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Abstract

Background: The transition metal molybdenum is essential for life. Escherichia coli imports this
metal into the cell in the form of molybdate ions, which are taken up via an ABC transport system.
In E. coli and other Proteobacteria molybdenum metabolism and homeostasis are regulated by the
molybdate-responsive transcription factor ModE.

Results: Orthologues of ModE are widespread amongst diverse prokaryotes, but not ubiquitous.
We identified probable ModE-binding sites upstream of genes implicated in molybdenum
metabolism in green sulphur bacteria and methanogenic Archaea as well as in Proteobacteria. We
also present evidence of horizontal transfer of nitrogen fixation genes between green sulphur
bacteria and methanogenic Archaea.

Conclusions: Whereas most of the archaeal helix-turn-helix-containing transcription factors
belong to families that are Archaea-specific, ModE is unusual in that it is found in both Archaea and
Bacteria. Moreover, its cognate upstream DNA recognition sequence is also conserved between
Archaea and Bacteria, despite the fundamental differences in their core transcription machinery.
ModE is the third example of a transcriptional regulator with a binding signal that is conserved in
Bacteria and Archaea.

Background

The transition metal molybdenum is essential for life on
earth. It is at the catalytic centre of over 30 enzymes, which
are involved in the nitrogen, carbon, and sulphur cycles
[1]. Molybdenum is found in the nitrogenase complex,
which fixes dinitrogen gas, and in nitrate reductase, which
reduces nitrate to nitrite. Other molybdo-proteins include
xanthine oxidase, aldehyde oxidase, formate dehydroge-
nase, sulphite oxidase, nitrite reductase, DMSO reductase,
pyridoxal dehydrogenase, xanthine dehydrogenase, and
pyrogallol transhydrolase.

Molybdenum is available to organisms in the form of the
tetraoxyanion molybdate, which is transported into
Escherichia coli cells by an ABC-type transport system
encoded by the modABCD operon [2]. A ModE-molybdate
complex binds specific DNA target sequences and thus
represses or activates transcription of several operons in
response to molybdate concentration. The ModE protein
from E. coli consists of two domains [3]. At the N terminus
is the DNA-binding domain (Pfam accession PF02573,
HTH_9) containing a winged helix-turn-helix (HTH)
motif. At the C-terminal end is the molybdate-binding
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domain (Pfam accession PF03459, TOBE), which consists
of two sub-domains of OB-folds with exchanging C-termi-
nal strands. In E. coli, ModE bound to molybdate has been
shown to contribute to the regulation of modABCD [4],
napFDAGHBC [5], moaABCDE [6], and dmsABC operons
[7]- These operons encode proteins involved in molybde-
num homeostasis and metabolism.

Homologues of ModE are known in y-Proteobacteria (e.g.
E. coli, Haemophilus influenzae) and a-Proteobacteria (e.g.
Rhodobacter capsulatus). Now that over 100 complete
genome sequences are available, we wished to discover
whether this regulatory system is found more widely in
organisms other than Proteobacteria and whether we
could gain any insights into the evolution of the molyb-
denum regulon.

Results and Discussion

Taxonomic distribution of ModE homologues and protein
domain organisation of their sequences

Probable orthologues of the molybdenum-responsive reg-
ulator ModE were found in several Proteobacteria as well
as in the green sulphur bacterium Chlorobium tepidum.
Sequence analysis using Pfam [9] revealed that these pro-
teins contained the HTH_9 domain at the N terminus and
two TOBE sub-domains at the C terminus (Figure 2A). In
most cases, only a single ModE homologue was found in
each complete genome sequence. However, in the o-pro-
teobacterium Rhodobacter capsulatus, there are two ModE
homologues. One is associated with molybdate transport
genes in the operon modEABC, whilst the second homo-
logue is encoded by modE2, located upstream of vnfA2, the
gene encoding one of two homologues of the nitrogenase
regulatory protein, VnfA. The methanogenic Archaea
Methanosarcina mazei and M. acetivorans each encode a
protein that resembles ModE, but has only one rather
than two C-terminal TOBE sub-domains (Figure 2B). No
orthologues of ModE were found in the complete genome
sequences from other lineages, such as the Gram-positive
Bacteria and Cyanobacteria.

