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Abstract

Background: micF RNA, a small regulatory RNA found in bacteria, post-transcriptionally regulates
expression of outer membrane protein F (OmpF) by interaction with the ompF mRNA 5'UTR.
Phylogenetic data can be useful for RNA/RNA duplex structure analyses and aid in elucidation of
mechanism of regulation. However micF and associated genes, ompF and ompC are difficult to
annotate because of either similarities or divergences in nucleotide sequence. We report by using
sequences that represent "gene signatures” as probes, e.g, mRNA 5'UTR sequences, closely
related genes can be accurately located in genomic sequences.

Results: Alignment and search methods using NCBI BLAST programs have been used to identify
micF, ompF and ompC in Yersinia pestis and Yersinia enterocolitica. By alignment with DNA sequences
from other bacterial species, 5' start sites of genes and upstream transcriptional regulatory sites in
promoter regions were predicted. Annotated genes from Yersinia species provide phylogenetic
information on the micF regulatory system. High sequence conservation in binding sites of
transcriptional regulatory factors are found in the promoter region upstream of micF and
conservation in blocks of sequences as well as marked sequence variation is seen in segments of
the micF RNA gene. Unexpected large differences in rates of evolution were found between the
interacting RNA transcripts, micF RNA and the 5' UTR of the ompF mRNA. micF RNA/ompF mRNA
5" UTR duplex structures were modeled by the mfold program. Functional domains such as RNA/
RNA interacting sites appear to display a minimum of evolutionary drift in sequence with the
exception of a significant change in Y. enterocolitica micF RNA.

Conclusions: Newly annotated Yersinia micF and ompF genes and the resultant RNA/RNA duplex
structures add strong phylogenetic support for a generalized duplex model. The alignment and
search approach using 5' UTR signatures may be a model to help define other genes and their start
sites when annotated genes are available in well-defined reference organisms.

Background transcriptional start sites. Without experimental data,
The rapid determination of microbial genomic sequences  incorrect annotations can be made as well as erroneous
poses a challenge in gene annotation and assignment of  determination of gene start sites. This is especially true for
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genes that are evolutionarily and structurally related such
as the bacterial porin genes, ompF and ompC. For example,
a BLAST search using the Salmonella typhimurium ompF
gene sequence identifies Enterobacter cloacae ompC as well
as Salmonella minnesota ompC (unpublished). However,
when gene promoter sites, transcript 5'UTR sequences, or
signatures within genes from reference organisms are
used, an accurate assignment of a gene as well as a predic-
tion of its start site can be made by a comparative
approach. These regions serve specific functions in molec-
ular processes, e.g., several 5' UTRs of mRNA transcripts
are mRNA stability determinants [1,2]. Thus they can dis-
play sequence and/or secondary structure signatures and
these defined segments can be more useful than using
entire gene sequences for annotations. The use of
domains for annotation of genomic sequences originated
with analyses of protein coding regions [3-5]. In this
paper, alignment and comparative methods have been
used to annotate the small regulatory RNA gene micF and
its associated genes, ompF and ompC in Yersinia species.
Transcriptional start sites have also been assigned based
on alignment data.

The micF transcript is a small non-protein coding RNA
found in E. coli and related bacteria [6,7]. micF regulates
outer membrane protein F (OmpF) synthesis in response
to stress and other environmental signals [8] and these
signals induce the transcription of micF RNA. micF RNA
functions by interacting with the target ompF mRNA 5'
UTR to form an RNA/RNA duplex. The micF transcript
inhibits ompF expression post-transcriptionally by block-
ing translation and inducing degradation of the ompF
message [9].

With the use of newly determined Yersinia genomic
sequences [10] (see also  Accession no.
gnl|SANGER_34054|, Yersinia enterocolitica 8081), micF
RNA/ompF mRNA 5' UTR duplex models have been
deduced. These structures show a strong evolutionary con-
servation of the RNA/RNA duplex structure, but also
reveal additional interacting sites. The new Yersinia
sequences further support a phylogenetic conservation of
the micF regulatory system in y-proteobacteria.

