
BioMed CentralBMC Microbiology

ss
Open AcceResearch article
Characterisation of methionine adenosyltransferase from 
Mycobacterium smegmatis and M. tuberculosis
Bradley J Berger* and Marvin H Knodel

Address: Chemical & Biological Defence Section, Defence R&D Canada – Suffield, PO Box 4000, Medicine Hat, AB, T1A 8K6, Canada

Email: Bradley J Berger* - Brad.Berger@drdc-rddc.gc.ca; Marvin H Knodel - Marvin.Knodel@drdc-rddc.gc.ca

* Corresponding author    

Abstract
Background: Tuberculosis remains a serious world-wide health threat which requires the
characterisation of novel drug targets for the development of future antimycobacterials. One of the
key obstacles in the definition of new targets is the large variety of metabolic alterations that occur
between cells in the active growth and chronic/dormant phases of tuberculosis. The ideal
biochemical target should be active in both growth phases. Methionine adenosyltransferase, which
catalyses the formation of S-adenosylmethionine from methionine and ATP, is involved in
polyamine biosynthesis during active growth and is also required for the methylation and
cyclopropylation of mycolipids necessary for survival in the chronic phase.

Results: The gene encoding methionine adenosyltransferase has been cloned from Mycobacterium
tuberculosis and the model organism M. smegmatis. Both enzymes retained all amino acids known to
be involved in catalysing the reaction. While the M. smegmatis enzyme could be functionally
expressed, the M. tuberculosis homologue was insoluble and inactive under a large variety of
expression conditions. For the M. smegmatis enzyme, the Vmax for S-adenosylmethionine
formation was 1.30 µmol/min/mg protein and the Km for methionine and ATP was 288 µM and 76
µM respectively. In addition, the enzyme was competitively inhibited by 8-azaguanine and
azathioprine with a Ki of 4.7 mM and 3.7 mM respectively. Azathioprine inhibited the in vitro
growth of M. smegmatis with a minimal inhibitory concentration (MIC) of 500 µM, while the MIC
for 8-azaguanine was >1.0 mM.

Conclusion: The methionine adenosyltransferase from both organisms had a primary structure
very similar those previously characterised in other prokaryotic and eukaryotic organisms. The
kinetic properties of the M. smegmatis enzyme were also similar to known prokaryotic methionine
adenosyltransferases. Inhibition of the enzyme by 8-azaguanine and azathioprine provides a starting
point for the synthesis of higher affinity purine-based inhibitors.

Background
Tuberculosis represents one of the world's greatest sources
of mortality and morbidity, with approximately 8 million
new infections and 2 million deaths per year [1]. The sit-
uation regarding the control of tuberculosis has signifi-

cantly worsened over the last decade, with the spread of
strains resistant to multiple antimycobacterial agents.
There is a profound need for the identification and devel-
opment of novel chemotherapeutic compounds against
tuberculosis. The characterisation of mycobacterial
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biochemical pathways aids this process through the iden-
tification of enzymes amenable to therapeutic inhibition.

Mycobacterium tuberculosis is difficult to kill for a number
of reasons. The organism is surrounded by a dense waxy
coat consisting of unusual long-chain fatty acids (mycoli-
pids) with hydroxyl, methyl, and cyclopropyl substitu-
tions that prevent many common antibiotics from
entering the cell [2]. In addition, the organism normally
resides in the unfused lysosome of macrophages, which
further complicates access by antibiotics. Finally, the bac-
terium is able to enter a very slow-growing, chronic phase,
where many biochemical targets are down-regulated [3].
In this state, the bacteria shift their metabolic focus from
sugars to β-oxidation of fatty acids, which entails a down-
regulation of glycolysis and an up-regulation of the glyox-
ylate shunt [4]. Therefore, in order to cure tuberculosis, an
active compound must penetrate the macrophage, the
bacterial coat, and be active against both the acute and
chronic growth phases. For these reasons, antimycobacte-
rial therapy relies on the combination of several drugs.

In the examination of biochemical pathways in Mycobac-
terium tuberculosis, it would be ideal to identify processes
where an enzyme plays a role in both active and chronic
phase survival. In active, replicative growth cells require
polyamines for cell division. While the exact function of
these molecules is unknown, it is hypothesised that the
positively charged spermidine and spermine act to stabi-
lise DNA during unwinding and strand separation [5]. In
mycobacteria, polyamines may also play a role in tran-
scriptional regulation [6], and have also been targeted for
chemotherapeutic intervention [7,8]. In the biosynthesis
of polyamines, decarboxylated S-adenosylmethionine
acts as an aminopropyl donor for the formation of sper-
midine from putrescine, and of spermine from spermi-
dine (Figure 1). These reactions give rise to
methylthioadenosine, which can be recycled back to ade-
nine and methionine for further synthesis of S-adenosyl-
methionine (SAM).

Several studies have shown that mycolipid biosynthesis is
essential for survival of M. tuberculosis in the chronic
growth phase [9,10]. Tuberculosis has been found to con-
tain numerous genes encoding methyltransferases which
methylate and cyclopropylate mycolic acids [11,12]. The
methyltransferases use S-adenosylmethionine as a sub-
strate, yielding S-adenosylhomocysteine as a byproduct
for recycling (Figure 1). In a recent study, deletion of the
pcaA gene, which is involved in cyclopropane formation
in mycolic acids, led to an inability of M. tuberculosis to
persist within and kill mice [10]. The mutant bacteria were
able to grow normally and establish an infection, but were
progressively eliminated from the spleen. Therefore,

mycolic acid biosynthesis provides an attractive target for
the persistent stage of tuberculosis.

In the convergence of these active and chronic growth
requirements is the enzyme methionine adenosyltrans-
ferase (MAT; also known as S-adenosylmethionine syn-
thetase), which converts methionine and ATP to S-
adenosylmethionine. Effective inhibition of this enzyme
could then impact both growth phases of the organism. In
this study, we have identified, cloned, functionally
expressed, and characterised the methionine adenosyl-
transferase from the model organism M. smegmatis. In
addition, the M. tuberculosis homologue has been cloned.
Several prototypic inhibitors have been examined against
the recombinant M. smegmatis enzyme.