Several other Bacteria and Archaea encode proteins that
contain the HTH_9 domain characteristic of ModE, but
completely lack a molybdate-binding TOBE domain.
Examples include Q9RBF7, Q8XXM1 (RSC2092), and
Q87ZY3 (PAE0019) from Alcaligenes eutropha, Ralstonia
solanacearum, and Pyrobaculum aerophilum respectively. In
these proteins, rather than a TOBE domain, there is a
domain at the C terminus that is homologous to the
SBP_bac_1 family (Pfam accession PF01547). Members
of this family [8] bind diverse solutes such as sugars, pep-
tides, and inorganic ions. In Alcaligenes eutropha, QIRBF7
(FdsR) has been shown to regulate the fdsGBACD operon,
which encodes the soluble NAD+ linked formate dehy-
drogenase molybdo-enzyme [10]. Based on similarity
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between the C-terminal domain of FdsR and a domain of
formate dehydrogenase, Oh and Bowien [10] proposed
that this C-terminal domain binds formate, thus modulat-
ing DNA-binding activity.

In Bacteria and Archaea, transcriptional regulators con-
taining a HTH exhibit a position-function correlation
such that repressors and dual function repressors/activa-
tors tend to have the HTH-containing domain at the N ter-
minus whilst activators tend to have the HTH at the C
terminus [11,12]. ModE can act as both a repressor and an
activator. Consistent with this, ModE and the other pro-
teins described above, the HTH_9 domain occurs at the N
terminus. In contrast to this arrangement, Q9PMF6
(Cj1507¢) from Campylobacter jejuni has an HTH_9
domain at the N terminus (Figure 2D). This suggests that
it might be a transcriptional activator rather than a repres-
sor. Intriguingly the Cj1507c ORF overlaps fdhD encoding
the molybdo-enzyme formate dehydrogenase (Cj1508c),
strongly suggesting a functional link between this regula-
tory protein and molybdenum metabolism.

Interestingly several Bacteria and Archaea encode proteins
that consist of just the HTH_9 domain, and lack any rec-
ognisable molybdate- or other solute-binding domains
(Figure 2E). Examples are found in several Archaea and
also in Salmonella typhimurium and Agrobacterium tumefa-
ciens. These proteins would certainly not be functional for
binding molybdate, but the HTH domain is probably
capable of binding DNA and perhaps forming multimeric
protein complexes.

Conservation of DNA-recognition elements in ModE
homologues

The HTH_9 domain of ModE is responsible for its
sequence-specific DNA-binding activity. According to the
model proposed by Hall et al. [3] based on the three-
dimensional crystal structure of ModE, nine amino acid
residues in the HTH directly interact with the target DNA
and have a role in sequence-recognition: Ser35, Gln36,
Lys39, Ser44, Tyrd5, Lys46, Serd7, Trp49, and Asp50
(numbering as in [3]). Interestingly, most of these resi-
dues were moderately conserved, even between phyloge-
netically distant organisms (see alignment in Figure 1).
This suggested that the cognate target sequences recog-
nised by these proteins might also be conserved. Therefore
we decided to investigate the occurrence of potential
ModE-binding sites in a range of prokaryotic genome
sequences.

Identification of ModE-binding sites in genomic DNA
sequence

The consensus ModE-recognition sequence has dyad sym-
metry and can be approximately represented as
atCGCTATATANGTATATAaCGat [5]. As a first step to fully
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Alignment of the helix-turn-helix (HTH) domains homologous to the molybdenum-responsive transcriptional regulator ModE.
Amino acid residues predicted to directly interact with the target DNA are marked with asterisks (*). The alignment was taken

from the Pfam database http://www.sanger.ac.uk/Software/Pfam/.

characterising the set of target sequences for this family of
transcription factors, we constructed an alignment (Figure
3) of several known and probable ModE-binding sites
from y-Proteobacteria, also illustrated as a sequence logo
in Figure 4. Using a position-dependent weight matrix
derived from this alignment (Figure 5), we scanned the
protein-coding and non-coding regions of a range of com-
plete genomes to find matches to the canonical ModE-
binding DNA sequence motif. The results of these
searches are summarised in Tables 1 [see Additional File
3], 2, and 3. It is important to remember that the mere
presence of DNA sequence similarity to a consensus is not
sufficient to demonstrate a biologically significant pro-
tein-binding site; in other words this approach of scan-
ning DNA sequence against a weight matrix model will
inevitably yield some false-positives. For example, several
high-scoring matches were found within protein-coding
regions in most of the genomes that we examined; these
intragenic sites are unlikely to be functional regulatory
sites. Furthermore, many of the intergenic matches fell
upstream of genes not obviously involved in molybde-

num metabolism and therefore probably not subject to
regulation by ModE.