Table I: Annotation of ompF, ompC, and micF in Yersinia species

http://www.biomedcentral.com/1471-2180/3/13

Results and Discussion

Gene Annotation

BLAST searches were performed to find micF and its target
ompF, as well as ompC in genomic sequences available on
the GenBank site of the National Center for Biotechnol-
ogy Information (NCBI). Due to similarities in sequence
in protein coding regions of ompF and ompC, a BLAST
search using known gene sequences can provide errone-
ous results. However the mRNA 5' UTR transcript
sequences of ompF and ompC differ significantly and the
ompF 5' UTR sequence provides a basis for detection in a
BLAST search since several ompF 5' UTR sequence signa-
tures are conserved and are ompF specific. Additional
markers used were genomic positions relative to highly
conserved genes such as asnS, the asparaginyl-tRNA syn-
thetase, which is preceded by ompF in the E. coli and S.
typhimurium chromosomes by about 600 bp. The ompC
and micF genes are upstream of each other in Gram-nega-
tive genomic sequences and in E. coli, they are separated
by a 253 bp regulatory promoter region [8]. Since these
genes share a transcriptional regulatory region, rearrange-
ments, where these genes may be repositioned and sepa-
rated on the chromosome, are probably unlikely.

Y. pestis and Y. enterocolitica ompF mRNA 5' UTR sequences
were found by a BLAST search on GenBank using the Ser-
ratia marcescens ompF 5' UTR sequence as a probe. Position
1600321 of the Y. pestis genomic sequence and position
1759190 of the Y. enterocolitica sequence were pinpointed
as the 5' starts.

The S. marcescens ompC 5' UTR/regulatory promoter region/
micF segment provided a suitable sequence for determina-
tion of genomic positions of Yersinia ompC and micF, how-
ever these have been partially annotated in Y. pestis
(Accession # NC_003143.1). Assignment of 5' start sites
of Yersinia species micF, ompF and ompC was based on
sequence alignment using 5' start sites of other organisms
(see below). Annotation of ompF, ompC and micF genes in
Yersinia species is shown in Table 1.

Organism and Accession Number Gene Positions

Y. pestis strain CO92 NC_003143.1| ompF 5'UTR 1600321-1600226
ompC 5'UTR 1382092-1382165
micF 1381842-1381759

Y. enterocolitica 8081 gnl|SANGER _34054 ompF 5'UTR 1759190-1759087
ompC 5'UTR 1571915-1571842
micF 1571589-1571499
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E.c. ompF  AGACACATAMAGACACCAAACTCTCATCAATAGTTCCGTAAATTTTTATTGACAGAACTTATTGACGGCA 70
S.t. ompF  AGACACATAMAGACACCAAACTCTCATCAATATTTCTGTAAAGTTTTATTGACGGAATTTATTGACGGCA 70
X.n. opnP AT---TAATAAGACACGCGATACCCGAAAATAGTTCCAAAAATTTTTAGTGT————- TCTGTTTCTGGCA 62
S.m. ompF AGACACAGGACGACACCAATCTATCAACAATAGTTCCCAAAG = = = m = e o o o GA-TTATTGGCGGCA 56
Y.p. ompF AGACACAG-ACGACACCAAACTCTCAACAATAGTTCCATAAA———————m e AA-TTATTGGCGGCA 55
Y.e. ompF AGACACAG-ACGACACCAAACTCTCAACAATAGTTCCAAAAA. AA-TTATTGGCGGCA 55
N PETE T DI N N .
GTGGCAGAGGTGTCCGAATAACACCAATGAGGGTAATAA-TAATGATG-—~~AAGC
80 90 100 110 120
E.c. ompF GTGGCAGGTGTCATA-AAAARAAACCA-TGAGGGTAATAAATAATGATG---AAGC 120
S.t. ompF  GTGGCAGGTGTCATATAAAAAAACCAATGAGGGTAATAAATAATGATG---AAGC 122
X.n. opnP GTAACATAAGTGTCTAAATAACACCAATGAGG-TAATAA-TAATGAAGCGCAATA 115
S.m. ompF  GTGGCAAAGGTGTCCGAATAACACCAATGAGGGTAATAA-TGATG—————-— AAGC 104
Y.p. ompF GTGGC--AGGTGTCCGAATAACACCAATGAGGGTAATAA-TAATGATG-—--AAGC 104
Y.e. ompF GTGGC--AGGTGTCCGAATAACACCAATGAGGGTAATAA-TAATGATG~-~-~-AAGC 104
A-RICH S-D TRANSLATION
REGION START
Figure |

Alignment of ompF mRNA 5' UTRs from 6 bacterial species. Putative 5' end nucleotides (position one) of Yersinia species ompF
transcripts were determined by sequence alignment. Sequences were aligned by the ClustalV method using the DNASTAR Inc
MegAlign program. OpnP is the ompF homolog in X. nematophilus. Color bar indicates degree of similarity at each position with
red signifying 100% identity, orange signifying that 5 out of 6 nucleotides are the same, green shows partial similarity whereas

purples depict poor identity. The consensus sequence is shown under the color bar.