Results
Methionine Adenosyltransferase in Mycobacterium spp
The complete, published genome for Mycobacterium tuber-
culosis H37Rv contains a single gene with very high
homology to a variety of bacterial and eukaryotic MAT
[13]. The gene, designated Rv1392 is listed as a putative
MAT, but has not yet been cloned, expressed, or character-
ised. The more recent complete, published genome for M.
tuberculosis CDC1551 contains an identical gene desig-
nated MT1437 [14]. The function of this gene has likewise
not been validated. Similarly, there are no published
reports on the characterisation of MAT activity in any
mycobacterial system.

Through examination of the complete, published genome
of M. leprae [15], and the on-going genome projects for M.
bovis, M. smegmatis, M. avium, and M. marinum it was pos-
sible to discover a single gene in each organism with a very
high identity to Rv1392. Together with all other published
MAT sequences available from the Entrez database http://
www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Protein, the
putative mycobacterial MAT were aligned and a cladog-
ram constructed using the Neighbor joining method [16]
(Figure 2). The relationship of the mycobacterial
sequences mimicked the phylogeny of the organisms as
determined by their rRNA gene sequences (data not
shown). The M. tuberculosis and M. bovis MAT sequences
were identical and closely related to M. marinum (95%).
The M. tuberculosis sequence was then more distantly
related to M. leprae (91%), M. avium (92%), and M. smeg-
matis (87%). As a group, the mycobacterial enzymes clus-
tered with MAT from Streptomyces spp. (72–73%
identical), and Corynebacterium glutamicum (66%), and
had a more distant relationship with Aquifex aeolicus
(42%), Thermotoga maritima (63%), and the low G+C con-
tent Gram-positive bacteria (38–58%). The M. tuberculosis
MAT sequence was 49% identical to that from E. coli, 50%
to Saccharomyces cerevisiae, 46% to Plasmodium falciparum,
49% to Arabidopsis thaliana, and 47% to Homo sapiens.
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The high level of sequence identity seen between the M.
tuberculosis MAT sequence and those from widely diver-
gent organisms was consistent with the high degree of
sequence conservation found across all MAT. In Figure 3,
an alignment of selected MAT sequences is shown, along
with annotation relating to the alignment of all the
sequences shown in Figure 1. As can be seen with the ten
sequences in Figure 3, there was high identity across bac-
terial and eukaryotic MAT. There were thirteen residues
conserved across all 117 sequences used for Figure 2, but
this value increased to 55 residues when the threshold is
dropped to 98% conservation in order to allow for

sequencing errors in genome data. All of the mycobacte-
rial MAT sequences were found to retain the residues
implicated in substrate and cofactor binding in the E. coli
MAT crystal structure [17]. D31(D17) and D309(D272)
are the Mg2+ cofactor binding sites, while E57(E43) is the
K+ cofactor binding site. D147(D119) and D276(239)
interact with the methionine substrate, and G297(G260)
through D304(D267) form the P-loop motif that make up
the binding site for the ATP substrate [17]. The residue
numbers represent the position in the alignment shown
in Figure 3. The numbers in parentheses represent the cor-
responding residues in the E. coli MAT, which has been

Figure 1
S-Adenosylmethionine as a common biochemical substrate for the rapid and chronic growth stages of M. 
tuberculosis. The pathways of S-adenosylmethionine usage and the potential recycling routes of methionine and ATP are 
shown. The enzymes which catalyse the reactions are: 1 methionine adenosyltransferase, 2 S-adenosylmethionine decarboxy-
lase, 3 spermidine/spermine aminopropyltransferase, 4 methylthioadenosine phosphorylase, 4a methylthioadenosine nucleosi-
dase, 4b methylthioribose kinase, 5 four steps not shown, 6 aminotransferase, 7 mycolic acid methyltransferases, 8 S-
adenosylhomocysteine hydrolase, 8a S-adenosylhomocysteine nucleosidase, 8b S-ribosylhomocysteine hydrolase, and 9 
methionine synthetase. It has not yet been determined in M. tuberculosis whether enzyme 4 or 4a/4b, and 8 or 8a/8b catalyses 
the recycling of methionine. The exact aminotransferase catalysing step 6 has also not been elucidated.
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Figure 2
Phylogenetic relationship of methionine adenosyltransferase sequences. The enzyme sequences are labelled with 
Entrez accession numbers and, in the case of microbial genome data, with the protein identifier from the genome project. All 
sequences were aligned with the Clustal algorithm and used for tree construction using the neighbor-joining method. The 
sequences from M. tuberculosis and M. smegmatis are in red, while the other mycobacterial sequences are in blue.
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structurally determined by X-ray crystallography [29].
MAT is known from the E. coli structural model to form
pairs of homodimers where the substrate binding sites are
made up of the appropriate interface residues from each
monomer [17]. Based on the close primary sequence
identity to the E. coli MAT, the mycobacterial enzymes
would be expected to have a very similar spatial
arrangement.

Cloning and Expression of Methionine 
Adenosyltransferases
The putative gene encoding MAT was cloned from both
M. tuberculosis H37Rv and from M. smegmatis NCTC-8159.
The sequences were then initially subcloned into pCALn-
FLAG in order to make N-terminal calmodulin-binding
peptide fusion proteins. The enzymes were expressed in E.
coli BL21 CodonPlus RIL cells under the conditions out-
lined in the Methods section. The M. tuberculosis MAT was
found to express completely as insoluble, inactive inclu-
sion bodies, whereas the M. smegmatis enzyme yielded pri-
marily inactive inclusions with approximately 5%
soluble, active enzyme. By scaling up the incubations, suf-
ficient M. smegmatis MAT was obtained for further
characterisation.

