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Abstract
Background: Mycobacterium avium subspecies paratuberculosis (M. paratuberculosis) is a facultative
intracellular pathogen that resides within host macrophages during infection of ruminant animals.
We examined survival of M. paratuberculosis infections within cultured macrophages to better
understand the interplay between bacterium and host.

Results: Serial plating of M. paratuberculosis infected macrophage lysates on Herold's egg yolk
medium showed that mycobacterial replication takes place between 0 and 24 hours post-infection.
This initial growth phase was followed by a steady decline in viability over the next six days.
Antibodies against M. paratuberculosis were affinity purified and used in conjunction with
transmission electron microscopy to track the development of intracellular bacilli. Immunogold
labeling of infected macrophages with antibody against M. paratuberculosis showed degraded
intracellular mycobacteria that were unrecognizable by morphology alone. Conversely, when
macrophages were heavily infected with M. paratuberculosis, no degraded forms were observed and
macrophages were killed.

Conclusions: We present a general description of M. paratuberculosis survival within cultured
macrophages using transmission electron microscopy and viability counts. The results of this study
provides further insight surrounding M. paratuberculosis-macrophage infections and have
implications in the pathogenesis of M. paratuberculosis, a pathogen known to persist inside cattle for
many years.

Background
Johne's disease, also called paratuberculosis, is a chronic
granulomatous enteritis of ruminant animals caused by
Mycobacterium avium subspecies paratuberculosis (M.
paratuberculosis). While Johne's disease can end in death of
the animal, the economic impact of this disease is much
more significant [1,2]. Losses are estimated to be $200/
clinically infected cow/year and are a result of animal cull-
ing, reduced milk production, poor reproductive perform-

ance, and reduced carcass value [1,3]. Research on the
pathogenesis and immunology of M. paratuberculosis in-
fections of cattle is necessary to allow design of more ra-
tional diagnostic and control procedures.

A small number of specialized microorganisms can sur-
vive inside macrophages designed specifically to kill bac-
teria. However, a hallmark of mycobacterial pathogenesis
is their ability to survive, and even replicate, within mac-
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rophages. These include Mycobacteria, Salmonella, Listeria,
Coxiella and Corynebacteria. Different mechanisms are em-
ployed as survival strategies and the mycobacteria are ex-
ceptional in the duration and persistence of this
interaction. Survival of pathogenic mycobacteria is attrib-
uted to the fact that the mycobacterial phagosome does
not fuse with lysosomes [4–6]. The mechanism that pre-
vents phagosome maturation is still unknown as are any
mycobacterial genes that contribute to the delayed matu-
ration.

Several studies surrounding the interactions of M. paratu-
berculosis with macrophages have been published because
of its importance in pathogenesis. These studies include
entry into J774 macrophages [7,8], an electron microscop-
ic examination of goat tissue [9,10] and an assessment of
intracellular fate of M. paratuberculosis within bovine
monocytes/macrophages [11,12]. However, many as-
sumptions regarding M. paratuberculosis interactions with
macrophages are based on analogies to M. tuberculosis[13]
or M. avium[14]. In this communication, we present an
analysis of M. paratuberculosis survival within J774 macro-
phages using transmission electron microscopy to show
temporal events early during infection.

Results
Viability of M. paratuberculosis within resting J774 macro-
phages
The growth of M. paratuberculosis was measured at early
stages during infection of non-activated macrophages.
Growth was measured by bacterial cell counts following
serial dilutions on HEYM slants. The cell counts from
three independent experiments showed a slow decline in
M. paratuberculosis viability over 7 days (Fig. 1). After in-
fection, an initial growth phase occurred until 24 hours
postinfection where mycobacterial counts began to de-
cline. In two of the three experiments, an increase in bac-
terial counts occurred after 70 hours postinfection up
until 95 hours where a second decline in viable mycobac-
teria occurred. These data suggest that while M. paratuber-
culosis survives much longer in macrophages than some
pathogens [15,16] including other species of mycobacte-
ria [17], there remains a significant decrease in viability
over time.