Sequence Alignments and comparisons

ompF and ompC 5' UTR

Figure 1 shows the alignment of DNA sequences repre-
senting six ompF 5' UTRs. opnP is the ompF homolog in
Xenorhabdus nematophilus, an organism which resides
in a specific ecological nitch but is phylogenetically
related to the y-proteobacteria [11-13]. Assignment of 5'
start sites of Yersinia species mRNA transcripts was based
on alignment and similarity with the other ompF 5' UTR
sequences.

Y. pestis and Y. enterocolitica ompF 5' UTRs differ only by a
T to A base substitution at position 39 (Figure 1). In addi-
tion, the nucleotide sequence identity between Yersinia
species and other y-proteobacteria is high (Figure 2). Con-
sistent with bacterial evolutionary relatedness, the percent
identity of Yersinia species ompF 5' UTRs appear to be clos-
est to Serratia marcescens (Figure 2).

High sequence conservation implies a functional role for
conserved elements. The 5' UTRs of bacterial mRNAs are
important determinants of mRNA stability and/or transla-
tional regulation [1,2,14-16]. In keeping with a func-
tional role, the segment of ompF 5' UTR that forms the

major RNA/RNA duplex pairing with micF (i.e., positions
96-125), is highly conserved amongst the species ana-
lyzed, including Yersinia species (Figure 1). In addition,
this region contains the ribosome binding site [Shine-Dal-
garno (S-D) sequence] and initiation codon ATG start site
and these also contribute to evolutionary sequence stabil-
ity. An additional signature shared by the Yersinia species
is an A-rich region that precedes the S-D domain. The 5'
end region of ompF mRNA 5' UTR contains a long stem-
loop and evolutionary changes in this segment consist pri-
marily of compensatory base-pair changes that maintain a
stem-loop structure [17]. However the 5'-end region of
the ompF UTR also has a high sequence conservation, with
the exception of a 12 nt deletion that the Yersinia species
share with S. marcescens (Figure 1).

Putative 5' start sites of Yersinia species ompC transcripts
were also determined by sequence alignment (Figure 3).
High similarity in the promoter regions also support start
site predictions of both micF and ompC transcripts (see
below).ompC mRNA 5' UTR sequences show more
sequence divergence than ompF 5' UTR sequences, e.g., the
percent identity between Y. pestis and Y. enterocolitica
sequences is 81% and divergence between the two Yersinia
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Percent Identity
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1 (I 944 584|672 |736 (728 | 1 E.c. ompF
2 Bl 76 664|728 720 | 2 S.t. ompF
3 Bl 568 608|616 | 3 X.n. opnP
4 B so6 904 | 4 S.m. ompF
5 Bl cc2 5 Y.p. ompF
6 B s Y.e. ompF
1 2 3 4 5 6
Figure 2
The % identity between bacterial ompF mRNA 5' UTR sequences shown in Figure 1.
Il I § N . H . | | B &
TTGCCGAGTGGT--TAATAAGGGTTCA--AAAGAGCAGTGGCATAAGATAGATA-TAA~—————~! TAAT-
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ompC TTGCCGACTGAT--TAATGAGGGTTAATCAGTATGCAGTGGCATAAAAAAGCAAATAAAGGCATATAAC- 68
ompC TTGCCGACTGGT--TAATGAGGGTTAACCAGTAAGCAGTGGCATAAAAAAGCAA-TAAAGGCATATAAC- 67

KKnnHE
oo 3t Q

ATGCACAGTCGTGCTAATAATGCTCGA--AAAGGGCAGTGGCCGTAGCTCGACA-TAA-————=~ TTAA- 60
ompC TTACCTCGTAGG--CAGTATATTCTCG--AAAGAGTAGTGGTATA-GATATATC-TAA-—————-TAAT- 57
ompC TAACCCCATTGG--GATTATATGCTCG--CAAGAGCAGTGGCATA-GTTAGATC-TAA-~~~---=TAATT 57
NN BN E
AGAGGATTATAACGATG
80
E.c. ompC AGAGGGTTAATAACATG 84
S.t. ompC AGAGGGTTAATAACATG 83
S.m. ompC CGAGGATAATAACGATG 76
Y.p. ompC AGAGGATGATAACAATG 73
Y.e. ompC AGAGGATAATAACGATG 74