In order to produce soluble, active M. tuberculosis MAT, a
number of alternative methodologies were applied. The
inclusion bodies were solubilised with 8 M urea and sub-
jected to refolding by dialysis exactly as outlined in Lopez-
Vara et al. [18]. Inclusion bodies were also solubilised
using N-laurylsarcosine at pH 11 and refolded as outlined
in the Novagen refolding kit. Expression of the protein
was attempted at different temperatures, with different
concentrations of IPTG, and for different lengths of time
post-induction. Induction was performed on stationary
phase cells. The pCALnFLAG construct was used in E. coli
BL21(DE3)pLysS for more stringent regulation of induc-
tion [19], or in BL21(DE3)Origami which maintains a
more oxidizing internal environment to allow for
disulfide formation [20]. The MAT sequence was fused to
a decahistidine N-terminal tag or to an N-terminal fusion
with the E. coli NusA protein which is reported to increase
solubility [21]. Finally, the tuberculosis enzyme was
cloned into pWH1520 for expression in Bacillus megate-
rium under the xylose operon [22]. None of these experi-
ments yielded active MAT. However, solubilisation of
inclusion bodies by N-laurylsarcosine as per the Novagen
refolding kit did yield soluble enzyme under physiologi-
cal conditions. Unfortunately, the micelles containing the
enzyme were precipitated by the addition of Mg2+, pre-
venting activation of the apoenzyme. In addition, fusion
of the tuberculosis MAT to the E. coli NusA protein also
resulted in large amounts of soluble protein. However,
neither the fusion protein nor the enterokinase-liberated
MAT had detectable activity. The basis for this lack of

activity is not clear, but may be due to misfolding of the
fusion protein.

Characterisation and Inhibition of M. smegmatis Methio-
nine Adenosyltransferase
The M. smegmatis MAT was examined with variable con-
centrations of substrate and a fixed concentration of
cosubstrate and cofactors in order to determine the kinetic
constants for the enzyme (Figure 4). The Vmax for the
enzyme was found to be 1.30 ± 0.40 µmol/min/mg pro-
tein and the Km was 288.47 ± 40.90 µM for methionine
and 76.19 ± 13.53 µM for ATP. The calculated Kcat for the
enzyme was 0.93 s-1, and the Kcat/Km was 12200 M-1s-1

for ATP and 3200 M-1s-1for methionine.

In order to screen substrate analogues as potential inhibi-
tors, commercially available test compounds were
screened initially in 10-fold excess to the substrate
concentration, without enzyme-inhibitor preincubation.
Eleven methionine analogues (Table 1) and 33 purine
analogues (Table 2) were screened in this manner. Of the
methionine analogues, no compound inhibited the pro-
duction of SAM by more than 25%. The best of these
inhibitors, cycloleucine, is treated in the literature as a
classic inhibitor of MAT activity, but typically acts weakly
[23]. Of the purine analogues, two compounds provided
substantial inhibition of MAT activity: 8-azaguanine at
82% inhibition and azathioprine at 76%. These two com-
pounds were then tested in detail in order to determine
the inhibition constants (Figure 5). Both purine ana-
logues yielded an inhibition pattern consistent with
competitive inhibition, and 8-azaguanine was found to
have a calculated Ki of 4.70 ± 0.77 mM and azathioprine
one of 3.74 ± 1.00 mM. These Ki values are 49–62 times
greater than the Km of the enzyme for ATP.

The two inhibitors were also tested for their ability to
inhibit the in vitro growth of M. smegmatis in Middle-
brook 7H9 medium. Azathioprine was found to have an
MIC of 500 µM, while 8-azaguanine was unable top com-
pletely inhibit growth up to 1.0 mM. Both compounds
had a marked effect on growth (at least 50% growth inhi-
bition) down to 2.0 µM.

Discussion
S-Adenosylmethionine is one of the most important cel-
lular biochemical cofactors, and plays a role in a large
variety of essential metabolic pathways. The formation of
SAM from methionine and ATP by MAT therefore
represents a crucial checkpoint for numerous functions
required for cell growth and division, such as polyamine
biosynthesis and methylation reactions. Not surprisingly,
MAT is a very highly conserved enzyme and displays a
high sequence identity from bacteria through to humans.
Even bacteria with known degenerate, minimal genomes,
Page 5 of 13
(page number not for citation purposes)



BMC Microbiology 2003, 3 http://www.biomedcentral.com/1471-2180/3/12
Figure 3
Alignment of selected methionine adenosyltransferase sequences. The following sequences were aligned with the 
Clustal algorithm: Mt, M. tuberculosis; Ms, M. smegmatis; Mb, M. bovis; Mm, M. marinum; Ml, M. leprae; Ma, M. avium; Bs, Bacillus 
subtilis [51]; Ec, Escherichia coli MetK [52], Sc, Saccharomyces cerevisiae SAM1 [53]; Hs, Homo sapiens MAT1 [54]. Residues con-
served by 75% of these sequences are boxed. The annotation below refers to 100% (#) or 98% (+) conservation of residues by 
the 117 sequences in Figure 2. Residues marked with M are the putative Mg2+ binding sites, K the putative K+ binding sites, A 
the ATP-binding residues of the P-loop, and X the residues that interact with the methionine substrate.
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Mt ------------MSEKGRLFTSESVTEGHPDKICDAISDSVLDALLAADPRSRVAVETLVTTGQVHVVGEVTTSAKEAFADITNTVRARILEIGYDSSDKGFDGATCGVN 98