However, notwithstanding the occurrence of some false-
positives, we are confident that our method had some dis-
criminatory value in identifying bona fide ModE-binding
sites because of the high proportion of the matches that
did fall upstream of molybdenum-linked genes. Despite
the importance of molybdenum-dependent processes, rel-
atively few bacterial genes are directly involved in molyb-
denum metabolism: certainly no more than a few percent
of the genome. Nevertheless, a disproportionately high
number of our identified matches were located
immediately upstream of genes implicated in molybde-
num metabolism. For example in E. coli K12, we found a
total of 26 high-scoring matches to the ModE-binding
consensus (Table 3). Of these 26 sites, 17 occurred in non-
coding DNA. Five of these 17 sites were located upstream
of genes or operons associated with molybdenum metab-
olism or molybdo-enzymes (Table 1 [see Additional File
3]). In some cases, these ratios were more impressive: for
example in Agrobacterium tumefaciens, Bradyrhizobium
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Figure 2

Domain architectures of some example members of the
HTH_9 family as defined by Pfam (Bateman et al., 2002). The
domains are described in the text. A. Q91631 (Pseudomonas
aeruginosa), Q88AAOQ (Ps. syringae), Q88QX4 (Ps. putida),
Q9CMRGé (Pasteurella multocida), MODE_HAEIN (Haemo-
philus influenzae), Q8Z8A6 (Salmonella Typhi), Q8ZQR8 (Sal-
monella Typhimurium), MODE_ECOLI (E. coli),
MODE_YERPE (Yersinia pestis), Q8EANG6 (Shewanella oneiden-
sis), Q8XQRS8 (Ralstonia solanacearum), Q8K C82 (Chlorobium
tepidum), MODE_AZQVI (Azotobacter vinelandii), Q9ABA4
(Caulobater crescentus), MOPA_RHOCA (Rhodobacter capsu-
latus), MOPA_RHOCA (Rhodobacter capsulatus), Q9F4K4
(Herbaspirillum seropedicae). B. Q8PWN4 (Methanosarcina
mazei), and Q8TTZ2 (M. acetivorans). C. QIRBF7 (Alcaligenes
eutrophus), Q8XXM| (Ralstonia solanacearum), and Q8ZZY3
(Pyrobaculum aerophilum). D. Q9PMF6 (Campylobacter jejuni).
E. Q97766 (Sulfolobus solfataricus), Q97ET9 (Sulfolobus toko-
daii), Q8ZYE6 (P. aerophilum), O29240 (Archaeglobus fulgidus),
Q8TVF9 (Methanopyrus kandleri), and Q98KI4 (Rhizobium
loti).

japonicum, Chlorobium tepidum, Mesorhizobium loti and Ral-
stonia solanacearum, at least 50% of the intergenic matches
were located immediately upstream of molybdenum-
associated genes (Table 3). The frequent occurrence of
these ModE operator-like sequences upstream of molyb-
denum-associated genes is consistent with their being bio-
logically significant rather than mere coincidence.

As expected, we found good matches to the proposed con-
sensus ModE binding sequence immediately upstream of
genes implicated in molybdenum metabolism in the y-
proteobacterial genomes. For example, high-scoring sites
were detected upstream of homologues of modA, moeA,
dmsA, and napF in E. coli and Salmonella species, which
correspond to ModE-binding sites. Additional good can-
didate sites were found upstream of yecK in both E. coli
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and Haemophilus influenzae. The yecKbisZ operon in E. coli
encodes a molybdo-enzyme that forms part of a respira-
tory system [13]. Therefore it is not surprising that the
yecKbisZ operon might be regulated by ModE.

We observed some differences in the repertoires of pre-
dicted ModE-binding sites between the closely related
strains of enteric bacteria (E. coli, Yersinia pestis, Shigella
flexneri, and Salmonella enterica). There appears to be a
core ModE-dependent regulon consisting of the dmsABC,
moaABCDE, modABCD and napFDAGHBC operons, the
only exception being that there is no apparent ModE
binding site associated with dmsABC in Y. pestis. Addition-
ally, yecK also has a putative upstream ModE binding site
in E. coli and S. flexneri; yecK appears to be absent from S.
enterica and Y. pestis. Furthermore, in S. enterica a second
dms operon also has sites, whilst Y. pestis has additional
sites upstream of pflA and narP. These differences in the
predicted ModE-dependent regulon between closely
related species suggest some evolutionary plasticity in the
regulon. We also observed clear differences between the
close relatives Haemophilus influenzae and H. ducreyi, the
latter lacking a ModE homologue and lacking conserved
ModE operator-like sites upstream of its mod operon.