SD TRANSLATION
START

Figure 3
Alignment of ompC 5' UTR sequences (by J. Hein method). Putative 5' start sites of Yersinia species ompC were also determined
by sequence alignment. The consensus sequence is shown below the color bar.
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Percent Identity
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Figure 4

E.c. ompC
S.t. ompC
S.m. ompC
Y.p. ompC
Y.e. ompC

Percent identity between ompC 5' UTR sequences from five bacterial species.

ompC 5' UTR segments is greater than that of the closely
related organisms, E. coli and S. typhimurium (Figure 4). As
with ompF mRNA 5' UTR, the S-D sequence GAGG and AT
rich region between the S-D site and ATG start codon are
highly conserved (Figure 3). With exception of the ribos-
ome binding site, a functional role for the ompC mRNA 5'
UTR is not known.

micF sequence comparisons

5' ends of Yersinia micF genes were deduced by alignment
with micF sequences from related species (Figure 5). The
p-independent termination motif of the micF transcript
delineates the 3' end. A comparison of micF sequences
from 6 bacterial species reveals that the initial 13 nt from
the 5' end are invariant; in addition, the first 32 nt are
highly conserved (Figure 5). This 32 nt region represents
the segment of the micF transcript that forms the major
duplex interaction with the target ompF mRNA in E. coli
[2]. Similar to target sequences in ompF mRNA 5' UTR
(positions 96-125, see Figure 1), this binding role may
account for the high evolutionary sequence conservation
of the 32 nt segment at the 5' end of micF.

The variability of micF nucleotide sequence in the last two
thirds of the gene may be due to several factors. For exam-
ple, the p-independent termination stem-loop transcript
structure may function on secondary and not primary
structural features, and can tolerate compensatory base-
pair changes in the stem as well as changes in loop
sequences. In addition, variation in the type of RNA/RNA

base pairing occurs with sequences in the highly variable
middle section of micF RNA (positions 33-70, Figure 5).
For example, nucleotide sequences within this region
allow for formation of intra- and inter- molecular base-
pairings in RNA/RNA interactions in Yersinia species.
These base pairings are not seen in other species (see
below).

Yersinia micF sequences have diverged more than the S.
marcescens micF sequence, e.g., the percent identity
between S. marcescens micF and E. coli micF is 65.5%; it is
52.9% between Y. pestis and E. coli micF genes (Figure 6).
Evolutionary instability in sequence is consistent with the
high genetic flux found in the Y. pestis genome [10]. Inter-
estingly, the Y. enterocolitica micF sequence has diverged
somewhat more (Figure 6). But of interest also is the large
difference in sequence between the two Yersinia micF RNA
genes, i.e., 15 base substitutions and a 6 base insertion at
positions 18-23 in Y. enterocolitica (Figure 5). These
sequence differences actually reinforce the Yersinia RNA/
RNA duplex model (see below). The reason for the
evolutionary drift in Y. enterocolitica micF sequence is not
known.

The micF sequence identities differ markedly from those
of ompF 5' UTR (compare Figure 2 and Figure 6). These
differences are also evident in the phylogenetic trees (Fig-
ure 7 and Figure 8). Noteworthy are the differences
between Yersinia species sequence s, i.e., there are 21 base
changes between the two Yersinia species micF sequences
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GCTATCATCATTATTTT—————— TATTT-ATTACCGTCATTCACTTCTGATTGTTTGTTTATCCCTATTT
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GCTATCATCATTAACTT-===== TATTT-ATTACCGTCATTCATTTCTGAATGTCTGTTTACCCCTATTT 63
GCTATCATCATTAACTT—————- TATTT-ATTACCGTCATTCACTTCTGAATGTCTGTTTACCCCTATTT 63
GCTATCATCATTAACTT————== TATTT-ATTACCGTCATTCACTTCTGAATGTCTGTTTACCCCTATTT 63
GCTATCATCATTATTTT—————— CATT--ATTACCTTCATTATCCGAAGATAATTTCTGCATACCT---T 59
GCTATCATCATTATTTT—===== CCTATCATTGTGGCTAACACAGTCAGATAGTTCGTTAATGTTA---C 61