Ms ------------MS-KGRLFTSESVTEGHPDKICDAISDSVLDALLEQDPKSRVAVETLVTTGQVHVAGEVTT---TAYADIPKIVRDRILDIGYDSSTKGFDGASCGVN 94

Mb ------------MSEKGRLFTSESVTEGHPDKICDAISDSVLDALLAADPRSRVAVETLVTTGQVHVVGEVATSAKEAFADITNTVRARILEIGYDSSDKGFDGATCGVN 98

Mm ------------MSEKGRLFTSESVTEGHPDKICDAVSDSVLDALLAADPRSRVAVETLVTTGQVHVVGEVTTTAKEAFADITNIVRERILDIGYDSSDKGFDGASCGVN 98

Ml ------------VSEKGRLFTSESVTEGHPDKICDAISDSILDALLAEDPCSRVAVETLVTTGQVHVVGEVTTLAKTAFADISNTVRERILDIGYDSSDKGFDGASCGVN 98

Ma ------------MSEKGRLFTSESVTEGHPDKICDAISDSVLDALLAQDPRSRVAVETLVTTGQVHVVGEVTTTAKEAFADITNTVRERILDIGYDSSDKGFDGASCGVN 98

Bs ------------MSKNRRLFTSESVTEGHPDKICDQISDSILDEILKKDPNARVACETSVTTGLVLVSGEITT---STYVDIPKTVRQTIKEIGYTRAKYGFDAETCAVL 95

Ec ------------MAKH--LFTSESVSEGHPDKIADQISDAVLDAILEQDPKARVACETYVKTGMVLVGGEITT---SAWVDIEEITRNTVREIGYVHSDMGFDANSCAVL 93

Sc -------------MAGTFLFTSESVGEGHPDKICDQVSDAILDACLAEDPHSKVACETAAKTGMIMVFGEITT---KAQLDYQKIVRDTIKKIGYDDSAKGFDYKTCNVL 94

Hs MNGPVDGLCDHSLSEGVFMFTSESVGEGHPDKICDQISDAVLDAHLKQDPNAKVACETVCKTGMVLLCGEITS---MAMVDYQRVVRDTIKHIGYDDSAKGFDFKTCNVL 107
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....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

Mt IGIGAQSPDIAQGVDTAHEARVEGAADP-LDSQGAGDQGLMFGYAINATPELMPLPIALAHRLSRRLTEVRKNGVLPYLRPDGKTQVTIAYEDN----VPVRLDTVVIST 203

Ms VAIGAQSPDIAQGVDTAHETRVEGKADP-LDLQGAGDQGLMFGYAIGDTPELMPLPIALAHRLARRLTEVRKNGVLDYLRPDGKTQVTIQYDGT----TPVRLDTVVLST 199

Mb IGIGAQSPDIAQGVDTAHEARVEGAADP-LDSQGAGDQGLMFGYAINATPELMPLPIALAHRLSRRLTEVRKNGVLPYLRPDGKTQVTIAYEDN----VPVRLDTVVIST 203

Mm IGIGAQSPDIAQGVDTAHEARVEGAADP-LDAQGAGDQGLMFGYAINDTPELMPLPIALAHRLSRRLTEVRKNGVLPYLRPDGKTQVTIAYEDR----VPVRLDTVVIST 203

Ml IGIGAQSSDIAQGVNTAHEVRVEGAADP-LDAQGAGDQGLMFGYAINDTPELMPLPIALAHRLARRLTEVRKNGVLPYLRSDGKTQVTIAYEDN----VPVRLDTVVIST 203

Ma IGIGAQSPDIAQGVDTAHETRVEGAADP-LDAQGAGDQGLMFGYAINDTPERMPLPIALAHRLSRRLTEVRKNGVLPYLRPDGKTQVTIEFEDD----VPVRLDTVVIST 203

Bs TSIDEQSADIAMGVDQALEAREGTMSDEEIEAIGAGDQGLMFGYACNETKELMPLPISLAHKLARRLSEVRKEDILPYLRPDGKTQVTVEYDENN---KPVRIDAIVIST 202

Ec SAIGKQSPDINQGVDRADPLE-----------QGAGDQGLMFGYATNETDVLMPAPITYAHRLVQRQAEVRKNGTLPWLRPDAKSQVTFQYDDG----KIVGIDAVVLST 188

Sc VAIEQQSPDIAQGVHEEKDLED----------IGAGDQGIMFGYATDETPEGLPLTILLAHKLNMAMADARRDGSLAWLRPDTKTQVTVEYKDDHGRWVPQRIDTVVVSA 194

Hs VALEQQSPDIAQCVHLDRNEED----------VGAGDQGLMFGYATDETEECMPLTIILAHKLNARMADLRRSGLLPWLRPDSKTQVTVQYMQDNGAVIPVRIHTIVISV 207

230 240 250 260 270 280 290 300 310 320 330
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

Mt QHAADIDLEKTLDPDIREKVLNTVLDDLAHETLDASTVRVLVNPTGKFVLGGPMGDAGLTGRKIIVDTYGGWARHGGGAFSGKDPSKVDRSAAYAMRWVAKNVVAAGLAE 313

Ms QHADGIDLEGTLTPDIREKVVNTVLADLGHETLDTSDYRLLVNPTGKFVLGGPMGDAGLTGRKIIVDTYGGWARHGGGAFSGKDPSKVDRSAAYAMRWVAKNVVAAGLAE 309

Mb QHAADIDLEKTLDPDIREKVLNTVLDDLAHETLDASTVRVLVNPTGKFVLGGPMGDAGLTGRKIIVDTYGGWARHGGGAFSGKDPSKVDRSAAYAMRWVAKNVVAAGLAE 313

Mm QHADDIDLVKTLDPDIREQVLKTVLDDLAHDTLDASAVRVLVNPTGKFVLGGPMGDAGLTGRKIIVDTYGGWARHGGGAFSGKDPSKVDRSAAYAMRWVAKNVVAAGLAE 313

Ml QHAAGVDLDATLAPDIREKVLNTVIDDLSHDTLDVSSVRVLVNPTGKFVLGGPMGDAGLTGRKIIVDTYGGWARHGGGAFSGKDPSKVDRSAAYAMRWVAKNIVAAGLAE 313

Ma QHAADIDLENTLTPDIREKVLNTVLNDLAHDTLDTSSTRLLVNPTGKFVVGGPMGDAGLTGRKIIVDTYGGWARHGGGAFSGKDPSKVDRSAAYAMRWVAKNIVAAGLAE 313

Bs QHHPEITLE-QIQRNIKEHVINPVVP----EELIDEETKYFINPTGRFVIGGPQGDAGLTGRKIIVDTYGGYARHGGGAFSGKDATKVDRSAAYAARYVAKNIVAAELAD 307

Ec QHSEEIDQK-SLQEAVMEEIIKPILP----AEWLTSATKFFINPTGRFVIGGPMGDCGLTGRKIIVDTYGGMARHGGGAFSGKDPSKVDRSAAYAARYVAKNIVAAGLAD 293

Sc QHADEITTE-DLRAQLKSEIIEKVIP----RDMLDENTKYFIQPSGRFVIGGPQGDAGLTGRKIIVDAYGGASSVGGGAFSGKDYSKVDRSAAYAARWVAKSLVAAGLCK 299

Hs QHNEDITLE-EMRRALKEQVIRAVVP----AKYLDEDTVYHLQPSGRFVIGGPQGDAGVTGRKIIVDTYGGWGAHGGGAFSGKDYTKVDRSAAYAARWVAKSLVKAGLCR 312

340 350 360 370 380 390 400 410 420
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|...

