, a 3374-bp PCR fragment was then
obtained. The orientation of the aphA3 cassette in direc-
tion with the gluP was determined by Eael digestion result-
ing in 1244-bp and 2130-bp DNA fragments.

Construction of double or multiple mutations within B.
subtilis gluP, gicK, ptsG, and/or ptsGHI

B. subtilis 168 (BGSC, Ohio State University, Columbus,
Ohio, US) was transformed with a linearized 3374-bp
pLM-YqgP-Km1 to generate the strain MD229 carrying the
gluP::aphA3. The GlcK and GluP minus strain MD230 was
obtained by transformation of strain MD186 [9] with the
linearized pLM-YqgP-Km1. The enzyme IIGc-GluP minus
strain MD232 was obtained by transformation of strain
MD153 [9] with the pLM-YqgP-Km1. The enzyme IICl,
GlcK, and GluP minus strain MD233 was obtained by
transformation of strain MD191 [9] with the pLM-YqgP-
Km1. The enzyme 116k, enzyme I, HPr, GlcK, and GluP
minus strain MD231 was obtained by transformation of
strain MD189 [9] with the pLM-YqgP-Km1. All GluP
minus transformants were selected on LB medium con-
taining 0.5 % glucose and 25 pg ml-! kanamycin. The
enzyme II€lc, enzyme I, HPr, and GluP minus strain
MD234 was obtained by transformation of strain MD229
with total chromosomal DNA of B. subtilis QB6020 [9].
The MD234 was selected on LB medium containing 0.5 %
glucose, 25 pg ml! kanamycin, 1 pg ml-! erythromycin,
and 25 pg ml! lincomycin. The validation of each trans-
genic B. subtilis strains was done by PCR analysis of the
corresponding chromosomal DNA.
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Table 2: Plasmids and primers used in this study
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Plasmids Relevant characteristics Primers Reference/source

pAC6 Vector for transcriptional lacZ fusions [41]

pLR-POI pAC6 EcoRIl BamHI; 2117 bp 5'atgccattttcgeggtttct3'e this study
EcoRI-BamHI fragment? 5'cgcggatccgtegecggttttatctgteg3'd

pLR-POI I pAC6 EcoRI BamHI; 2000 bp 5'ccggaattcgeggtaaacatgtttttge3' this study
EcoRI-BamHI fragment2 5'cgcggatccgtegecggttttatctgtcg3'd

pLR-POI2 pAC6 EcoRI BamHlI; 1679 bp 5'ccggaattcgagaagggaactgtgtcag3' this study
EcoRI-BamHI fragment? 5'cgcggatccgtegecggttttatctgtcg3'd

pLR-POI3 pAC6 EcoRI BamHI; 980 bp 5'ccggaattcggacatatcggeggettga3' this study
EcoRI-BamHI fragment2 5'cgcggatccgtcgecggttttatctgtcg3'd

pLR-PO14 pAC6 EcoRI BamHI; 674 bp 5'ccggaattcgegggtttcecttttggaac3'e this study
EcoRI-BamHI fragment? 5'cgcggatccgtegecggttttatctgtcg3'd

pLR-POI5 pLR-POI derivative BstBI; - this study
1313 bp fragmentb

pLR-P02 pAC6 EcoRI BamHI; 352 bp 5'ccggaattcgeggtaaacatgtttttge3' this study
EcoRI-BamHI fragment2 5'cgcggatccctgacacagtteccttcte3'd

pLR-P0O3 pAC6 EcoRI BamHI; 730 bp 5'ccggaattcgagaagggaactgtgtcag3' this study
EcoRI-BamHI fragment? 5'cgcggatcctcaagecgecgatatgtee3'd

pLR-P04 pAC6 EcoRI BamHI; 346 bp 5'ccggaattcggacatatcggeggettga3' this study
EcoRI-BamHI fragment2 5'cgcggatccgttccaaaagggaaaccge3'd

pLR-P021 pAC6 EcoRIl BamHI; 469 bp 5'atgccattttcgeggtetct3' this study
EcoRI-BamHI fragment2 5'cgcggatccctgacacagtteccttete3'd

pLR-PO31 pAC6 EcoRIl BamHl; 1168 bp 5'atgccattttcgeggtttct3' this study
EcoRI-BamHI fragment2 5'cgcggatcctcaagecgecgatatgtec3'd

pLR-P032 pAC6 EcoRI BamHI; 1051 bp 5'ccggaattcgeggtaaacatgtttttge3' this study
EcoRI-BamHI fragment? 5'cgcggatcctcaagecgecgatatgtee3'd

pLR-YqgP pRK415 BamHI Kpnl; 1877- 5'cgcggatcgegeggtttctgecgtcatgt3' this study
bpBamHI Kpnl fragment? 5'cggggtacctttcctcaccatttcttg3'd

pLM-YqgP-Km| pLR-YqgP derivative; gluP::aphA3 Kmr - this study

pRK415 Tcr, low-copy number plasmid [46]

aSize of the cloned PCR fragment after digestion with restriction enzyme as indicated bThe deletion within the 2112 bp DNA fragment of the pLR-
PO, which is digested by BstBl and religated fForward primer; dReverse primer