GCTATCATCATTATTTTACTATTTCCTTCATTGTGGCCCCAGCGGCCAGATAATTCGTTAGTGTTA---C 67

B B B BN B
CAACCGGCTGCTTCGCGTTCGGTTTTTTTT
1

80 90 100
CAACCGGATGCCTCGCATTCGGTTTTTTTT 93
CAACCGGATGCTTCGCATTCGGTTTTTTTT 93
CAACCGGATGCCTCGCATTCGGTTTTTTTT 93
TAACCGGCTTCTGGCCG= === GTTTTTT 83
GACCGGTCTCTGACCGG=————~! TTTTTTT 85
GGCCGGTCTTTGACCGG-==—=~ CTTTTTT 91

Alignment of micF gene sequences (by J. Hein method). The consensus sequence is shown below the color bar.

Percent ldentity

1 2 3 4 5 6

B 79 989 655 529 482

E.c. micF

B °89 679 |52.9 |48.2 S.t. micF

B 66.7 529 |48.2 K.p. micF

A, WN =

a0 A, WN =

B 571|548 S.m. micF
B 26 Y.p. micF
e Y.e. micF

1 2 3 4 5 6

Figure 6

Percent sequence identity in micF bacterial genes.

(Figure 5) and only one base change (at position 39)  nucleotide change between S. marcescens and E. coli
between Yersinia ompF 5' UTR sequences (Figure 1). Thus  sequences in ompF mRNA 5' UTR (67.2 % identity) and
this reveals a very unequal rate of nucleotide sequence  micF (65.5 % identity) (compare Figures 2 and 6).
change between Yersinia micF and ompF 5' UTR sequences.

On the other hand there appears to be a uniform rate of
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Figure 7

Phylogenetic tree of ompF mRNA 5' UTR sequences determined by DNASTAR program.
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Figure 8

Phylogenetic tree of micF sequences determined by DNASTAR program.

Upstream regulatory region

In E. coli, the 253 nt upstream sequence between micF and
ompC contains promoters as well as binding sites for sev-
eral transcription factors [8]. micF is part of a global regu-
latory network that responds to environmental stress
conditions in E. coli [18,9,19]. It is thus not surprising that
this region has a complex set of transcriptional regulatory
sites. These sites comprise approximately one third of the
upstream sequence between micF and ompC in E. coli.

A comparison of nucleotide sequences from related bacte-
ria shows that these binding sites are highly conserved
evolutionarily and that Yersinia species sequences have
not appreciably diverged, either between themselves or in
comparison to those in other bacterial sequences (Figure
9). OmpR, the transcription factor that activates transcrip-
tion of both micF and ompC in response to osmolarity
increase binds at three sites in E. coli, C1, C2, and C3
[18,20]. These sites are highly conserved between all bac-
terial species where 5-6 positions out of 10 are totally
conserved (Figure 9). A high degree of sequence conserva-
tion is also found for integration host factor (IHF), a pro-
tein that participates in bending of DNA [21].

SoxS, MarA, and Rob are part of the family of AraC/XylS
transcription regulators and share the same DNA binding
sites in E. coli [22]. These factors regulate E. coli micF tran-

scription in response to different environmental factors.
The SoxS/MarA/Rob binding site upstream of micF,
termed the SoxS/MarA/Rob box, is not well conserved
phylogenetically, however the major polymerase interac-
tion site, the A box, is almost totally conserved in bacterial
sequences analyzed, including those of Yersinia (Figure 9).
MarA and Rob transcription regulators in E. coli have two
helix-turn-helix (HTH) motifs that interact with A and B
box sequences [23,24], and one HTH element of Rob has
been shown to insert itself in the micF promoter DNA at
the major groove of the A box region [24].