Mt RVEVQVAYAIGKAAPVGLFVETFGTETEDPVKIEKAIGEVFDLRPGAIIRDLNLLRPIYAPTAAYGHFGRTDVELPWEQLDKVDDLKRAI--- 403

Ms RVEVQVAYAIGKAAPVGLFVETFGSETVDPAKIEKAIGEVFDLRPAAIVRDLDLLRPIYAPTAAYGHFGRTDIELPWEQTNKVDDLKSAI--- 399

Mb RVEVQVAYAIGKAAPVGLFVETFGTETEDPVKIEKAIGEVFDLRPGAIIRDLNLLRPIYAPTAAYGHFGRTDVELPWEQLDKVDDLKRAI--- 403

Mm RVEVQVAYAIGKAAPVGLFVETFGSEAVDPVKIEKAIGEVFDLRPGAIIRDLNLLRPIYAPTAAYGHFGRTDVDLPWERLDKVDDLKRAI--- 403

Ml RIEVQVAYAIGKAAPVGLFVETFGTEAVDPAKIEKAIGEVFDLRPGAIIRDLHLLRPIYAQTAAYGHFGRTDVELPWEQLNKVDDLKRAI--- 403

Ma RVEVQVAYAIGKAAPVGLFIETFGTATVDPVKIEKIVPEVFDLRPGAIIRDLDLLRPIYAQTAAYGHFGRTDVELPWEQLNKVDDLKRAI--- 403

Bs SCEVQLAYAIGVAQPVSISINTFGSGKASEEKLIEVVRNNFDLRPAGIIKMLDLRRPIYKQTAAYGHFGRHDVDLPWERTDKAEQLRKEALGE 400

Ec RCEIQVSYAIGVAEPTSIMVETFGTEKVPSEQLTLLVREFFDLRPYGLIQMLDLLHPIYKETAAYGHFGR--EHFPWEKTDKAQLLRDAAGLK 384

Sc RVQVQFSYAIGIAEPLSLHVDTYGTATKSDEEIIDIISKNFDLRPGVLVKELDLARPIYLPTASYGHFTN--QEYPWEKPKTLKF-------- 382

Hs RVLVQVSYAIGVAEPLSISIFTYGTSQKTERELLDVVHKNFDLRPGVIVRDLDLKKPIYQKTACYGHFGR--SEFPWEVPRKLVF-------- 395
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such as Mycoplasma spp. [24,25], Buchnera aphidocola [26],
and Mycobacterium leprae [15] contain a sequence with a
high identity to MAT. The only exception to the ubiquity
of MAT is the archaebacteria, which perform this enzy-
matic function with a highly divergent enzyme which
shares only the active site residues with the E. coli MAT
[27]. It is not presently clear whether the archaeal
enzymes represent convergent or divergent evolution, but
the close identity within the bacterial/eukaryotic MAT
would suggest that the archaeal enzyme is analogous.

In mycobacteria, SAM plays an additional role beyond
normal cellular methylation and aminopropylation reac-
tions, as the organisms are reliant on the cofactor for the
formation of methylated and cyclopropylated mycolic
acids. These fatty acids are very long, and consist of 70–90
carbons [2] and contain methyl, hydroxyl, and cyclopro-
pyl substitutions that are diagnostic for individual myco-
bacterial species [28]. In M. tuberculosis, there are as many
as seven SAM-dependent methyltransferases involved in
mycolic acid methylation and cyclopropylation [13].
Interference with cyclopropyl formation in mycolic acid

synthesis has been shown to impact virulence, persist-
ance, and resistance of M. tuberculosis to oxidative stress
[10]. When coupled with the role of SAM as an aminopro-
pyl donor for polyamine biosynthesis during cell division
[5], interference with SAM has the potential to impact
both the active and persistent phases of tuberculosis. The
obvious convergence of these biochemical pathways is the
synthesis of SAM by MAT.

In this paper, we have cloned the M. tuberculosis and M.
smegmatis MAT, and have found that the sequences dis-
play a high degree of identity with other bacterial and
eukaryotic MAT. Both organisms contain only one copy of
MAT which are 87% identical. However, the 13% differ-
ence in primary sequence had a major impact on the func-
tional expression of the enzymes. The M. smegmatis MAT
expressed in E. coli primarily as inclusion bodies,
although 5–20% of the enzyme could be recovered as sol-
uble, active material depending on the length of time of
induction. The M. tuberculosis MAT expressed in E. coli
solely as inclusion bodies. A large number of experimen-
tal variations and refolding experiments were attempted,

Figure 4
Kinetic characterisation of M. smegmatis methionine adenosyltransferase. The enzyme was incubated with 0 – 4.0 
mM substrate and 10 mM cosubstrate as described in the Methods section. The production of SAM was measured by HPLC, 
and the resulting data fitted to the Michaelis-Menton equation.
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but active tuberculosis MAT could not be recovered. In
two instances, the enzyme was obtained in soluble form
under physiological conditions, but still retained a lack of
activity. The solution to this difficulty is still under
examination.

The M. smegmatis MAT was characterised and found to
have a Vmax of 1.30 µmol/min/mg protein, and a Km for

methionine of 288 µM and for ATP of 76 µM. These values
are interesting when compared to similar values found for
other MAT. In general, the Km for methionine is lower
than the Km for ATP. In a MAT purified from human lym-
phocytes, the Km was 31 µM for methionine and 84 µM
for ATP [29], while in bovine brain the Km was 10 µM for
methionine and 50 µM for ATP [30]. In Leishmania infan-
tum, the Km was 35 µM for methionine and 5 mM for ATP

Figure 5
Inhibition of methionine adenosyltransferase by 8-azaguanine and azathioprine. The M. smegmatis enzyme was 
incubated with 0–10 mM inhibitor, 10 mM methionine, and 0.5 (squares), 1.0 (circles), 2.0 (inverted triangles), or 3.0 (triangles) 
mM ATP as described in the Methods section. The data is shown as Dixon plots.