Our data show that probable ModE-binding sites were
found upstream of modA homologues not only in enteric
bacteria and H. influenzae as has been previously estab-
lished, but also in A. tumefaciens, Helicobacter hepaticus, M.
loti, Pasteurella multocida, several Pseudomonas strains, R.
solanacearum and Shewanellla oneidensis. This indicates
that ModE-dependent regulation of the molybdate ABC
transporter is widespread amongst proteobacteria.

Interestingly, we found strong potential ModE-binding
sites upstream of modA (involved in molybdate transport)
and napA (encoding a molybdenum-containing nitrate
reductase) in the e-proteobacterium Helicobacter hepaticus
(but not in its close relatives H. pylori and Campylobacter
jejuni). The complete genome sequence of H. hepaticus
does not encode a full-length ModE homologue; it does
encodea 135 amino acid protein (HH0653), consisting of
a single HTH_9 domain, which is therefore probably able
to specifically bind to the identified sites. However, since
it lacks a molybdate-binding TOBE domain, it cannot
directly use molybdenum availability to modulate DNA-
binding activity. Interestingly, a potential ModE-binding
site is also observed upstream of HH0158, predicted to
encode a molydenum-containing periplasmic nitrate
reductase in H. hepaticus.

A similar scenario is observed in Agrobacterium tumefa-
ciens. A ModE-binding site is found upstream of modA but
A. tumefaciens has no full-length ModE homologue, only
a 131 amino acid protein (ATU2654, Q8UCDA4)
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Salmonella Typhimurium moaA ATC CTATGT‘TET TATATAGCGALY
Salmonella Typhimurium moeA TTC'TTEEATTTTTGAATATAEAANGAT
Azotobacter vinelandii modE  TGETTRENIA/VCT  chbd\ar\Tal by
Haemophilus influenzae modE  [AAS TS NwT TATATAACGET
Pseudomonas aeruginosa modE PV TCG&&GTAT ATAGCGALN
Azotobacter vinelandii modG aA\CE T TAT ATANAG]
Escherichia coli dmsA PYTCGTGTAT (o[« TATATAGCGALY
Salmonella Typhimurium dmsA TTCGHTATAT G‘CTETATAGCGAT
Salmonella Typhimurium dmsB [MddeciyNitoa V. irTcubvlchiTideTiv
Escherichia coli napF ATCGSTATATALAuvAUNATIsTATAAC[®AT)

Consensus

Figure 3

atcg tatata aagaatatAtAacgat

Alignment of known and strongly suspected ModE-binding sites used to generate the weight matrix.

consisting of a HTH_9 domain. It is possible that the
ModE-dependent regulatory system is in a process of
degeneration in these organisms. However, it is equally
possible that these proteins are functional and that DNA-
binding is modulated by protein-protein interaction with
some unknown factor or factors.

Strikingly, we also found a good candidate ModE-binding
sites associated with molybdenum metabolism in some
more distantly related organisms. One striking example
was a site upstream of an open reading frame (CT1544)
annotated as a probable periplasmic molybdenum-bind-
ing protein component of a molybdenum ABC trans-
porter complex in the green sulphur bacterium C. tepidum
[14]. This suggested that the full-length orthologue of
ModE (CT1543, Q8KC82) functions in regulation of
molybdenum transport in C. tepidum in a similar manner
to ModE in E. coli.

The genome of C. tepidum [14] has at least three loci that
contain genes implicated in molybdenum homeostasis
and metabolism. The first of these loci includes a mod
transport system and genes involved in synthesis of the
molybdopterin genes cofactor, moaCBmoeEmobBAmoaA.
A second includes CT1765, encoding a homologue of the
ModG molybindin of Azotobacter vinelandii that binds

molybdate. CT1765 has been misleadingly annotated as a
molybdopterin-binding protein, as have most other
molybdate-binding proteins in the public databases. It is
probably involved in molybdate homeostasis. The third
locus includes moaCB, moeE, mobBA, moaA and the nif
genes that encode nitrogenase. Structural genes for the
nitrogenase system in C. tepidum most closely resemble
those of the Archaea rather than those of other nitrogen-
fixing bacteria [14]. This raises the question of horizontal
transfer between Bacteria and Archaea. However, a strong
candidate ¢54-dependent promoter is located upstream of
C. tepidum nifH [15], which encodes the nitrogenase. ¢54-
dependent transcription of nitrogenase genes is common
among Proteobacteria, but 54 is not found in Archaea.
Taken together, the c°¢-dependent promoter and the
ModE binding site centred just upstream of CT1544 sug-
gest that the regulation of nitrogenase in C. tepidum shares
much in common with that in Proteobacteria such as A.
vinelandii. Does this tell us anything about the direction of
horizontal transfer of nitrogen-fixation genes between
Archaea and green sulphur bacteria? If the green sulphur
bacteria acquired nitrogen-fixing genes from an archaeon,
then this would imply that the recruitment of 54 to the
regulation of nitrogen fixation has occurred at least twice
independently. The alternative, and more likely, scenario
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Sequence logo representation of the alignment of known and strongly suspected ModE-binding in Figure 3. A graphic represen-
tation of an aligned set of binding sites. The relative heights of the letters are proportional to the frequencies of bases at each