Immunoelectron microscopy of intracellular M. paratuber-
culosis
Because the viability of M. paratuberculosis decreased with
time, it was of interest to examine the progression of M.
paratuberculosis infection by immunoelectron microscopy.
However, a reliable method to label intracellular myco-
bacteria needed to be developed first. Therefore rabbit an-
tibodies against a whole cell sonicated lysate of M.
paratuberculosis were affinity purified. These purified anti-
bodies labeled the outer periphery of Middlebrook 7H9
cultured M. paratuberculosis (Fig. 2C). This purified anti-
body preparation was then used to label M. paratuberculo-
sis within infected macrophages (Fig. 2A and 2B). The
purified antibody was highly specific as all gold particles
are associated with the mycobacteria and no labeling of
the surrounding background or macrophages was ob-
served. Control preparations of uninfected macrophages
failed to label with antibody against M. paratuberculosis
(data not shown). Note the mycobacterial morphology re-
mained constant when comparing intracellular with ex-
tracellular bacilli (compare Fig 2B with Fig 2C).

Temporal events during M. paratuberculosis infection of 
J774 macrophages
Macrophages were infected with M. paratuberculosis at a
5:1 ratio and fixed in glutaraldehyde at various time
points to examine the development of mycobacteria in
this environment (Fig. 3). Vacuoles harboring mycobacte-
ria appeared tightly arranged and not spacious as previ-
ously observed in Coxiella burnetii containing vacuoles
[18,19]. The mycobacteria themselves were in very close
contact with each other. The size, number, and morphol-
ogy of the mycobacteria appeared to remain relatively
constant throughout the observed time period. At all
times postinfection, mycobacteria were mostly found as

Figure 1
Growth and survival of M. paratuberculosis in murine macro-
phages. Resting J774 macrophages were infected with M.
paratuberculosis at time zero. Infected lysates were harvested
and plated in triplicate on HEYM slants at 0, 24, 48, 72, 96,
120, 144, and 168 hours postinfection. The results from
three independent experiments are shown. All platings were
performed in triplicate. Error bars denote standard devia-
tion.
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groups inside vacoules. Occasionally, single bacilli were
observed within a tight vacuole. An increase in the per-
centage of degraded mycobacteria was observed with
time. There were two degraded bacilli per 25 fields at 24
hour postinfection and 12 degraded bacilli per 13 fields at
72 hours postinfection. Similar data were obtained in two
independent experiments. Degraded mycobacteria were
morphologically unrecognizable, but did label with im-
munogold, indicating the presence of M. paratuberculosis
antigen (Fig. 4). These data indicate that macrophages can
kill and degrade a percentage of mycobacterial cells in a
given infection.

We next examined the outcome of mycobacteria within
heavily infected macrophages. J774 macrophages were in-
fected with M. paratuberculosis at high multiplicities of in-
fection (30:1) and examined at various times post-
infection (fig. 5). Extracellular mycobacteria were phago-
cytosed via actin rearrangement and remain within
phagosomal vacuoles dispersed throughout the cyto-
plasm (fig. 5A and 5B). At least 20 infected macrophages
were examined at each time point. Note the electron
transparent lipid vesicles present within M. paratuberculo-
sis. These electron transparent vesicles were seen at all
time points examined. At 48 hr postinfection (fig. 5C), the
cytoplasm of the macrophage is loaded with mycobacteri-
al-containing vacuoles. By 72 hr postinfection, the macro-
phage cytoplasm is dark and the cell appears necrotic,
possibly due to the heavy mycobacterial load or apopto-
sis. Severe membrane sloughing or blebbing seen to the
right of the macrophage and identified by the arrows in
Fig. 5D is a sign of apoptosis [20–22]. No degraded myco-
bacteria were observed in these experiments. Therefore, at
high levels of infection, it appears that mycobacteria sur-

vive while the host macrophage is killed. Whereas the out-
come is reversed at lower moi.