Determination of glucose content in the cell culture
supernatant

Glucose concentration in the growth medium was deter-
mined using the Glucose (HK) Assay Reagent (Sigma,
Deisenhofen, Germany) according to the manufacturer's
suggestion [9]. In brief, 10 pl of cell culture supernatant
was mixed with 1.0 ml of the assay reagent and incubated
for 5 min at 37°C. Glucose concentration in mM is equal
to [(A;4o Sample-A;,, Blank)*2.93] (mg. ml-!) * 0.05555.

Glucose uptake assay

B. subtilis strains 168, MD153, MD229, and MD232 were
grown until an OD,0f 1.2 in LB medium supplemented
with 50 mM glucose. A 25 ml cell culture was centrifuged.
The pellet was then washed three times with ice-cold TM
buffer (50 mM Tris-Cl and 20 mM MgCl,, pH 7.2). The
cells were adjusted to an OD, equal to 1.0. The uptake
of [!%C]-glucose by B. subtilis cells was assayed at 37°C.
[14C]-glucose was added to a final concentration of 25
M. 70 pl samples were taken at various time points (i.e.
0, 30, 45, 60, 120, and 240 seconds) filtered through cel-

lulose nitrate filters (pore size: 0.45 pM), and washed
three times with 5 ml TM buffer. Radioactivity of the wet
filter was measured in a scintillation counter (Beckman,
Fullerton, USA).

Phase contrast microscopy

Cell culture was prepared either by growing the cells at
37°Cin LB or C minimal medium. A 25 pl sample of cul-
ture was added to the center of an object glass and then
covered by a coverslip. Cells were monitored under a
phase contrast microscope (Zeiss, Jena, Germany).

Cytochemistry analysis

Septum formation and chromosomal partitioning of B.
subtilis wild type and the GluP minus strain MD229 were
analyzed using the method described by Pogliano et al.
[48]. Membrane dye, FM5-95 (Molecular Probe, US) or
chromosomal DNA dye, bisbenzimide (Sigma, Deisen-
hofen, Germany) was added with final concentration of 1
pg ml! and 0.1 pg ml! onto fixed B. subtilis cell,
respectively. The fixed cells were bordered with Dako-pen
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(Dako, Glostrup, DK). The cells were then incubated for
15 min and were washed with PBS buffer thoroughly. The
cells were then overlaid with mounting medium, elvanol
(DuPont, Bad Homburg, Germany). Cells were observed
under the Axiophot fluorescence microscope (Zeiss, Jena,
Germany). The microscope was equipped with UV filter
having an absorption wavelength of 360 nm and an
emission wavelength of 461 nm to observe bisbenzimide
staining cells. A Cy3 filter with an absorption wavelength
of 514 nm and an emission wavelength of 566 nm or a
rhodamine filter with an absorption wavelength of 550
nm and an emission wavelength of 573 nm was used for
the observation of FM5-95 stained cells. Images were
captured using CCD color video camera (Sony, Japan)
and processed with AxioVision 2.0 program (Zeiss, Jena,
Germany).

Sporulation assay

Sporulation frequency was determined according to
Bohin et al. [49]. In short, cells were incubated on NB
medium at 37°C with strong agitation. The cell growth
was monitored with a spectrophotometer at 600 nm. End
of the exponential growth was measured as time zero (T).
At T, the viable cells (V,) were counted as cfu.ml-!. Twenty
hours after T, (T,,), cells were harvested and heated for 10
min at 80°C. The number of spores per milliliter was then
counted (S,,). The value of S,,/V,*100 was taken as the
sporulation frequency.

In silico analysis of the GIuP protein

GluP sequence (GenBank BG11683), available from the
B. subtilis genome project [11,12], was used to predict the
protein structure. The two-dimensional structure of the
transmembrane helices and the entire GluP protein's
structure was elucidated using the TMHMM (v2.0) [19]
and SOSUI [20]. The three-dimensional structure of the
GluP TPR motif was constructed by Geno3D [25] using
human PEX5 TPR motifs [26] as template. GluP related
protein sequences from other organisms were retrieved
from the GenBank database. These sequences were
aligned using the MegAlign 4.0 program (DNAStar, Mad-
ison, USA). The multiple alignments were based on the
Clustal method [50].
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