position. The degree of sequence conservation is measured in bits of information and is indicated by the total height of a stack
of letters. The vertical scale is in bits, with a maximum of 2 bits possible at each position. The logo was generated using WebL-

ogo [27].
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Figure 5

Position-specific weight matrix derived from the alignment of known and strongly suspected ModE-binding sites used to gener-

ate the weight matrix in Figure |.

is that the Archaea acquired nitrogen-fixation genes from
a relative of the green sulphur bacteria.

Even more striking was our finding that good candidate
ModE-binding sites occur immediately upstream of sev-
eral genes implicated in molybdenum metabolism in the
methanogenic Archaea (Table 2). For example, we found
high-scoring matches to ModE-binding sites in Meth-

anosarcina acetivorans upstream of modA and fmdE, which
encodes a molybdenum-containing hydrogenase. We also
found sites upstream of vnfH and nifl1, implicated in
nitrogen-fixation. MA1213 (vnfH) is annotated as an iron-
containing nitrogenase, VnfH [16]. However, examina-
tion of this sequence suggests that it is more likely to be a
molybdenum-containing nitrogenase [17]. The predicted
ModE-binding site upstream of fmdE is also conserved in
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Table 2: Potential ModE-binding sites identified by scanning archaeal genome sequences against the weight matrix derived from
alignment in Figure 3. Sites that fall immediately upstream of genes implicated in molybdenum metabolism are indicated in bold.
Scores are Kullback-Leibler distances that have been normalised such that the maximum possible score is 100. Essentially, the higher
the score is, the greater the magnitude of the theoretical binding energy [26]. All sites scoring more than 75 are listed. Distances are
given (number of bases) between the downstream end of the putative ModE-binding site and the predicted translational start codon.

Organism Sequence Score Distance Annotation of potential target gene

Methanosarcina mazei TGGCGTTATGTTTATTTAAACATAACGAT 80 -5 MMI1564 molybdenum containing
formylmethanofuran dehydrogenase
isoenzyme | subunit E

Methanosarcina mazei TAATGTTATATATCTTAATAAATAACTTT 78 524 MM1328 Two component response regulator

Methanosarcina mazei TAACGATATATTAATAATTAGATTTAGAT 78 299 MM1783 hypothetical protein

Methanosarcina mazei TATCCATATACTAATGATTATATATCCAT 78 69 MMI1790 conserved protein

Methanosarcina mazei AATATTTATATAGTACACAATATATCAAT 78 39 MM2248 conserved protein

Methanosarcina mazei CACCCATATATTAGTTTATAAATAACGCT 78 948 MM2931 hydrolase

Methanosarcina mazei GAAGCGTATATATAAGAGTATATAAAGAG 78 53 MM3131 Fructokinase

Methanosarcina mazei TTTCTCTCTATACTAGTCTACAGATAGAG 78 191 MM3331 conserved protein

Methanosarcina mazei GAACAATATATCGTTAACAATATATCCAT 77 48 MMO0378 sugar phosphate nucleotydyl transferase

Methanosarcina mazei AATCTTTATATCATGGAATTTATCGTGAA 77 290 MM0957 Ammonium transporter

Methanosarcina mazei CATCTTTTTATACTTCCCTATATACTTAA 77 31 tlpC MM1658 methyl accepting chemotaxis protein

Methanosarcina mazei AAAACATATATAGAAACATACATATCGCA 77 153 MM2159 hypothetical protein

Methanosarcina mazei TCTCGTTATATTTCTATTTATATATATTT 77 344 MM2777 Acylphosphatase

Methanosarcina mazei TTTCGCTGTATATCTTATTTCATAAATAG 76 1436 MMO016 translation initiation factor |A

Methanosarcina mazei TGACAGTATATAAATTAATAGTTAGAGAT 76 76 MMO021 1 Cysteine proteinase