Discussion
Growth and survival of mycobacterial species within mac-
rophages has been an area of intensive study because of its
implications in pathogenicity. For example, M. bovis has
been shown to grow within macrophages whereas BCG
strains do not [23]. This observation is controversial since
there are reports of immunocompromised patients with
disseminated BCG. Although multi-species studies are
complex and multi-factorial, M. avium appears to be able
to survive in secondary lysosomes better than does M. tu-
berculosis[18]. In macrophages co-infected with Coxiella
burnetii, an intracellular pathogen known to inhabit and
replicate within secondary lysosomes [19], M. avium
growth was not impaired [18]. Whereas M. tuberculosis ba-
cilli that co-localized with C. burnetii containing vacuoles,
did show reduced growth [18]. A recent report by Thom-
sen et al. [24] showed a higher percentage of degraded M.
paratuberculosis in euthymic as compared to athymic mice.
The in vivo study by Thomsen supports data from our in
vitro study, indicating that J774 cultured macrophages are
a good model for pathogenesis studies.

Many bacteria such as Staphylococcus aureus are rapidly en-
docytosed and digested by macrophages within a few
hours postinfection [25]. The present study showed an in-
itial 25 hour intracellular growth period of M. paratubercu-
losis followed by a slow decline in the viability within
macrophages over a period of 7 days. This survival curve
is similar to that observed by Zhao et al. [12] which
showed M. paratuberculosis intracellular growth in the first
six days followed by killing after day six. The experiments
described herein were performed using the type strain of
M. paratuberculosis, which may have affected the surviva-
bility within macrophages since it is not a recent field iso-
late. However, M. paratuberculosis 6783 [17] and M.
paratuberculosis BO45 [12] are field isolates that have both
showed a decline in viability inside macrophages over
time, although much slower than observed with the type
strain. No attempt has been made to activate the macro-
phages in this study, although several laboratories have
shown that macrophages activated with cytokines such as
interferon-γ increase the ability to kill mycobacteria [26–
30].

A very recent communication of M. paratuberculosis inter-
actions with macrophages was published during the
course of our experiments [17]. This comprehensive study
showed that M. paratuberculosis-containing vacuoles were
mildly acidified (pH 6.3) as compared to latex beads (pH
5.2). In addition, the M. paratuberculosis phagosome was
characterized by the presence of LAMP 1 and absence of
LAMP 2 lysosomal membrane protein markers as well as

Figure 2
Immunogold labeling of intracellular and extracellular M.
paratuberculosis. A single macrophage is shown at 48-h
postinfection (A). (B) An enlargement of the boxed region in
panel A showing immunogold labeling of intracellular M.
paratuberculosis. (C) Preparation of M. paratuberculosis cul-
tured in Middlebrook 7H9 medium. Gold particle labeling
was seen predominantly at the periphery of the mycobacte-
rial cells. Magnification: 11,180 × (A); 104,000 × (B); 88,400 ×
(C).
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other endocytic tracer molecules. These cell biology stud-
ies clearly add to our understanding of M. paratuberculosis
interactions with macrophages.

This study has also provided a general description of early
events in M. paratuberculosis infection of cultured macro-
phages. Several intracellular pathogens such as Chlamydia
or Coxiella undergo readily distinguishable morphological
changes during infection of host cells [31,32]. This is
clearly not the case for M. paratuberculosis or other myco-
bacteria as they remain morphologically similar at least
up until 4 days postinfection. However, an increased per-
centage of degraded mycobacterial forms was observed
over time. These degraded forms appeared by 24 hours
postinfection and were hardly recognizable morphologi-
cally, but did label with immunogold particles indicating
the presence of mycobacterial antigen. At low moi, the ba-
cilli were tightly clustered into a single vacuole through-
out the observed time period. This mycobacterial vacuole
is most likely characteristic of a late endosome, based on
previous studies with M. avium, M. tuberculosis[33,34] and
M. paratuberculosis[17].