An alignment of six different gene promoters in E. coli that
contain a SoxS/MarA/Rob box shows that they conform to
a conserved 18-19 bp distance between the SoxS/MarA/
Rob binding sequences and the -10 promoter [25,26].
This also holds true for micF promoters in related bacteria,
including promoters of the Yersinia species, but the excep-
tion is the S. marcescens sequence, which has a 12 bp inser-
tion between the -10 and -35 micF promoter sites and
adjacent to the B box of (Figure 9). Thus this partially
conserved 18-19 bp distance may not be as relevant as
previously thought. Although sites of interaction of RNA
polymerase (RNAP) with these transcription regulators
have not been determined [27,28], the 12 bp pair
insertion does pose the question of how putative S.
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reg region
reg region
reg region
reg region

. reg region
- reg region
K.p. reg region
S.m. reg region
reg region
reg region

Majority

E.c.
S.t.
K.p.
S.m.
Y.p.
Y.e.

reg region
reg region
reg region
reg region
reg region
reg region

"_P-35

Majority

iie L
SoxS/MarA/Rob

E.c. reg region
S.t. reg region
K.p. reg region
S.m. reg region
Y.p. reg region
Y.e. reg region

Alignment of sequences upstream of ompC and micF (promoter and transcription regulatory region). J. Hein alignment method
was used, however positions 197-213 and 246261 were aligned by eye to reflect known homologies. The consensus (Major-
ity) sequence is shown above alignments. Promoters (P-10, P-35) and transcription factor binding sites are shown in color.

ompC and micF are transcribed in opposite directions (shown with arrows).
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marcescens SoxS/MarA/Rob factors interact with RNAP to
activate transcription in S. marcescens.

The leucine response protein (Lrp), a global regulator of
transcription [29] represses micF [30]. In E. coli the pri-
mary Lrp binding site [30] overlaps much of the SoxS/
MarA/Rob site upstream of micF (Figure 9). The highest
sequence conservation is primarily in the SoxS/MarA/
Rob-related A box sequence GCAC. Since the Lrp site over-
laps the SoxS/marA/Rob site, a high overall sequence con-
servation may be expected, but the degree of conservation
is much less than that for example, of the OmpR sites. The
putative Lrp binding site sequences between Yersinia spe-
cies are nearly identical but differ almost uniformly from
those of the other bacteria.

Some regions not pinpointed as sites for factor binding
have diverged appreciably, e.g., the region between inte-
gration host factor (IHF) and Lrp binding sites (positions
195 to 228), but the region between C1 and IHF binding
sites (100 to 182) has some partially conserved sequences
(Figure 9). These may serve as sites for other transcription
factors where binding sequences have not been defined.
For example in E. coli, H-NS binds in an as yet unspecified
site in the ompC/micF regulatory region [31]. In addition,
nfxB encodes a transcriptional repressor and may act on
micF as an nfxB mutant was found to reduce OmpF levels
post-transcriptionally in E. coli [32]. nfxB has also been
found in Pseudomonas aeruginosa [33]; thus a putative micF
regulatory site for nfxB may also be evolutionarily con-
served. Evolutionary conservation of transcription factor
binding sites as seen in Figure 9 implies that these tran-
scriptional regulators function in bacterial species being
analyzed here. Some factors, such as OmpR have been
found in related organisms [34].

Although transcription factor binding sites display a high
uniformity in sequence, a sequence comparison of the
entire upstream regulatory region shows that the Yersinia
species have diverged significantly between each other
and more than the E. coli/S. typhimurium/K. pneumoniae
grouping has diverged within itself (data not shown). It
remains to be seen if entire genome comparisons of Y. pes-
tis and Y. enterocolitica will show this evolutionary trend,
which has also been seen in micF, or if this divergence pat-
tern is an anomaly.

OmpF mRNA 5'UTR/micF RNA duplex structures

Secondary structure probing by enzymatic and chemical
techniques helped defined a micF RNA/ompF mRNA 5'
UTR interaction [2,8]. In E. coli, micF RNA binds the ompF
mRNA 5' UTR to form an RNA/RNA duplex that contains
imperfect base-pairing [2,35]. In the present work, Yers-
inia ompF mRNA 5' UTR/ micF RNA duplex structure mod-
eling was performed with the mfold program [36,37]

http://www.biomedcentral.com/1471-2180/3/13

(Figure 10 and Figure 11). Sequences between Yersinia
micF RNA species differ in 21 out of 91 positions (shown
in blue in Figure 11). Interestingly, these changes result in
only minor variations in Yersinia RNA/RNA duplex struc-
tural models. For example, base substitutions at positions
39-42, and 77 in Y. enterocolitica are in looped regions
(compare Figures 10 and 11). The 6 base insertion at posi-
tions 18-23 in Y. enterocolitica micF RNA, as well as the
base substitution at position 61 expand duplex pairings in
stems 1 and 3. Base changes at positions 38, 44, 46, 53,
and 69 constitute compensatory changes that maintain
base pairs in stems. Thus the large divergence in micF RNA
sequence between Y. pestis and Y. enterocolitica does not
significantly alter the RNA/RNA duplex structure. This
strengthens the rationale for the duplex model.