Methanosarcina mazei AGTCATTATCTATATCAATATAAATAGTT 76 527 MMO0338 putative phosphomethylpyrimidine kinase

Methanosarcina mazei AAACATTAAATATTTTAATACATAGTTAT 76 39 MMO0659 GDP mannose 4,6 dehydratase

Methanosarcina mazei ATTAGGTTTATAAGTCAATAAATAATGAA 76 43 MMO0996 cobalamin biosynthesis protein G

Methanosarcina mazei TTTAGATTTATATAAGAATTTAAAACTAT 76 276 MM 157 conserved protein

Methanosarcina mazei TATCGGGATATTCTATGGATTATATCGAA 76 13 MMI28I conserved protein

Methanosarcina mazei AAACGTTATATACAAGCGAATATGAGTAT 76 156 MMI355 conserved protein

Methanosarcina mazei CATCAATAAATTAATTTCTATATAAGGTA 76 30 MM1847 hypothetical protein

Methanosarcina mazei GATTGATATATAATTATTTTCAAACTGAT 76 25 ioLA MM2093 Indolepyruvate oxidoreductase,
subunit

Methanosarcina mazei AATTAATATATGATGGATTTTATATAGAT 76 290 MM2747 hypothetical protein

Methanosarcina mazei TAAATATATATAAATAGAAATATAACGAG 76 101 MM2776 hypothetical protein

Methanosarcina mazei AAGCGTTATTTATAAACTAATATATGGGT 76 35 MM2932 conserved protein

Methanosarcina mazei AATCGCTCTATAGAAGTAAACTGAGCGGA 76 377 MM2945 Mannosyltransferase

Methanosarcina mazei AAACTTTATATATTAAAATATAAATAAAA 76 499 MM3203 hypothetical protein

Methanosarcina TATGGTTATGTAATTCTAAACATAACGAA 81 1504 vnfH MAI213 nitrogenase (iron protein)

acetivorans

Methanosarcina AATCGTTATGTTTAGGTATACATAACTAC 81 164 modA MA2280 molybdenum ABC

acetivorans transporter, solute binding protein

Methanosarcina acetivorans ~ TAAAGTTATTTATTAGTATACATAACTAT 80 764 cheY2 MAOQOI6 chemotaxis response regulator

Methanosarcina acetivorans ~ AAATGAAATATATATATATAGATAACGAT 80 185 MAO0724 predicted protein

Methanosarcina acetivorans ~ TTTCAATATATATTTCAATATATAAAATA 80 378 vhtG MAI 146 F420 nonreducing hydrogenase

Methanosarcina ATTCGTTATGTTTAGAATTACATAACCAT 80 339 nifll MA1212 P Il family nitrogen regulatory

acetivorans protein

Methanosarcina acetivorans ~ AATCTGTATATAATTAACCAGATAGAGTT 80 9 MA2899 conserved hypothetical protein

Methanosarcina TGTCGTTATGTTTATTTAAACATAACGGT 79 -6 fmdE MA0304 formylmethanofuran

acetivorans dehydrogenase, subunit E

Methanosarcina acetivorans ~ CACCGTTATGTTTAAATAAACATAACGAC 79 1483 MAO0303 conserved hypothetical protein

Methanosarcina acetivorans ~ ATTAATTATATAAATGTGTATATAAATAT 79 1375 hypC MAI1 140 hydrogenase expression/formation
protein

Methanosarcina acetivorans ~ GAACCTTATATATTTTTCTACAGAGAGCT 79 114 MA3892 hypothetical protein (multi domain)

Methanosarcina acetivorans ~ AGTGGCTATATTTAGCTATATATAACAAA 79 710 MA3957 ABC transporter, ATP binding protein

Methanosarcina acetivorans ~ ACTCGATATATTATTCAACGAATAGTGAT 78 118 MAI1301 predicted protein

Methanosarcina acetivorans ~ ATCCGTTATGTATGAATGAACATAACGTT 78 27 MA1663 predicted protein

Methanosarcina acetivorans ~ TATCTTTATGTTTATCCGAACATATCGAT 78 6 MA4536 ABC transporter, solute binding protein

Methanosarcina acetivorans ~ ATTTACTTTATATCTGTATATATATTGAA 77 529 MAO519 conserved hypothetical protein

Methanosarcina acetivorans ~ TATCGTTATCTATATATATATATTTCATT 77 114 MAOQ725 conserved hypothetical protein

Methanosarcina acetivorans ~ CTATTTTATATATTGAAATATATATTGAA 77 122 MAI1 145 hypothetical protein (multi domain)