All intracellular bacterial pathogens enter host cells sur-
rounded by a membrane bound vacuole [35,36]. Some
pathogens in heavily infected cells collect into a single
vacuole within the same cell [37]. J774 macrophages in-
fected at a moi of 5:1 showed separate M. paratuberculosis-
containing vacuoles within the same macrophage even af-
ter 48 hours postinfection (Figure 2). Likewise, M. tuber-
culosis and M. avium appear to remain in distinct
phagosomes that do not harbor more than one bacilli per
vacuole (see Figures 1A and 4B in [38] for example). How-
ever, in M. avium-infected macrophages, one of the first
phenotypic alterations following activation with cy-
tokines is the coalescence of individual M. avium-contain-
ing vacuoles into communal vacuoles with many bacilli
[26]. The significance of separate M. paratuberculosis-con-
taining vacuoles observed in this study is still unclear.

There appears to be a tenuous relationship to gain control
between M. paratuberculosis and the macrophage with sur-
vival at stake. The macrophage can control growth and
even kill M. paratuberculosis. However, the mycobacteria
are cytotoxic to macrophages or induce apoptosis at high
moi. The mechanism that enables M. paratuberculosis to
persist within cattle for several years remains unclear as
high moi are not likely observed at early stages of Johne's
disease.

Conclusions
In vitro assays to quantify survival of bacteria in macro-
phages provide useful insights into host-pathogen rela-
tions. The results of this study provides further insight
surrounding M. paratuberculosis-macrophage infections

Figure 3
Transmission electron micrographs of M. paratuberculosis-
containing vacuoles in J774 macrophages. Infected macro-
phages were processed for transmission electron micros-
copy at 24 (A), 48 (B), 72 (C), and 96 (D) hours
postinfection. The left column shows the infected macro-
phage and the right column shows an enlargement of the
mycobacterial vacuole. Image magnification is shown beneath
each column. Arrows point to the same mycobacterial cell in
each magnification.
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and have implications in the pathogenesis of M. paratuber-
culosis, a pathogen known to persist inside cattle for many
years. Further studies need to address the tenuous rela-
tionship between mycobacteria and macrophage in rela-
tion to disease outcome.

Materials and methods
Bacterial strains and growth conditions
M. paratuberculosis ATCC19698 was grown in Middle-
brook 7H9 broth (pH 6.0) supplemented with oleic acid
albumin dextrose complex (Becton Dickinson Microbiol-
ogy) and 0.05% Tween 80 and ferric mycobactin J (2 mg/
L). For viability counts, M. paratuberculosis was cultured on
Herold's egg yolk medium (HEYM) prepared as described
elsewhere [39].

Culture of M. paratuberculosis in macrophages
The murine macrophage cell line, J774.16, was cultured in
Dulbecco's modified Eagle medium (MEM; Life Technol-
ogies) supplemented with 10% defined fetal calf serum
(Hyclone Laboratories) at 37°C in 5% CO2. Because
phagocytosis of mycobacteria was shown to be enhanced
with complement protein C3 [40], macrophages were in-
fected with M. paratuberculosis in the presence of 10% se-
rum from a clinical cow with Johne's disease.
Multiplicities of infection (moi) ranged between 2:1 and

30:1 (bacteria: macrophage ratio) in PBS. The number of
macrophages was 3.0 × 106/well as determined on an An-
gel CellTrak 3B cell counter. The input inoculum was 3.0
× 107mycobacteria/well for a 10:1 moi experiment. After
2 hours, extracellular bacteria were removed by washing
the monolayers twice with fresh media. Infected macro-
phages were then incubated in MEM at 37°C and in 5%
CO2. Medium was exchanged every third day during the
course of the infection. To determine survival of M.
paratuberculosis within macrophages, 24-well plates of
macrophages were infected at an moi of 10:1. Infected
macrophages were lysed in cold sterile distilled H2O at 0,
24, 48, 72, 96, 120, 144, and 168 hours postinfection. Fol-
lowing lysis, serial platings of infected macrophage lysates
on HEYM slants were performed. Lysates from three sepa-
rate wells were plated for each time point.