Figure 12 shows a diagrammatic representation of the
Yersinia RNA/RNA duplex models along with models of E.
coli and S. marcescens duplexes. Both Yersinia structures
conform to a generalized ompF mRNA 5'UTR /micF RNA
structural model, but the Yersinia species form additional
intra- and inter- molecular base pairings, i.e., stem loop a
and stem 2 (Figure 12). Compensatory base pair changes
in stem loop a add strong phylogenetic support for the
presence of this structure in Yersinia species. The question
is, does this stem loop have a function in regulation of
ompF expression in Yersinia? Mfold modeling does not
predict formation of thermodynamically stable stem loop
a or stem 2 structures in E. coli or S. marcescens RNA/RNA
duplexes. However structure probe data of the E. coli micF
RNA/ompF mRNA 5' UTR duplex do not necessarily
support or preclude Watson-Crick pairings that can form
stem 2 in E. coli [2].

In E. coli, stem 1 of the RNA/RNA duplex is formed from
regions that are largely single-stranded in free (uncom-
plexed) RNAs [2,39], but a minor stem loop in ompF 5'
UTR and a thermodynamically weak stem loop in micF
RNA unfold to form the RNA/RNA interaction [8]. In the
E. coli RNA/RNA duplex, structure probe data show that
intra-molecular stem loop c in ompF 5' UTR and stem loop
b in micF RNA (the p-independent terminator), which are
present in uncomplexed RNAs, are unaltered in the RNA/
RNA duplex [2]. Mfold analyses of Yersinia species
duplexes also predict that these stem loops are main-
tained in RNA/RNA duplex structures. Perhaps evolution-
ary pressure to maintain the stability of these intra-
molecular stem loops is greater than a progression to
unfolding that may create more sites for RNA/RNA inter-
actions. However we cannot rule out a functional role for
stem loops b and ¢ in ompF mRNA inactivation, e.g., pro-
tein factor binding during micF RNA-induced ompF mRNA
destabilization.
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Y. pestis ompF mRNA 5' UTR/micF RNA duplex model. Secondary structures determined by mfold program of Zuker and co-
workers. D. Stewart and M. Zuker graphics program was used (web site: http://www.bioinfo.rpi.edu/applications/mfold/). The
Y. pestis duplex structure represents the first alternate structure by mfold modeling. Numbers -3 in the figure refer to inter-
molecular stems formed by ompF mRNA 5' UTR and micF RNA sequences. Letters a-c refer to intra-molecular micF or ompF

mRNA 5'UTR stem loops.
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Y.enterocolitica RNA/RNA Duplex
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Figure 11
Y. enterocolitica ompF mRNA 5' UTR/micF RNA duplex model. The Y. enterocolitica duplex is structure one by mfold modeling.
Numbers -3 in the figure refer to inter-molecular stems formed by ompF mRNA 5' UTR and micF RNA sequences. Letters a-

c refer to intra-molecular micF or ompF mRNA 5'UTR stem loops. Positions shown in blue color are those that differ between

Y. enterocolitica and Y. pestis micF RNAs.
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Figure 12
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Y.pestis RNA/RNA Duplex
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Y.enterocolitica RNA/RNA Duplex ¥ 8
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Diagrammatic representation of duplex models from four bacterial species. The E. coli RNA/RNA duplex model was deter-
mined by structure probing [2]. The S. marcescens RNA/RNA duplex model is according to the long range pairing algorithm of

[38,8].
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Conclusions and Future Prospects

With rapid sequencing of bacterial genomes, it is a chal-
lenge to annotate the thousands of genes and especially
determine gene start sites (5' ends of RNA transcripts). In
this work, BLAST searches using segments of genes, such
as the ompF 5' UTR sequence resulted in the annotation of
Yersinia genes. This was achieved in part because the ompF
mRNA 5' UTR sequence has functional domains which
are involved in translational regulation. Use of signatures
to annotate genomic sequences has been widely reported
before. This includes PRINTS/BLOCKS/Pfam data bases
[3-5,40] and CDART [41]. In these examples, protein cod-
ing regions are employed to search for sequences that dis-
play similar domains.