Methanosarcina acetivorans ~ GTTCCTTTTATATTGCAAATCATAACGTT 77 43 MA2861 response regulator receiver

Page 7 of 10

(page number not for citation purposes)



BMC Microbiology 2003, 3

http://www.biomedcentral.com/1471-2180/3/24

Table 2: Potential ModE-binding sites identified by scanning archaeal genome sequences against the weight matrix derived from
alignment in Figure 3. Sites that fall immediately upstream of genes implicated in molybdenum metabolism are indicated in bold.
Scores are Kullback-Leibler distances that have been normalised such that the maximum possible score is 100. Essentially, the higher
the score is, the greater the magnitude of the theoretical binding energy [26]. All sites scoring more than 75 are listed. Distances are
given (number of bases) between the downstream end of the putative ModE-binding site and the predicted translational start codon.

AAACGTTATATACAAGCGGATATGAGTAT
AATTCTTTTATATAAATCCATATAACGGT
TACCGTTATATGGATTTATATAAAAGAAT
CTAGGTTATATAACAGAAATCATAAAGAG
TTACGATATATATAAATTTATCTAAAAAA
ATTTTTTAGATAAATTTATATATATCGTA
ATCCATTAGATACAAATATTTATATAGAA
TATATTTATATAAAAATCAACATATCTAT
GTACAGTATATATTTTAAAATATAGTTAT

Methanosarcina acetivorans
Methanosarcina acetivorans
Methanosarcina acetivorans
Methanosarcina acetivorans
Methanosarcina acetivorans
Methanosarcina acetivorans
Methanosarcina acetivorans
Methanosarcina acetivorans
Methanosarcina acetivorans

76 147 MAO0056 conserved hypothetical protein

76 130 MAO0459 conserved hypothetical protein

76 229 MAO0458 predicted protein

76 17 MA1630 sensory transduction histidine kinase
76 87 MAI1757 conserved hypothetical protein

76 441 MA1756 cell surface protein

76 1467 MA3192 conserved hypothetical protein

76 555 cpa MA3604 carboxypeptidase A

76 507 atpH MA4152 H(+) transporting ATP synthase,

subunit H

Methanosarcina mazei. Therefore it is possible that the
ModE-like proteins Q8PWN4 and Q8TTZ2 from Meth-
anosarcina mazei and Methanosarcina acetivorans respec-
tively are functional for molybdate-responsive regulation
of these molybdo-enzymes.

Conclusions

Transcriptional regulation of molybdo-enzymes, and
genes involved in molybdenum metabolism and homeos-
tasis, is performed by the molybdate-responsive transcrip-
tion factor ModE in E. coli and related Proteobacteria. We
found that homologues of ModE are also found in the
green sulphur bacterium C. tepidum, and in methanogenic
Archaea. Moreover, we found that its cognate DNA recog-
nition element is also highly conserved even between Bac-
teria and Archaea. As far as we are aware this is only the
third report of a regulatory DNA element whose sequence
appears to be conserved in bacteria and Archaea. The
other two examples are the regulator of biotin metabo-
lism, BirA [18], and the metal dependent regulator
MDR1/DtxR [24].

Although the basal transcription apparatus in Archaea is
similar to eukaryotic RNAPII rather than to bacterial
RNAP, the emerging view is that Archaea use a varied rep-
ertoire of regulatory mechanisms that includes both
eukaryal and bacterial paradigms (e.g. [19-22]). Archaea
contain large numbers of HTH-containing domains,
which are more similar to bacterial HTH domains rather
than to eukaryotic proteins [23]. However, most of the
Archaeal HTH-containing proteins form Archaea-specific
families [23] and so the archaeal and bacterial HTH
domains may share very ancient common origins [11].
The high-affinity molybdate transport system, which has
a small size and simple organisation, may have a very
ancient origin. The fact that the ModE regulon is
conserved across large phylogenetic distances also sug-
gests an ancient common origin followed by loss in mul-
tiple lineages rather than multiple transfer events. This

may be further supported by the observation of partially
degenerated ModE regulatory systems in bacteria such as
A. tumefaciens and H. hepaticus.

Methods
Domain architectures were inferred from protein
sequences using Pfam [9] release 10.0.

Matches to ModE-binding sites were identified in non-
coding regions of complete genome sequences using a
standard position-specific weight matrix scoring
approach. A frequency matrix was generated from the
alignment of known binding site sequences using the
make_matrix.pl script [see Additional File 2]. This matrix
contained the relative frequencies of each base being
found at each position in the alignment (see Figure 5).
The matrix can be considered to be a statistical model of
the DNA sequence motif. Another way of visualising the
DNA sequence motif is as a sequence logo [25] as in Fig-
ure 4.