Antibodies
Colloidal gold-conjugated goat anti-rabbit IgG was pur-
chased from Ted Pella, Inc., Redding, CA. Two New Zea-

Figure 4
Some mycobacteria are degraded within macrophages.
Infected macrophages were processed for transmission elec-
tron microscopy at 24 (A), 48 (B), 72 (C), 96 (D), and 120 (E)
hours postinfection. Degraded, unrecognizable mycobacteria
were labeled with immunogold particles (A-E). Healthy M.
paratuberculosis bacilli at 72 hours postinfection were seen in
(F). Magnification: 104,000 × (A-C), 104,000 × (D), 165,000 ×
(E), 88,400 × (F).

Figure 5
Heavy M. paratuberculosis infection of J774 macrophages.
Macrophages were infected at a 30:1 ratio and processed for
transmission electron microscopy at 0 (A), 24 (B), 48 (C),
and 72 (D) hours. Long arrows in A identify extracellular M.
paratuberculosis whereas short arrows in A and B show intra-
cellular M. paratuberculosis within vacuoles, presumably
phagosomes. Membrane protrusions indicative of actin rear-
rangements involving phagocytosis can be seen in the top
center of panel A. The inset (E) shows the intracellular detail
of selected bacilli. Arrows in (D) identify membrane blebs.
Scale bars = 1 µm.
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land white rabbits were immunized with sonicated
preparations of M. paratuberculosis as previously described
[41]. Antibodies directed at a whole cell sonicated extract
of M. paratuberculosis were affinity purified using Amino-
Link columns (Pierce Chemical Company, Rockford, IL,
USA). Briefly, the sonicated extract of M. paratuberculosis
was coupled by reductive amination to a 4% agarose sup-
port column (Pierce Chemical Company). Sera from rab-
bits immunized with a killed preparation of M.
paratuberculosis (1–2 ml) were passed over the column fol-
lowed by three washes and elution according to the in-
structions of the manufacturer. Eluted fractions were
evaluated by spectrophotometry and immunoblot analy-
sis [42]. Fractions with the highest absorbance at 280 nm
and the strongest reactivity by immunoblot were neutral-
ized in 1 M Tris-HCl (pH 9.5) buffer and stored at 4°C.

Electron microscopy
All fixation and staining procedures were conducted at
room temperature. Noninfected and M. paratuberculosis-
infected macrophages were cultured on membrane inserts
for times indicated in each experiment described below.
Cells were fixed for 2–4 h in 2.5% glutaraldehyde in 0.1
M Cacodylate buffer, pH 7.4. Fixed cells were washed in
the same buffer three times and were postfixed in 1%
OsO4 in 0.1 M cacodylate buffer, pH 7.4, for 2 h. After
washing in the same buffer, cells were incubated with
30% ethanol for 10 min. The cells were further dehydrat-
ed with a graded series of ethanol and embedded in epoxy
resin (Embed 812). Ultrathin sections for immunoelec-
tron microscopy were washed in buffer 15 min three times
and etched with saturated sodium metaperiodate for 15
min. Cells were then blocked with 5% BSA for 30 min at
room temperature. Cells were treated with affinity puri-
fied rabbit IgG against M. paratuberculosis (diluted 1:20) in
the blocking solution for 2 h at room temperature. Cells
were washed in Tris buffer containing 0.1% Tween 20 and
0.1% BSA four times for 10 min each and then incubated
with goat anti-rabbit IgG conjugated to colloidal gold (10
nm diameter) in Tris buffer for 2 h. Immunolabeled sec-
tions were washed in Tris buffer four times and fixed with
1% glutaraldehyde in Tris for 10 min. All ultrathin sec-
tions were double stained with uranyl acetate and Rey-
nolds lead citrate and then observed under a Philips 410
microscope.
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