Table 1: The inhibition of methionine adenosyltransferase by methionine analogues. The M. smegmatis enzyme was incubated with 1 
mM methionine, 10 mM ATP, 20 mM Mg2+, 150 mM K+, and 10 mM inhibitor, as described in the Methods section.

Inhibitor Inhibition (%) Inhibitor Inhibition (%)

α-Methyl-DL-methionine 18.8 ± 3.7 3-Methylthio propionaldehyde 18.4 ± 3.7
L-Methionine sulfoxide 4.0 ± 0.8 L-Methionine methyl ester 17.7 ± 3.5
L-Methionine sulfone 9.2 ± 1.8 L-Penicillamine 15.0 ± 3.0
Cycloleucine 25.8 ± 5.1 L-Methionine sulfoximine 12.6 ± 2.5
L-Ethionine 20.4 ± 4.1 (R)-Methioninol 0.0 ± 0.0
L-Methioninamide 23.9 ± 4.8
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[31], whereas in Trypanosoma brucei brucei there were two
isoforms detectable with Km values of 20 µM and 200 µM
for methionine, and 53 µM and 1.75 mM for ATP [32]. In
E. coli, the these values were much more similar, with a
Km of 80 µM for methionine and 110 µM for ATP [33].
The M. smegmatis MAT is thus unusual in that the Km for
ATP is significantly lower than that for methionine. The
molecular basis and implication of this difference in sub-
strate affinity is unclear, but, in general, the Km values for
the mycobacterial MAT are in the same range as in other
characterised organisms. Aside from the Km value for
methionine, the M. smegmatis MAT appeared to closely
resemble the E. coli enzyme. In E. coli, the Vmax was found
to be 2.2 µmol/min/mg protein, the Kcat 1.53 s-1, and the
Kcat/Km for ATP 13900 M-1s-1 [33]. The corresponding M.
smegmatis values were 1.30 µmol/min/mg protein, 0.93 s-

1, and 12200 M-1s-1. Therefore, the considerable data
available on the structure of the E. coli enzyme should be
of direct relevance for ligand binding studies using the
mycobacterial enzyme [17].

The M. smegmatis enzyme was also screened with a
number of commercially available methionine and
purine analogues in order to discover potential inhibitors.
None of the methionine analogues had appreciable activ-
ity, while two of the purine analogues, 8-azaguanine and
azathioprine (Figure 6), were effective inhibitors. Detailed
kinetic characterisation of these inhibitors demonstrated
that both acted competitively and both had Ki values
around 4 mM. Despite these high Ki values, both com-
pounds inhibited growth of M. smegmatis in vitro, with

growth inhibition exceeding 50% down to 2.0 µM.
Azathioprine was also able to completely inhibit M. smeg-
matis growth with an MIC of 500 µM, while the MIC for
8-azaguanine was >1.0 mM. However, both compounds
are known to have toxic, carcinogenic, or immunosup-
pressive properties [34–37], which make them unsuitable
as candidate drugs against tuberculosis in vivo. Never the
less, these two purine analogues represent a suitable start-
ing point for the design of more effective and tolerable
inhibitors of MAT activity. Although the compounds
tested in Table 2 are too dissimilar to allow for a detailed
structure-activity analysis, one key observation can be
obtained. The two most effective inhibitors have no struc-
tural alterations in common beyond substitution of the 2-
amino position in the purine ring. 8-Aza-2,6-diaminopu-
rine was a much poorer inhibitor than 8-azaguanine, sug-
gesting that the aza-substitution at position 8 was less
important for activity. O-Methylguanine, on the other
hand, inhibited SAM formation by 60%, highlighting
again the substitution in position 2. Azathioprine has a
large group substituted in this position, which might be
amenable to synthetic alteration for testing novel inhibi-
tors. Azathioprine has been used clinically as an immuno-
suppressant and anti-arthritic agent, but has not been
previously examined as an antimicrobial agent. Further
examination of structural analogues may be useful.

Given the central role of SAM in cell growth and division,
it is unsurprising that MAT has been examined as a molec-
ular target for the development of anticancer agents. Most
of the methionine and purine analogues studied have

Table 2: The inhibition of methionine adenosyltransferase by purine analogues. The M. smegmatis enzyme was incubated with 1 mM 
ATP, 10 mM methionine, 20 mM Mg2+, 150 mM K+, and 10 mM inhibitor, as described in the Methods section.

Inhibitor Inhibition (%) Inhibitor Inhibition (%)

8-Chlorotheophylline 7.0 ± 4.1 1,3,7-Trimethyluric acid 0.0 ± 0.0
7-Hydroxypropyl theophylline 16.1 ± 4.0 6-Bromopurine 31.4 ± 1.5
Uric acid 45.6 ± 11.9 7-Methylxanthine 36.3 ± 4.2
Xanthine 35.4 ± 2.5 1-Methylxanthine 35.9 ± 5.8
8-Azaguanine 81.7 ± 2.8 2-Hydroxypurine 33.8 ± 0.6
3,7-Dimethyluric acid 27.9 ± 1.6 6-Chloropurine 31.4 ± 7.3
2,6-Dichloropurine 35.5 ± 6.9 2-Amino-6-chloropurine-9-acetic acid 23.5 ± 8.4
6-Mercaptopurine 40.1 ± 2.3 6-Benzyloxypurine 17.7 ± 3.4
1-Methyluric acid 43.4 ± 2.9 2-Aminopurine 11.0 ± 2.1
Purine riboside 44.4 ± 5.9 6-Methylpurine 0.0 ± 0.0
O-Methylguanine 60.3 ± 5.3 7-Methyluric acid 11.4 ± 2.2
2,6-Diaminopurine 29.3 ± 7.9 6-Cyanopurine 24.2 ± 4.6
2-Amino-6-carboxy ethyl 
mercaptopurine