In this work, sequence alignment programs have provided
putative start sites as well as definition of transcription
factor binding sites in the upstream regulatory region of
micF. Additionally, with these sequences, new Yersinia
ompF mRNA 5' UTR/micF RNA duplex structures have
been proposed. These add strong phylogenetic support for
previously determined duplex structures.

The approach used here to locate genes may also be useful
in additional annotations. For example, a sequence has
been located in Desufovibrio desulfuricans that displays
74% similarity to a putative mRNA 5' UTR sequence from
K. pneumoniae (unpublished data). This is of particular of
interest since Desufovibrio desulfuricans is phylogenetically
in the 3-subdivision of the proteobacteria [42]; E. coli, K.
pneumoniae, S. marcescens, and Yersinia species, are part of
the y-proteobacteria. micF genes in distantly related bacte-
ria have not yet been found due to evolutionary diver-
gence of micF, ompC mRNA 5' UTR, and the upstream
sequences, in spite of the presence of conserved elements
such as the invariant 13 nt at the 5' end of micF and
conserved putative transcription factor binding sites in
currently analyzed organisms. However a combination of
sequence and secondary structure motifs [43,44] will be
utilized in future studies for additional searches for micF.

Methods

BLAST searches were performed to find micF and target
ompF genes as well as ompC in genomic sequences availa-
ble on GenBank sites of the National Center for
Biotechnology Information http://
www.ncbi.nlm.nih.gov/. Genomic data were scanned by
alignment methods in GenBank. To search for particular
genes, a highly conserved gene was first located and then
alignment methods were used to locate the desire gene in
adjacent sequences. mRNA signatures such as AUG start,
the Shine-Dalgarno (S-D) ribosome binding site and
other signatures were also used as a guide. Where there
were questions of sequence errors in genes analyzed, these
sequences were not used. BLAST searches for sequences

http://www.biomedcentral.com/1471-2180/3/13

homologous to micF and ompF also included sequences in
Haemophilus influenzae, Klebsiella pneumoniae, Pasteurella
multocida, Desulfovibrio desulfricans, and Schwanella onei-
densis as well as those from Yersinia species.

BLAST sequence similarity search programs also provided
in GenBank were used [45]. Microbial genome searches
with BLASTN 2.2.3 and 2.2.4 using expect values of 10-
1000 with the Advanced BLAST program was used to find
micF and associated genes sequences in Yersinia species:
ref #|NC_003143.1| Yersinia pestis strain CO92, complete
genome, and gnl|SANGER_34054| Yersinia enterocolitica
8081. Yersinia species ompF and ompC genes were located
by BLAST searches with ompF or ompC mRNA 5' UTR
sequences.

The 5' start sites of micF and, ompF and ompC 5'UTRs, were
predicted by nucleotide sequence alignment and similar-
ity. MegAlign alignment programs were from DNASTAR,
Inc. http://www.dnastar.com/. Parameters used were
either that of J. Hein with gap penalty 11, gap length, 3;
ClustalV, with gap penalty 10, gap length 10; or ClustalW
with gap penalty 15, gap length, 6.66. Percent identities,
consensus (majority) sequences, and phylogenetic trees
were also based on programs from DNASTAR, Inc. Align-
ment methods chosen were for the most part based on
results with well established identities in previously
determined sequences. When an alignment showed obvi-
ous discrepancies, such a lack of alignment of stretches of
near perfect identity, it was discarded.

Standard default parameters, with the exception of assign-
ment of the number of alternate structures to 10 were use
to fold RNAs into duplex structures with the Zuker/Turner
mfold program, version 3.1. The program is available at
internet address: http://www.bioinfo.rpi.edu/applica-

tions/mfold/

Abbreviations
Organisms

E.c., Escherichia coli; S.t., Salmonella typhimurium; S.m. Ser-
ratia marcescens; K.p., Klebsiella pneumoniae. Y.e., Yersinia
enterocolitica, Y.p., Yersinia pestis;H.i.,Haemophilus influen-
zae; P.m.,Pasteurella  multocida, D.d., Desulfovibrio
desulfricans.

Proteins

OmpF, outer membrane protein F;, OmpC, outer mem-
brane protein C; Lrp, leucine-responsive protein; IHF,
integration host factor; HTH, helix-turn-helix; RNAP, RNA

polymerase.

Nucleic Acids
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nt, nucleotides; bp, base pairs
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