Matches to this DNA motif were detected in a genome
sequence by the following method. The entire genome
sequence was scanned such that every window of 28 bases
was assigned a score using the matrix and the promscan.pl
script [see Additional File 1]. This score, known as the
Kullback-Leibler distance, reflects the theoretical binding
energy of the DNA protein interaction [26] and is calcu-
lated using the formula in Figure 6. The maximum possi-
ble score for a window, i.e. that given by a perfect match
to the consensus, differs slightly from genome to genome
according to percentage G+C content. Therefore, all scores
were normalised such that 100 is the highest possible
score for a 28 base window, and the scores were rounded
to the nearest integer. Incidentally, we would expect a site
scoring 100 only once in about 7.2 x 101¢ bases of random
DNA sequence (assuming 50 G+C content), so it is
perhaps not surprising that no sites were found to have a
score of 100.
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Table 3: Frequencies of matches to the ModE-binding consensus in several complete genomes. The number of sites scoring greater than
75 for similarity to the ModE-binding consensus was counted for each of the complete genome sequences. Note that the consensus
sequence is a nearly palindromic, so only sites on on one strand were counted. Matches were designated intragenic if the center of the
28 base site was located within a protein-coding region and intergenic otherwise.

Organism Number of intergenic matches (number Number of intragenic matches ~ Genome Size (Mb)
implicated in molybdenum metabolism)

Agrobacterium tumefaciens 2(1 0 2.84
Bradyrhizobium japonicum (1) | 9.11
Campylobacter jejuni 1 (0) 13 1.64
Chlorobium tepidum 2(1 4 2.15
Escherichia coli K12 17 (5) 9 4.64
Haemophilus ducreyi 4(0) 10 1.70
Haemophilus influenzae 9(3) 13 1.83
Helicobacter hepaticus 6(2) 14 1.80
Helicobacter pylori 26695 0(0) 10 1.67
Helicobacter pylori ]99 0 (0) 6 1.64
Mesorhizobium loti 4(2) 2 7.04
Methanosarcina acetivorans 28 (4) 3 5.75
Methanosarcina mazei 28 (2) 6 4.10
Pasteurella multocida 13 (3) I 2.26
Pseudomonas aeruginosa 3(1) 0 6.26
Pseudomonas putida 3(1) | 6.18
Pseudomonas syringae pv tomato 3(1) 0 6.4
Ralstonia solanacearum 1 (1) 0 5.80
Salmonella enterica Typhi 16 (6) 6 4.8l
Salmonella enterica Typhimurium 15 (4) 7 4.86
Shewanella oneidensis 10 (2) 12 4.97
Shigella flexneri 20 (5) 5 4.61
Sinorhizobium meliloti 2(0) | 3.65
Yersinia pestis strain CO92 19 (5) 4 4.65

. . Jo.
],S'ezq (l) = Z.fb,i log']l =
b P

Figure 6

Formula used to calculate I, the Kullback-Leibler distance
[26], where i is the position within the site, p, is the fre-
quency of that base in the genome, and f,,; is the observed
frequency of each base at that position (from the weight
matrix). Values for p, were calculated from the percentage
G+C content of the genome sequence.

We chose 75 as a cut-off threshold. That is, we only con-
sidered sequences that scored greater than 75. This thresh-

old value was chosen as all of the known (and strongly
suspected) ModE binding sites scored greater than 75.

The Perl scripts used for the analysis are available as Addi-
tional Files 1 and 2.
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Additional File 3

In Adobe Acrobat Reader format (Portable Document Format). Potential
ModE-binding sites identified by scanning bacterial genome sequences
against the weight matrix derived from alignment in Figure 2. Sites that
fall immediately upstream of genes implicated in molybdenum metabolism
are indicated in bold. Scores are Kullback-Leibler distances that have been
normalised such that the maximum possible score is 100. Essentially, the
higher the score is, the greater the magnitude of the theoretical binding
energy [26]. All sites scoring more than 75 are listed. Distances are given
(number of bases) between the downstream end of the putative ModE-
binding site and the predicted translational start codon.

Click here for file
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Additional File 2

This is the Perl script, in plain text format, used to generate a scoring
matrix from a Clustal alignment.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2180-3-24-52.pl]

Additional File 1

This is the Perl script, in plain text format, used to scan genome sequences
against the ModE binding site matrix.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2180-3-24-S1.pl]
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