31.9 ± 9.8 2-Amino-6-chloropurine riboside 17.2 ± 3.3

6-Propoxypurine 27.9 ± 4.0 6-Dimethyl aminopurine 28.0 ± 5.3
6-Dimethylallyl aminopurine 
riboside

41.6 ± 5.5 Azathioprine 75.5 ± 5.4

8-Aza-2,6-diaminopurine 40.0 ± 2.2 6-Mercaptopurine riboside 30.0 ± 5.7
6-Chloropurine riboside 17.1 ± 3.5
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been fairly poor inhibitors. For example, cycloleucine,
which is often treated as a classic inhibitor of MAT activity,
only has a Ki of 10 mM against human MAT [23].
Similarly, four other cyclic analogues of methionine had
Ki values of 0.75–3.0 mM against rat liver MAT [38]. Of
thirteen methylmethionine analogues, the best three
compounds had Ki values ranging from 0.5–2.4 mM,
while most had little inhibitory effect [39]. In terms of
methionine analogues, the best inhibitors found to date
appear to be a series of epithio and epoxy analogues of the
amino acid, where the Ki against rat liver MAT was 7–105
µM [40]. A series ATP-methionine and ATP-homocysteine
adducts, which resemble the transition state of the sub-
strates, have also been synthesized and studied [41,42].
Of these compounds, several had submicromolar Ki val-
ues against rat liver MAT. Clearly, with synthetic optimisa-
tion, it is possible to generate effective inhibitors of MAT.

Conclusions
Methionine adenosyltransferase has been cloned from M.
tuberculosis and M. smegmatis. The enzymes have been
found to retain all amino acids known from E. coli to be
involved in catalysing the formation of S-adenosylme-
thionine. The M. smegmatis enzyme was functionally
expressed, while that from M. tuberculosis was insoluble
and inactive under a large variety of conditions. The M.
smegmatis MAT has kinetic constants for methionine and
ATP that are very similar to previously characterised
enzymes, and can be inhibited by 8-azaguanine and aza-
thioprine. The latter compound was also found to inhibit
M. smegmatis growth in vitro with an MIC of 500 µM. This

finding opens up the potential for the development of
more potent inhibitors of mycobacterial MAT.

Methods
Cells and Reagents
Mycobacterium tuberculosis H37Rv was obtained from Dr. J.
Talbot, University of Alberta, and Mycobacterium
smegmatis NCTC-8159 (Cornell 3) from the National Cul-
ture Type Collection (Central Public Health Laboratory,
London, UK). Both organisms were grown in
Middlebrook 7H9 liquid medium or on Middlebrook
7H10 agar plates (Sigma Chemical Co.; Oakville, ON,
CA) at 37°C. All substrates and inhibitors were obtained
from Sigma Chemical Co., Aldrich Chemical Co.
(Oakville, ON, CA), or Fluka (Oakville, ON, CA).

Cloning and Functional Expression
Genomic DNA was isolated from cells by vortexing
packed cells in a minimal volume of 50 mM Tris-HCl pH
8.0/10 mM EDTA/100 mM NaCl containing 500 µm acid
washed glass beads (Sigma Chemical Co.). After allowing
the glass beads to settle, the supernatant was added to an
equal volume of 10 mM Tris-HCl pH 8.0/100 mM NaCl/
25 mM EDTA/0.5% w/v sodium dodecyl sulfate/0.1 mg/
ml proteinase K and incubated for 1 hr at 37°C with occa-
sional gentle mixing. The mixture was then subjected to
extraction with phenol and chloroform:isoamyl alcohol
(24:1), and the DNA ethanol precipitated.

The nucleotide sequences of the putative MAT genes were
obtained by BLAST analysis [43] of the completed M.
tuberculosis H37Rv genome data ([13], http://

Figure 6
The structures of 8-azaguanine and azathioprine. From right to left: the adenine portion of ATP, 8-azaguanine, and 
azathioprine.

N

N N

N

NH2

Ribose

H
N

N N
N

N

O

H2N

H
H

N

N N

N

S H

N

N

H3C

NO2
Page 10 of 13
(page number not for citation purposes)

http://www.sanger.ac.uk/Projects/M_tuberculosis


BMC Microbiology 2003, 3 http://www.biomedcentral.com/1471-2180/3/12
www.sanger.ac.uk/Projects/M_tuberculosis) and the
incomplete M. smegmatis mc2155 genome data http://
www.tigr.org/tdb/mdb/mdbinprogress.html. In both
cases, a single high-homology open reading frame was
identified and used for the design of oligonucleotide
primers. For M. tuberculosis, the 5' primer was GACGAC-
GACAAGATGAGCGAAAAGGGTCGGCTG and the 3'
primer GGAACAAGACCCGTCTAGATGGCGCGCTT-
GAGG, while for M. smegmatis the 5' primer was GAC-
GACGACAAGATGAGCAAAGGTCGCCTGTTTA and the 3'
primer GGAACAAGACCCGTTCAGATGGCGGACT-
TCAGG. Both sets of primers contained a 5' 12 nucleotide
LIC (ligation independent cloning, [44]) sequence and an
in-frame start codon, and the 3' primers contained a 13
nucleotide LIC sequence and an in-frame stop codon. The
target sequences were amplified from the genomic DNA
using Taq polymerase (Promega; Madison, WI, USA), 1.5
mM MgCl2, 200 µM dNTP, and the following program: 1
cycle of 95°C for 1.5 min, 30 cycles of 95°C for 1 min/
55°C for 1 min/72°C for 1 min, and 1 cycle of 72°C for
10 min. The amplified target sequence was excised from a
1% agarose gel and the DNA extracted using the QiaexII
kit (Qiagen;Mississauga, ON, Canada). The genes were
then cloned into pCALnFLAG using the LIC procedure
outlined by Stratagene (La Jolla, CA, USA), and then trans-
formed into E. coli XL10 competent cells (Stratagene). The
sequence for the M. smegmatis MAT has been deposited
with Genbank under the accession number AY254892.
The recombinant plasmid was purified from these cells
using the QiaSpin miniprep kit (Qiagen), and the pres-
ence of the insert confirmed by digestion with NdeI and
SacI and electrophoresis on a 1% agarose gel. The plasmid
from positive clones was transformed into E. coli BL21
DE3 CodonPlus RIL cells (Stratagene) for functional
expression.

The BL21 cells containing the recombinant plasmid were
grown in LB liquid medium containing 50 µg/ml ampicil-
lin and 50 µg/ml chloramphenicol at 37°C and 250 rpm
until the cell density reached an A600nm of 0.6 – 0.8. The
culture was then cooled to 28°C and IPTG added to 1.0
mM before 2–5 hr of continued culture at 28°C and 250
rpm. The cells were then pelleted by centrifugation at
3500 × g for 20 min at 4°C, and resuspended in a minimal
volume of 10 mM HEPES pH 7.8/150 mM NaCl/1.0 mM
DTT/1.0 mM imidazole/2.0 mM CaCl2 before storage at -
20°C. The sample was thawed, sonicated on ice, and
centrifuged at 3500 × g for 20 min at 4°C. The resulting
supernatant was loaded onto a 1.6 × 8.0 cm calmodulin-
agarose column (Stratagene) equilibrated with the resus-
pension buffer. The column was eluted with 10 mM
HEPES pH 7.8/1.2 M NaCl/1.0 DTT/3.0 EGTA. The eluted
enzyme was concentrated to less than 5.0 ml using a 30
KDa molecular weight cut-off centrifugal filter (Pall Fil-
tron; Mississauga, ON, Canada). The concentrated

enzyme was kept at 4°C for short term storage and at -
20°C with 20% v/v glycerol for long term storage.

The M. tuberculosis MAT was also subcloned into pET43.1a
(Stratagene) for expression as an E. coli NusA fusion pro-
tein. In addition to expression in E. coli BL21 DE3 RIL, the
pCALnFlag and pET43.1a constructs were also expressed
in E. coli BL21 DE3 pLysS (Stratagene), E. coli Rosetta DE3
pLysS (Novagen, Madison, WI, USA), or E. coli Origami
DE3 pLysS (Novagen). Solubilisation and refolding of
inclusion bodies was attempted using the Novagen pro-
tein refolding kit as per manufacturer's instructions.

Protein concentration was determined using the Bio-Rad
dye (Mississauga, ON, Canada). Protein samples were
examined by electrophoresis on 10% SDS polyacrylamide
gels followed by Coomassie R250 staining.

Enzyme Assays
MAT activity was determined by incubating 10 µl of
enzyme source with 100 µl of 100 mM Tris-HCl pH 8.2/
20 mM MgCl2/150 mM KCl/10 mM ATP/5 mM dithioth-
reitol/5 mM L-methionine for various lengths of time at
37°C. The production of S-adenosylmethionine was then
quantified by an HPLC method based on that of Yarlett
and Bacchi [45]. 100 µl of 0.1 M NaH2PO4 pH 2.65/8 mM
heptane sulfonate/2% v/v CH3CN (Buffer A) was added to
the incubation mixture before the injection of 10 µl onto
a 4.6 × 250 mm Econosphere C18 column (Alltech; Deer-
field, IL, USA). The column was eluted with a 30 min gra-
dient from 85% Buffer A and 15% Buffer B (0.15 M
Na2HPO4 pH 3.25/8 mM heptane sulfonate/26% v/v
CH3CN) to 100% Buffer B. The flow rate was 1.0 ml/min,
and the reaction product was detected by ultraviolet spec-
trophotometry at 260 nm. All separations were performed
on an Agilent 1100 HPLC equipped with an autosampler,
variable wavelength ultraviolet/visible spectrophotomet-
ric detector, and Chemstation operating system.

For determining the kinetic constants for MAT, the
enzyme was incubated as above with 0–4 mM substrate,
10 mM cosubstrate, 20 mM Mg2+, and 150 mM K+. The
constants were determined by non-linear least-squared
curve fitting using the Michaelis-Menton equation in the
Scientist program (Micromath; Salt Lake City, UT, USA).
For initial inhibitor screening, enzyme was incubated
with 1 mM substrate, 10 mM cosubstrate, 20 mM Mg2+,
150 mM K+, and 10 mM inhibitor as described above.
Compounds which yielded greater than 70% inhibition
of SAM production were rescreened using 0–10 mM
inhibitor, 10 mM methionine, 0.5, 1.0, 2.0, or 3.0 mM
ATP, 20 mM Mg2+, and 150 mM K+. The resulting data was
examined using Dixon or Cornish-Bowden plots for com-
petitive or uncompetitive inhibition respectively [46].
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Growth Inhibition
Test compounds were serially diluted in a microtitre plate
to yield 2.0 mM – 976 nM in a volume of 100 µl. A culture
of M. smegmatis in mid-logarithmic growth was diluted in
Middlebrook 7H9 medium to yield 2 × 105 cfu/ml. 100 µl
of this diluted culture was then added to each well con-
taining the test compounds before incubation at 30°C for
72 hr. Wells containing drug alone or bacteria alone were
included as positive and negative controls. Microbial
growth was measured using a 96-well spectrophotometer
(Molecular Devices; Sunnyvale, CA, USA) at 650 nm. The
MIC was determined as the lowest dilution which com-
pletely prevented microbial growth.

Phylogenetic Analysis
Additional MAT sequences were obtained from GenBank
and the incomplete M. avium http://www.tigr.org/tdb/
mdb/mdbinprogress.html, M. bovis http://
www.sanger.ac.uk/Projects/M_bovis, and M. marinum
http://www.sanger.ac.uk/Projects/M_marinum databases.
All sequences were aligned using the Clustal algorithm
and the BLOSUM sequence substitution table in the Clus-
talX program [47]. Aligned sequences were visualised with
the Bioedit program [48]. The aligned sequences were
then used with the ProtDist component of Phylip [49] to
construct a distance matrix which was the basis for tree
construction using neighbor-joining [16]. All trees were
visualised using Treeview [50].

List of abbreviations used
SAM S-Adenosylmethionine

MAT Methionine Adenosyltransferase

HPLC High Performance Liquid Chromatography

IPTG Isopropylthiogalactopyranoside

MIC Minimum Inhibitory Concentration
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